summaryrefslogtreecommitdiff
path: root/plugins/setoid_ring/Ring_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/setoid_ring/Ring_theory.v')
-rw-r--r--plugins/setoid_ring/Ring_theory.v293
1 files changed, 130 insertions, 163 deletions
diff --git a/plugins/setoid_ring/Ring_theory.v b/plugins/setoid_ring/Ring_theory.v
index ab992552..42ce4edc 100644
--- a/plugins/setoid_ring/Ring_theory.v
+++ b/plugins/setoid_ring/Ring_theory.v
@@ -1,14 +1,12 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Setoid.
-Require Import BinPos.
-Require Import BinNat.
+Require Import Setoid Morphisms BinPos BinNat.
Set Implicit Arguments.
@@ -35,48 +33,42 @@ Section Power.
Variable rI : R.
Variable rmul : R -> R -> R.
Variable req : R -> R -> Prop.
- Variable Rsth : Setoid_Theory R req.
- Notation "x * y " := (rmul x y).
- Notation "x == y" := (req x y).
+ Variable Rsth : Equivalence req.
+ Infix "*" := rmul.
+ Infix "==" := req.
- Hypothesis mul_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2.
- Hypothesis mul_comm : forall x y, x * y == y * x.
+ Hypothesis mul_ext : Proper (req ==> req ==> req) rmul.
Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z.
- Add Setoid R req Rsth as R_set_Power.
- Add Morphism rmul : rmul_ext_Power. exact mul_ext. Qed.
-
- Fixpoint pow_pos (x:R) (i:positive) {struct i}: R :=
+ Fixpoint pow_pos (x:R) (i:positive) : R :=
match i with
| xH => x
- | xO i => let p := pow_pos x i in rmul p p
- | xI i => let p := pow_pos x i in rmul x (rmul p p)
+ | xO i => let p := pow_pos x i in p * p
+ | xI i => let p := pow_pos x i in x * (p * p)
end.
- Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j.
+ Lemma pow_pos_swap x j : pow_pos x j * x == x * pow_pos x j.
Proof.
- induction j;simpl.
- rewrite IHj.
- rewrite (mul_comm x (pow_pos x j *pow_pos x j)).
- setoid_rewrite (mul_comm x (pow_pos x j)) at 2.
- repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- apply (Seq_refl _ _ Rsth).
+ induction j; simpl; rewrite <- ?mul_assoc.
+ - f_equiv. now do 2 (rewrite IHj, mul_assoc).
+ - now do 2 (rewrite IHj, mul_assoc).
+ - reflexivity.
Qed.
- Lemma pow_pos_Pplus : forall x i j, pow_pos x (i + j) == pow_pos x i * pow_pos x j.
+ Lemma pow_pos_succ x j :
+ pow_pos x (Pos.succ j) == x * pow_pos x j.
Proof.
- intro x;induction i;intros.
- rewrite xI_succ_xO;rewrite Pplus_one_succ_r.
- rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
- repeat rewrite IHi.
- rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc.
- simpl;repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
- repeat rewrite IHi;rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc;
- simpl. apply (Seq_refl _ _ Rsth).
+ induction j; simpl; try reflexivity.
+ rewrite IHj, <- mul_assoc; f_equiv.
+ now rewrite mul_assoc, pow_pos_swap, mul_assoc.
+ Qed.
+
+ Lemma pow_pos_add x i j :
+ pow_pos x (i + j) == pow_pos x i * pow_pos x j.
+ Proof.
+ induction i using Pos.peano_ind.
+ - now rewrite Pos.add_1_l, pow_pos_succ.
+ - now rewrite Pos.add_succ_l, !pow_pos_succ, IHi, mul_assoc.
Qed.
Definition pow_N (x:R) (p:N) :=
@@ -87,9 +79,9 @@ Section Power.
Definition id_phi_N (x:N) : N := x.
- Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n.
