summaryrefslogtreecommitdiff
path: root/plugins/setoid_ring/Ring_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/setoid_ring/Ring_theory.v')
-rw-r--r--plugins/setoid_ring/Ring_theory.v608
1 files changed, 608 insertions, 0 deletions
diff --git a/plugins/setoid_ring/Ring_theory.v b/plugins/setoid_ring/Ring_theory.v
new file mode 100644
index 00000000..b3250a51
--- /dev/null
+++ b/plugins/setoid_ring/Ring_theory.v
@@ -0,0 +1,608 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Setoid.
+Require Import BinPos.
+Require Import BinNat.
+
+Set Implicit Arguments.
+
+Module RingSyntax.
+Reserved Notation "x ?=! y" (at level 70, no associativity).
+Reserved Notation "x +! y " (at level 50, left associativity).
+Reserved Notation "x -! y" (at level 50, left associativity).
+Reserved Notation "x *! y" (at level 40, left associativity).
+Reserved Notation "-! x" (at level 35, right associativity).
+
+Reserved Notation "[ x ]" (at level 0).
+
+Reserved Notation "x ?== y" (at level 70, no associativity).
+Reserved Notation "x -- y" (at level 50, left associativity).
+Reserved Notation "x ** y" (at level 40, left associativity).
+Reserved Notation "-- x" (at level 35, right associativity).
+
+Reserved Notation "x == y" (at level 70, no associativity).
+End RingSyntax.
+Import RingSyntax.
+
+Section Power.
+ Variable R:Type.
+ Variable rI : R.
+ Variable rmul : R -> R -> R.
+ Variable req : R -> R -> Prop.
+ Variable Rsth : Setoid_Theory R req.
+ Notation "x * y " := (rmul x y).
+ Notation "x == y" := (req x y).
+
+ Hypothesis mul_ext :
+ forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2.
+ Hypothesis mul_comm : forall x y, x * y == y * x.
+ Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z.
+ Add Setoid R req Rsth as R_set_Power.
+ Add Morphism rmul : rmul_ext_Power. exact mul_ext. Qed.
+
+
+ Fixpoint pow_pos (x:R) (i:positive) {struct i}: R :=
+ match i with
+ | xH => x
+ | xO i => let p := pow_pos x i in rmul p p
+ | xI i => let p := pow_pos x i in rmul x (rmul p p)
+ end.
+
+ Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j.
+ Proof.
+ induction j;simpl.
+ rewrite IHj.
+ rewrite (mul_comm x (pow_pos x j *pow_pos x j)).
+ setoid_rewrite (mul_comm x (pow_pos x j)) at 2.
+ repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
+ repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
+ apply (Seq_refl _ _ Rsth).
+ Qed.
+
+ Lemma pow_pos_Pplus : forall x i j, pow_pos x (i + j) == pow_pos x i * pow_pos x j.
+ Proof.
+ intro x;induction i;intros.
+ rewrite xI_succ_xO;rewrite Pplus_one_succ_r.
+ rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
+ repeat rewrite IHi.
+ rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc.
+ simpl;repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
+ rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
+ repeat rewrite IHi;rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
+ rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc;
+ simpl. apply (Seq_refl _ _ Rsth).
+ Qed.
+
+ Definition pow_N (x:R) (p:N) :=
+ match p with
+ | N0 => rI
+ | Npos p => pow_pos x p
+ end.
+
+ Definition id_phi_N (x:N) : N := x.
+
+ Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n.
+ Proof.
+ intros; apply (Seq_refl _ _ Rsth).
+ Qed.
+
+End Power.
+
+Section DEFINITIONS.
+ Variable R : Type.
+ Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
+ Variable req : R -> R -> Prop.
+ Notation "0" := rO. Notation "1" := rI.
+ Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
+ Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
+ Notation "x == y" := (req x y).
+
+ (** Semi Ring *)
+ Record semi_ring_theory : Prop := mk_srt {
+ SRadd_0_l : forall n, 0 + n == n;
+ SRadd_comm : forall n m, n + m == m + n ;
+ SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
+ SRmul_1_l : forall n, 1*n == n;
+ SRmul_0_l : forall n, 0*n == 0;
+ SRmul_comm : forall n m, n*m == m*n;
+ SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
+ SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
+ }.