+ Lemma pow_N_pow_N x n : pow_N x (id_phi_N n) == pow_N x n.
Proof.
- intros; apply (Seq_refl _ _ Rsth).
+ reflexivity.
Qed.
End Power.
@@ -98,19 +90,18 @@ Section DEFINITIONS.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
- Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
- Notation "x == y" := (req x y).
+ Notation "0" := rO. Notation "1" := rI.
+ Infix "==" := req. Infix "+" := radd. Infix "*" := rmul.
+ Infix "-" := rsub. Notation "- x" := (ropp x).
(** Semi Ring *)
Record semi_ring_theory : Prop := mk_srt {
SRadd_0_l : forall n, 0 + n == n;
- SRadd_comm : forall n m, n + m == m + n ;
+ SRadd_comm : forall n m, n + m == m + n ;
SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
SRmul_1_l : forall n, 1*n == n;
SRmul_0_l : forall n, 0*n == 0;
- SRmul_comm : forall n m, n*m == m*n;
+ SRmul_comm : forall n m, n*m == m*n;
SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
}.
@@ -119,11 +110,11 @@ Section DEFINITIONS.
(*Almost ring are no ring : Ropp_def is missing **)
Record almost_ring_theory : Prop := mk_art {
ARadd_0_l : forall x, 0 + x == x;
- ARadd_comm : forall x y, x + y == y + x;
+ ARadd_comm : forall x y, x + y == y + x;
ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z;
ARmul_1_l : forall x, 1 * x == x;
ARmul_0_l : forall x, 0 * x == 0;
- ARmul_comm : forall x y, x * y == y * x;
+ ARmul_comm : forall x y, x * y == y * x;
ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
ARopp_mul_l : forall x y, -(x * y) == -x * y;
@@ -134,10 +125,10 @@ Section DEFINITIONS.
(** Ring *)
Record ring_theory : Prop := mk_rt {
Radd_0_l : forall x, 0 + x == x;
- Radd_comm : forall x y, x + y == y + x;
+ Radd_comm : forall x y, x + y == y + x;
Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
Rmul_1_l : forall x, 1 * x == x;
- Rmul_comm : forall x y, x * y == y * x;
+ Rmul_comm : forall x y, x * y == y * x;
Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
Rsub_def : forall x y, x - y == x + -y;
@@ -148,19 +139,15 @@ Section DEFINITIONS.
Record sring_eq_ext : Prop := mk_seqe {
(* SRing operators are compatible with equality *)
- SRadd_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
- SRmul_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2
+ SRadd_ext : Proper (req ==> req ==> req) radd;
+ SRmul_ext : Proper (req ==> req ==> req) rmul
}.
Record ring_eq_ext : Prop := mk_reqe {
(* Ring operators are compatible with equality *)
- Radd_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
- Rmul_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2;
- Ropp_ext : forall x1 x2, x1 == x2 -> -x1 == -x2
+ Radd_ext : Proper (req ==> req ==> req) radd;
+ Rmul_ext : Proper (req ==> req ==> req) rmul;
+ Ropp_ext : Proper (req ==> req) ropp
}.
(** Interpretation morphisms definition*)
@@ -170,9 +157,9 @@ Section DEFINITIONS.
Variable ceqb : C->C->bool.
(* [phi] est un morphisme de [C] dans [R] *)
Variable phi : C -> R.
- Notation "x +! y" := (cadd x y). Notation "x -! y " := (csub x y).
- Notation "x *! y " := (cmul x y). Notation "-! x" := (copp x).
- Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
+ Infix "+!" := cadd. Infix "-!" := csub.
+ Infix "*!" := cmul. Notation "-! x" := (copp x).
+ Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
(*for semi rings*)
Record semi_morph : Prop := mkRmorph {
@@ -216,15 +203,13 @@ Section DEFINITIONS.
End MORPHISM.
(** Identity is a morphism *)
- Variable Rsth : Setoid_Theory R req.
- Add Setoid R req Rsth as R_setoid1.
+ Variable Rsth : Equivalence req.
Variable reqb : R->R->bool.
Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
Definition IDphi (x:R) := x.
Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi.
Proof.
- apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi);intros;unfold IDphi;
- try apply (Seq_refl _ _ Rsth);auto.
+ now apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi).
Qed.
(** Specification of the power function *)
@@ -239,35 +224,31 @@ Section DEFINITIONS.
End POWER.
- Definition pow_N_th := mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth).
+ Definition pow_N_th :=
+ mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth).
End DEFINITIONS.
-
-
Section ALMOST_RING.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
- Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
- Notation "x == y" := (req x y).
+ Notation "0" := rO. Notation "1" := rI.
+ Infix "==" := req. Infix "+" := radd. Infix "* " := rmul.
+ Infix "-" := rsub. Notation "- x" := (ropp x).
(** Leibniz equality leads to a setoid theory and is extensional*)
- Lemma Eqsth : Setoid_Theory R (@eq R).
- Proof. constructor;red;intros;subst;trivial. Qed.
+ Lemma Eqsth : Equivalence (@eq R).
+ Proof. exact eq_equivalence. Qed.
Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R).
- Proof. constructor;intros;subst;trivial. Qed.
+ Proof. constructor;solve_proper. Qed.
Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R).
- Proof. constructor;intros;subst;trivial. Qed.
+ Proof. constructor;solve_proper. Qed.
- Variable Rsth : Setoid_Theory R req.
- Add Setoid R req Rsth as R_setoid2.
- Ltac sreflexivity := apply (Seq_refl _ _ Rsth).
+ Variable Rsth : Equivalence req.
Section SEMI_RING.
Variable SReqe : sring_eq_ext radd rmul req.
@@ -282,23 +263,24 @@ Section ALMOST_RING.
Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y).
Lemma SRopp_ext : forall x y, x == y -> -x == -y.
- Proof. intros x y H;exact H. Qed.
+ Proof. intros x y H; exact H. Qed.
Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req.
Proof.
- constructor. exact (SRadd_ext SReqe). exact (SRmul_ext SReqe).
- exact SRopp_ext.
+ constructor.
+ - exact (SRadd_ext SReqe).
+ - exact (SRmul_ext SReqe).
+ - exact SRopp_ext.
Qed.
Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y.
- Proof. intros;sreflexivity. Qed.
+ Proof. reflexivity. Qed.
Lemma SRopp_add : forall x y, -(x + y) == -x + -y.
- Proof. intros;sreflexivity. Qed.
-
+ Proof. reflexivity. Qed.
Lemma SRsub_def : forall x y, x - y == x + -y.
- Proof. intros;sreflexivity. Qed.
+ Proof. reflexivity. Qed.
Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req.
Proof (mk_art 0 1 radd rmul SRsub SRopp req
@@ -315,7 +297,7 @@ Section ALMOST_RING.
Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req
0 1 radd rmul SRsub SRopp reqb (@IDphi R).
Proof.
- apply mkmorph;intros;try sreflexivity. unfold IDphi;auto.
+ now apply mkmorph.
Qed.
(* a semi_morph can be extended to a ring_morph for the almost_ring derived
@@ -331,9 +313,7 @@ Section ALMOST_RING.
ring_morph rO rI radd rmul SRsub SRopp req
cO cI cadd cmul cadd (fun x => x) ceqb phi.
Proof.
- case Smorph; intros; constructor; auto.
- unfold SRopp in |- *; intros.
- setoid_reflexivity.
+ case Smorph; now constructor.
Qed.
End SEMI_RING.
@@ -347,31 +327,28 @@ Section ALMOST_RING.
Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
(** Rings are almost rings*)
- Lemma Rmul_0_l : forall x, 0 * x == 0.
+ Lemma Rmul_0_l x : 0 * x == 0.
Proof.
- intro x; setoid_replace (0*x) with ((0+1)*x + -x).