+
+ (** Almost Ring *)
+(*Almost ring are no ring : Ropp_def is missing **)
+ Record almost_ring_theory : Prop := mk_art {
+ ARadd_0_l : forall x, 0 + x == x;
+ ARadd_comm : forall x y, x + y == y + x;
+ ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z;
+ ARmul_1_l : forall x, 1 * x == x;
+ ARmul_0_l : forall x, 0 * x == 0;
+ ARmul_comm : forall x y, x * y == y * x;
+ ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
+ ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
+ ARopp_mul_l : forall x y, -(x * y) == -x * y;
+ ARopp_add : forall x y, -(x + y) == -x + -y;
+ ARsub_def : forall x y, x - y == x + -y
+ }.
+
+ (** Ring *)
+ Record ring_theory : Prop := mk_rt {
+ Radd_0_l : forall x, 0 + x == x;
+ Radd_comm : forall x y, x + y == y + x;
+ Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
+ Rmul_1_l : forall x, 1 * x == x;
+ Rmul_comm : forall x y, x * y == y * x;
+ Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
+ Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
+ Rsub_def : forall x y, x - y == x + -y;
+ Ropp_def : forall x, x + (- x) == 0
+ }.
+
+ (** Equality is extensional *)
+
+ Record sring_eq_ext : Prop := mk_seqe {
+ (* SRing operators are compatible with equality *)
+ SRadd_ext :
+ forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
+ SRmul_ext :
+ forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2
+ }.
+
+ Record ring_eq_ext : Prop := mk_reqe {
+ (* Ring operators are compatible with equality *)
+ Radd_ext :
+ forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
+ Rmul_ext :
+ forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2;
+ Ropp_ext : forall x1 x2, x1 == x2 -> -x1 == -x2
+ }.
+
+ (** Interpretation morphisms definition*)
+ Section MORPHISM.
+ Variable C:Type.
+ Variable (cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C).
+ Variable ceqb : C->C->bool.
+ (* [phi] est un morphisme de [C] dans [R] *)
+ Variable phi : C -> R.
+ Notation "x +! y" := (cadd x y). Notation "x -! y " := (csub x y).
+ Notation "x *! y " := (cmul x y). Notation "-! x" := (copp x).
+ Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
+
+(*for semi rings*)
+ Record semi_morph : Prop := mkRmorph {
+ Smorph0 : [cO] == 0;
+ Smorph1 : [cI] == 1;
+ Smorph_add : forall x y, [x +! y] == [x]+[y];
+ Smorph_mul : forall x y, [x *! y] == [x]*[y];
+ Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
+ }.
+
+(* for rings*)
+ Record ring_morph : Prop := mkmorph {
+ morph0 : [cO] == 0;
+ morph1 : [cI] == 1;
+ morph_add : forall x y, [x +! y] == [x]+[y];
+ morph_sub : forall x y, [x -! y] == [x]-[y];
+ morph_mul : forall x y, [x *! y] == [x]*[y];
+ morph_opp : forall x, [-!x] == -[x];
+ morph_eq : forall x y, x?=!y = true -> [x] == [y]
+ }.
+
+ Section SIGN.
+ Variable get_sign : C -> option C.
+ Record sign_theory : Prop := mksign_th {
+ sign_spec : forall c c', get_sign c = Some c' -> c ?=! -! c' = true
+ }.
+ End SIGN.
+
+ Definition get_sign_None (c:C) := @None C.
+
+ Lemma get_sign_None_th : sign_theory get_sign_None.
+ Proof. constructor;intros;discriminate. Qed.
+
+ Section DIV.
+ Variable cdiv: C -> C -> C*C.
+ Record div_theory : Prop := mkdiv_th {
+ div_eucl_th : forall a b, let (q,r) := cdiv a b in [a] == [b *! q +! r]
+ }.
+ End DIV.
+
+ End MORPHISM.
+
+ (** Identity is a morphism *)
+ Variable Rsth : Setoid_Theory R req.
+ Add Setoid R req Rsth as R_setoid1.
+ Variable reqb : R->R->bool.
+ Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
+ Definition IDphi (x:R) := x.
+ Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi.
+ Proof.
+ apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi);intros;unfold IDphi;
+ try apply (Seq_refl _ _ Rsth);auto.
+ Qed.
+
+ (** Specification of the power function *)
+ Section POWER.
+ Variable Cpow : Set.
+ Variable Cp_phi : N -> Cpow.
+ Variable rpow : R -> Cpow -> R.
+
+ Record power_theory : Prop := mkpow_th {
+ rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
+ }.
+
+ End POWER.
+
+ Definition pow_N_th := mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth).
+
+
+End DEFINITIONS.
+
+
+
+Section ALMOST_RING.
+ Variable R : Type.
+ Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
+ Variable req : R -> R -> Prop.
+ Notation "0" := rO. Notation "1" := rI.
+ Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
+ Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
+ Notation "x == y" := (req x y).
+
+ (** Leibniz equality leads to a setoid theory and is extensional*)
+ Lemma Eqsth : Setoid_Theory R (@eq R).
+ Proof. constructor;red;intros;subst;trivial. Qed.
+
+ Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R).
+ Proof. constructor;intros;subst;trivial. Qed.
+
+ Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R).
+ Proof. constructor;intros;subst;trivial. Qed.
+
+ Variable Rsth : Setoid_Theory R req.
+ Add Setoid R req Rsth as R_setoid2.
+ Ltac sreflexivity := apply (Seq_refl _ _ Rsth).
+
+ Section SEMI_RING.
+ Variable SReqe : sring_eq_ext radd rmul req.
+ Add Morphism radd : radd_ext1. exact (SRadd_ext SReqe). Qed.
+ Add Morphism rmul : rmul_ext1. exact (SRmul_ext SReqe). Qed.
+ Variable SRth : semi_ring_theory 0 1 radd rmul req.
+
+ (** Every semi ring can be seen as an almost ring, by taking :
+ -x = x and x - y = x + y *)
+ Definition SRopp (x:R) := x. Notation "- x" := (SRopp x).
+
+ Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y).
+
+ Lemma SRopp_ext : forall x y, x == y -> -x == -y.
+ Proof. intros x y H;exact H. Qed.
+
+ Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req.
+ Proof.
+ constructor. exact (SRadd_ext SReqe). exact (SRmul_ext SReqe).
+ exact SRopp_ext.
+ Qed.
+
+ Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y.
+ Proof. intros;sreflexivity. Qed.
+
+ Lemma SRopp_add : forall x y, -(x + y) == -x + -y.
+ Proof. intros;sreflexivity. Qed.
+
+
+ Lemma SRsub_def : forall x y, x - y == x + -y.
+ Proof. intros;sreflexivity. Qed.
+
+ Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req.
+ Proof (mk_art 0 1 radd rmul SRsub SRopp req
+ (SRadd_0_l SRth) (SRadd_comm SRth) (SRadd_assoc SRth)
+ (SRmul_1_l SRth) (SRmul_0_l SRth)
+ (SRmul_comm SRth) (SRmul_assoc SRth) (SRdistr_l SRth)
+ SRopp_mul_l SRopp_add SRsub_def).
+
+ (** Identity morphism for semi-ring equipped with their almost-ring structure*)
+ Variable reqb : R->R->bool.
+
+ Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
+
+ Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req
+ 0 1 radd rmul SRsub SRopp reqb (@IDphi R).
+ Proof.
+ apply mkmorph;intros;try sreflexivity. unfold IDphi;auto.
+ Qed.
+
+ (* a semi_morph can be extended to a ring_morph for the almost_ring derived
+ from a semi_ring, provided the ring is a setoid (we only need
+ reflexivity) *)
+ Variable C : Type.
+ Variable (cO cI : C) (cadd cmul: C->C->C).
+ Variable (ceqb : C -> C -> bool).
+ Variable phi : C -> R.
+ Variable Smorph : semi_morph rO rI radd rmul req cO cI cadd cmul ceqb phi.
+
+ Lemma SRmorph_Rmorph :
+ ring_morph rO rI radd rmul SRsub SRopp req
+ cO cI cadd cmul cadd (fun x => x) ceqb phi.
+ Proof.
+ case Smorph; intros; constructor; auto.
+ unfold SRopp in |- *; intros.
+ setoid_reflexivity.
+ Qed.
+
+ End SEMI_RING.
+
+ Variable Reqe : ring_eq_ext radd rmul ropp req.
+ Add Morphism radd : radd_ext2. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext2. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext2. exact (Ropp_ext Reqe). Qed.
+
+ Section RING.
+ Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
+
+ (** Rings are almost rings*)
+ Lemma Rmul_0_l : forall x, 0 * x == 0.
+ Proof.
+ intro x; setoid_replace (0*x) with ((0+1)*x + -x).
+ rewrite (Radd_0_l Rth); rewrite (Rmul_1_l Rth).
+ rewrite (Ropp_def Rth);sreflexivity.
+
+ rewrite (Rdistr_l Rth);rewrite (Rmul_1_l Rth).
+ rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
+ rewrite (Radd_comm Rth); rewrite (Radd_0_l Rth);sreflexivity.
+ Qed.
+
+ Lemma Ropp_mul_l : forall x y, -(x * y) == -x * y.
+ Proof.
+ intros x y;rewrite <-(Radd_0_l Rth (- x * y)).
+ rewrite (Radd_comm Rth).
+ rewrite <-(Ropp_def Rth (x*y)).
+ rewrite (Radd_assoc Rth).
+ rewrite <- (Rdistr_l Rth).
+ rewrite (Rth.(Radd_comm) (-x));rewrite (Ropp_def Rth).
+ rewrite Rmul_0_l;rewrite (Radd_0_l Rth);sreflexivity.
+ Qed.
+
+ Lemma Ropp_add : forall x y, -(x + y) == -x + -y.
+ Proof.
+ intros x y;rewrite <- ((Radd_0_l Rth) (-(x+y))).
+ rewrite <- ((Ropp_def Rth) x).
+ rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))).
+ rewrite <- ((Ropp_def Rth) y).
+ rewrite ((Radd_comm Rth) x).
+ rewrite ((Radd_comm Rth) y).
+ rewrite <- ((Radd_assoc Rth) (-y)).
+ rewrite <- ((Radd_assoc Rth) (- x)).
+ rewrite ((Radd_assoc Rth) y).
+ rewrite ((Radd_comm Rth) y).
+ rewrite <- ((Radd_assoc Rth) (- x)).
+ rewrite ((Radd_assoc Rth) y).
+ rewrite ((Radd_comm Rth) y);rewrite (Ropp_def Rth).
+ rewrite ((Radd_comm Rth) (-x) 0);rewrite (Radd_0_l Rth).
+ apply (Radd_comm Rth).
+ Qed.
+
+ Lemma Ropp_opp : forall x, - -x == x.
+ Proof.
+ intros x; rewrite <- (Radd_0_l Rth (- -x)).
+ rewrite <- (Ropp_def Rth x).
+ rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
+ rewrite ((Radd_comm Rth) x);apply (Radd_0_l Rth).
+ Qed.
+
+ Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
+ Proof
+ (mk_art 0 1 radd rmul rsub ropp req (Radd_0_l Rth) (Radd_comm Rth) (Radd_assoc Rth)
+ (Rmul_1_l Rth) Rmul_0_l (Rmul_comm Rth) (Rmul_assoc Rth) (Rdistr_l Rth)
+ Ropp_mul_l Ropp_add (Rsub_def Rth)).
+
+ (** Every semi morphism between two rings is a morphism*)
+ Variable C : Type.
+ Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C).
+ Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool).
+ Variable phi : C -> R.
+ Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
+ Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
+ Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
+ Variable Csth : Setoid_Theory C ceq.
+ Variable Ceqe : ring_eq_ext cadd cmul copp ceq.
+ Add Setoid C ceq Csth as C_setoid.
+ Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed.
+ Add Morphism cmul : cmul_ext. exact (Rmul_ext Ceqe). Qed.
+ Add Morphism copp : copp_ext. exact (Ropp_ext Ceqe). Qed.
+ Variable Cth : ring_theory cO cI cadd cmul csub copp ceq.
+ Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi.
+ Variable phi_ext : forall x y, ceq x y -> [x] == [y].
+ Add Morphism phi : phi_ext1. exact phi_ext. Qed.
+ Lemma Smorph_opp : forall x, [-!x] == -[x].
+ Proof.
+ intros x;rewrite <- (Rth.(Radd_0_l) [-!x]).
+ rewrite <- ((Ropp_def Rth) [x]).
+ rewrite ((Radd_comm Rth) [x]).
+ rewrite <- (Radd_assoc Rth).
+ rewrite <- (Smorph_add Smorph).
+ rewrite (Ropp_def Cth).
+ rewrite (Smorph0 Smorph).
+ rewrite (Radd_comm Rth (-[x])).
+ apply (Radd_0_l Rth);sreflexivity.
+ Qed.
+
+ Lemma Smorph_sub : forall x y, [x -! y] == [x] - [y].
+ Proof.
+ intros x y; rewrite (Rsub_def Cth);rewrite (Rsub_def Rth).
+ rewrite (Smorph_add Smorph);rewrite Smorph_opp;sreflexivity.
+ Qed.
+
+ Lemma Smorph_morph : ring_morph 0 1 radd rmul rsub ropp req
+ cO cI cadd cmul csub copp ceqb phi.
+ Proof
+ (mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi
+ (Smorph0 Smorph) (Smorph1 Smorph)
+ (Smorph_add Smorph) Smorph_sub (Smorph_mul Smorph) Smorph_opp
+ (Smorph_eq Smorph)).
+
+ End RING.
+
+ (** Useful lemmas on almost ring *)
+ Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
+
+ Lemma ARth_SRth : semi_ring_theory 0 1 radd rmul req.