- rewrite (Radd_0_l Rth); rewrite (Rmul_1_l Rth).
- rewrite (Ropp_def Rth);sreflexivity.
+ setoid_replace (0*x) with ((0+1)*x + -x).
+ now rewrite (Radd_0_l Rth), (Rmul_1_l Rth), (Ropp_def Rth).
- rewrite (Rdistr_l Rth);rewrite (Rmul_1_l Rth).
- rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
- rewrite (Radd_comm Rth); rewrite (Radd_0_l Rth);sreflexivity.
+ rewrite (Rdistr_l Rth), (Rmul_1_l Rth).
+ rewrite <- (Radd_assoc Rth), (Ropp_def Rth).
+ now rewrite (Radd_comm Rth), (Radd_0_l Rth).
Qed.
- Lemma Ropp_mul_l : forall x y, -(x * y) == -x * y.
+ Lemma Ropp_mul_l x y : -(x * y) == -x * y.
Proof.
- intros x y;rewrite <-(Radd_0_l Rth (- x * y)).
- rewrite (Radd_comm Rth).
- rewrite <-(Ropp_def Rth (x*y)).
- rewrite (Radd_assoc Rth).
- rewrite <- (Rdistr_l Rth).
- rewrite (Rth.(Radd_comm) (-x));rewrite (Ropp_def Rth).
- rewrite Rmul_0_l;rewrite (Radd_0_l Rth);sreflexivity.
+ rewrite <-(Radd_0_l Rth (- x * y)).
+ rewrite (Radd_comm Rth), <-(Ropp_def Rth (x*y)).
+ rewrite (Radd_assoc Rth), <- (Rdistr_l Rth).
+ rewrite (Rth.(Radd_comm) (-x)), (Ropp_def Rth).
+ now rewrite Rmul_0_l, (Radd_0_l Rth).
Qed.
- Lemma Ropp_add : forall x y, -(x + y) == -x + -y.
+ Lemma Ropp_add x y : -(x + y) == -x + -y.
Proof.
- intros x y;rewrite <- ((Radd_0_l Rth) (-(x+y))).
+ rewrite <- ((Radd_0_l Rth) (-(x+y))).
rewrite <- ((Ropp_def Rth) x).
rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))).
rewrite <- ((Ropp_def Rth) y).
@@ -383,17 +360,17 @@ Section ALMOST_RING.
rewrite ((Radd_comm Rth) y).
rewrite <- ((Radd_assoc Rth) (- x)).
rewrite ((Radd_assoc Rth) y).
- rewrite ((Radd_comm Rth) y);rewrite (Ropp_def Rth).
- rewrite ((Radd_comm Rth) (-x) 0);rewrite (Radd_0_l Rth).
- apply (Radd_comm Rth).
+ rewrite ((Radd_comm Rth) y), (Ropp_def Rth).
+ rewrite ((Radd_comm Rth) (-x) 0), (Radd_0_l Rth).
+ now apply (Radd_comm Rth).
Qed.
- Lemma Ropp_opp : forall x, - -x == x.
+ Lemma Ropp_opp x : - -x == x.
Proof.
- intros x; rewrite <- (Radd_0_l Rth (- -x)).
+ rewrite <- (Radd_0_l Rth (- -x)).
rewrite <- (Ropp_def Rth x).
- rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
- rewrite ((Radd_comm Rth) x);apply (Radd_0_l Rth).
+ rewrite <- (Radd_assoc Rth), (Ropp_def Rth).
+ rewrite ((Radd_comm Rth) x); now apply (Radd_0_l Rth).
Qed.
Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
@@ -407,10 +384,10 @@ Section ALMOST_RING.
Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C).
Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool).
Variable phi : C -> R.
- Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
- Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
- Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
- Variable Csth : Setoid_Theory C ceq.
+ Infix "+!" := cadd. Infix "*!" := cmul.
+ Infix "-!" := csub. Notation "-! x" := (copp x).
+ Notation "?=!" := ceqb. Notation "[ x ]" := (phi x).
+ Variable Csth : Equivalence ceq.
Variable Ceqe : ring_eq_ext cadd cmul copp ceq.
Add Setoid C ceq Csth as C_setoid.
Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed.
@@ -420,9 +397,9 @@ Section ALMOST_RING.
Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi.
Variable phi_ext : forall x y, ceq x y -> [x] == [y].
Add Morphism phi : phi_ext1. exact phi_ext. Qed.
- Lemma Smorph_opp : forall x, [-!x] == -[x].
+ Lemma Smorph_opp x : [-!x] == -[x].
Proof.
- intros x;rewrite <- (Rth.(Radd_0_l) [-!x]).
+ rewrite <- (Rth.(Radd_0_l) [-!x]).
rewrite <- ((Ropp_def Rth) [x]).
rewrite ((Radd_comm Rth) [x]).
rewrite <- (Radd_assoc Rth).
@@ -430,17 +407,18 @@ Section ALMOST_RING.
rewrite (Ropp_def Cth).
rewrite (Smorph0 Smorph).
rewrite (Radd_comm Rth (-[x])).
- apply (Radd_0_l Rth);sreflexivity.
+ now apply (Radd_0_l Rth).
Qed.
- Lemma Smorph_sub : forall x y, [x -! y] == [x] - [y].
+ Lemma Smorph_sub x y : [x -! y] == [x] - [y].
Proof.
- intros x y; rewrite (Rsub_def Cth);rewrite (Rsub_def Rth).
- rewrite (Smorph_add Smorph);rewrite Smorph_opp;sreflexivity.
+ rewrite (Rsub_def Cth), (Rsub_def Rth).
+ now rewrite (Smorph_add Smorph), Smorph_opp.
Qed.
- Lemma Smorph_morph : ring_morph 0 1 radd rmul rsub ropp req
- cO cI cadd cmul csub copp ceqb phi.
+ Lemma Smorph_morph :
+ ring_morph 0 1 radd rmul rsub ropp req
+ cO cI cadd cmul csub copp ceqb phi.
Proof
(mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi
(Smorph0 Smorph) (Smorph1 Smorph)
@@ -458,17 +436,11 @@ elim ARth; intros.
constructor; trivial.
Qed.
- Lemma ARsub_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2.
+ Instance ARsub_ext : Proper (req ==> req ==> req) rsub.
Proof.
- intros.
- setoid_replace (x1 - y1) with (x1 + -y1).
- setoid_replace (x2 - y2) with (x2 + -y2).
- rewrite H;rewrite H0;sreflexivity.
- apply (ARsub_def ARth).
- apply (ARsub_def ARth).
+ intros x1 x2 Ex y1 y2 Ey.
+ now rewrite !(ARsub_def ARth), Ex, Ey.
Qed.
- Add Morphism rsub : rsub_ext. exact ARsub_ext. Qed.
Ltac mrewrite :=
repeat first
@@ -479,64 +451,56 @@ Qed.
| rewrite (ARmul_0_l ARth)
| rewrite <- ((ARmul_comm ARth) 0)
| rewrite (ARdistr_l ARth)
- | sreflexivity
+ | reflexivity
| match goal with
| |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y))
end].
- Lemma ARadd_0_r : forall x, (x + 0) == x.
- Proof. intros; mrewrite. Qed.
+ Lemma ARadd_0_r x : x + 0 == x.
+ Proof. mrewrite. Qed.
- Lemma ARmul_1_r : forall x, x * 1 == x.
- Proof. intros;mrewrite. Qed.
+ Lemma ARmul_1_r x : x * 1 == x.
+ Proof. mrewrite. Qed.
- Lemma ARmul_0_r : forall x, x * 0 == 0.
- Proof. intros;mrewrite. Qed.
+ Lemma ARmul_0_r x : x * 0 == 0.
+ Proof. mrewrite. Qed.
- Lemma ARdistr_r : forall x y z, z * (x + y) == z*x + z*y.
+ Lemma ARdistr_r x y z : z * (x + y) == z*x + z*y.
Proof.
- intros;mrewrite.
- repeat rewrite (ARth.(ARmul_comm) z);sreflexivity.
+ mrewrite. now rewrite !(ARth.(ARmul_comm) z).
Qed.
- Lemma ARadd_assoc1 : forall x y z, (x + y) + z == (y + z) + x.
+ Lemma ARadd_assoc1 x y z : (x + y) + z == (y + z) + x.
Proof.
- intros;rewrite <-(ARth.(ARadd_assoc) x).
- rewrite (ARth.(ARadd_comm) x);sreflexivity.
+ now rewrite <-(ARth.(ARadd_assoc) x), (ARth.(ARadd_comm) x).
Qed.
- Lemma ARadd_assoc2 : forall x y z, (y + x) + z == (y + z) + x.
+ Lemma ARadd_assoc2 x y z : (y + x) + z == (y + z) + x.
Proof.
- intros; repeat rewrite <- (ARadd_assoc ARth);
- rewrite ((ARadd_comm ARth) x); sreflexivity.
+ now rewrite <- !(ARadd_assoc ARth), ((ARadd_comm ARth) x).
Qed.
- Lemma ARmul_assoc1 : forall x y z, (x * y) * z == (y * z) * x.
+ Lemma ARmul_assoc1 x y z : (x * y) * z == (y * z) * x.
Proof.
- intros;rewrite <-((ARmul_assoc ARth) x).
- rewrite ((ARmul_comm ARth) x);sreflexivity.
+ now rewrite <- ((ARmul_assoc ARth) x), ((ARmul_comm ARth) x).
Qed.
- Lemma ARmul_assoc2 : forall x y z, (y * x) * z == (y * z) * x.
+ Lemma ARmul_assoc2 x y z : (y * x) * z == (y * z) * x.
Proof.
- intros; repeat rewrite <- (ARmul_assoc ARth);
- rewrite ((ARmul_comm ARth) x); sreflexivity.
+ now rewrite <- !(ARmul_assoc ARth), ((ARmul_comm ARth) x).
Qed.
- Lemma ARopp_mul_r : forall x y, - (x * y) == x * -y.
+ Lemma ARopp_mul_r x y : - (x * y) == x * -y.
Proof.
- intros;rewrite ((ARmul_comm ARth) x y);
- rewrite (ARopp_mul_l ARth); apply (ARmul_comm ARth).
+ rewrite ((ARmul_comm ARth) x y), (ARopp_mul_l ARth).
+ now apply (ARmul_comm ARth).
Qed.
Lemma ARopp_zero : -0 == 0.
Proof.
- rewrite <- (ARmul_0_r 0); rewrite (ARopp_mul_l ARth).
- repeat rewrite ARmul_0_r; sreflexivity.
+ now rewrite <- (ARmul_0_r 0), (ARopp_mul_l ARth), !ARmul_0_r.
Qed.
-
-
End ALMOST_RING.
@@ -611,6 +575,8 @@ Ltac gen_add_push add Rsth Reqe ARth x :=
progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z)
| |- context [add (add x ?y) ?z] =>
progress rewrite (ARadd_assoc1 Rsth ARth x y z)
+ | |- context [(add x ?y)] =>
+ progress rewrite (ARadd_comm ARth x y)
end).
Ltac gen_mul_push mul Rsth Reqe ARth x :=
@@ -619,5 +585,6 @@ Ltac gen_mul_push mul Rsth Reqe ARth x :=
progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z)
| |- context [mul (mul x ?y) ?z] =>
progress rewrite (ARmul_assoc1 Rsth ARth x y z)
+ | |- context [(mul x ?y)] =>
+ progress rewrite (ARmul_comm ARth x y)
end).
-