+Proof.
+elim ARth; intros.
+constructor; trivial.
+Qed.
+
+ Lemma ARsub_ext :
+ forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2.
+ Proof.
+ intros.
+ setoid_replace (x1 - y1) with (x1 + -y1).
+ setoid_replace (x2 - y2) with (x2 + -y2).
+ rewrite H;rewrite H0;sreflexivity.
+ apply (ARsub_def ARth).
+ apply (ARsub_def ARth).
+ Qed.
+ Add Morphism rsub : rsub_ext. exact ARsub_ext. Qed.
+
+ Ltac mrewrite :=
+ repeat first
+ [ rewrite (ARadd_0_l ARth)
+ | rewrite <- ((ARadd_comm ARth) 0)
+ | rewrite (ARmul_1_l ARth)
+ | rewrite <- ((ARmul_comm ARth) 1)
+ | rewrite (ARmul_0_l ARth)
+ | rewrite <- ((ARmul_comm ARth) 0)
+ | rewrite (ARdistr_l ARth)
+ | sreflexivity
+ | match goal with
+ | |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y))
+ end].
+
+ Lemma ARadd_0_r : forall x, (x + 0) == x.
+ Proof. intros; mrewrite. Qed.
+
+ Lemma ARmul_1_r : forall x, x * 1 == x.
+ Proof. intros;mrewrite. Qed.
+
+ Lemma ARmul_0_r : forall x, x * 0 == 0.
+ Proof. intros;mrewrite. Qed.
+
+ Lemma ARdistr_r : forall x y z, z * (x + y) == z*x + z*y.
+ Proof.
+ intros;mrewrite.
+ repeat rewrite (ARth.(ARmul_comm) z);sreflexivity.
+ Qed.
+
+ Lemma ARadd_assoc1 : forall x y z, (x + y) + z == (y + z) + x.
+ Proof.
+ intros;rewrite <-(ARth.(ARadd_assoc) x).
+ rewrite (ARth.(ARadd_comm) x);sreflexivity.
+ Qed.
+
+ Lemma ARadd_assoc2 : forall x y z, (y + x) + z == (y + z) + x.
+ Proof.
+ intros; repeat rewrite <- (ARadd_assoc ARth);
+ rewrite ((ARadd_comm ARth) x); sreflexivity.
+ Qed.
+
+ Lemma ARmul_assoc1 : forall x y z, (x * y) * z == (y * z) * x.
+ Proof.
+ intros;rewrite <-((ARmul_assoc ARth) x).
+ rewrite ((ARmul_comm ARth) x);sreflexivity.
+ Qed.
+
+ Lemma ARmul_assoc2 : forall x y z, (y * x) * z == (y * z) * x.
+ Proof.
+ intros; repeat rewrite <- (ARmul_assoc ARth);
+ rewrite ((ARmul_comm ARth) x); sreflexivity.
+ Qed.
+
+ Lemma ARopp_mul_r : forall x y, - (x * y) == x * -y.
+ Proof.
+ intros;rewrite ((ARmul_comm ARth) x y);
+ rewrite (ARopp_mul_l ARth); apply (ARmul_comm ARth).
+ Qed.
+
+ Lemma ARopp_zero : -0 == 0.
+ Proof.
+ rewrite <- (ARmul_0_r 0); rewrite (ARopp_mul_l ARth).
+ repeat rewrite ARmul_0_r; sreflexivity.
+ Qed.
+
+
+
+End ALMOST_RING.
+
+
+Section AddRing.
+
+(* Variable R : Type.
+ Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
+ Variable req : R -> R -> Prop. *)
+
+Inductive ring_kind : Type :=
+| Abstract
+| Computational
+ (R:Type)
+ (req : R -> R -> Prop)
+ (reqb : R -> R -> bool)
+ (_ : forall x y, (reqb x y) = true -> req x y)
+| Morphism
+ (R : Type)
+ (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R)
+ (req : R -> R -> Prop)
+ (C : Type)
+ (cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C)
+ (ceqb : C->C->bool)
+ phi
+ (_ : ring_morph rO rI radd rmul rsub ropp req
+ cO cI cadd cmul csub copp ceqb phi).
+
+
+End AddRing.
+
+
+(** Some simplification tactics*)
+Ltac gen_reflexivity Rsth := apply (Seq_refl _ _ Rsth).
+
+Ltac gen_srewrite Rsth Reqe ARth :=
+ repeat first
+ [ gen_reflexivity Rsth
+ | progress rewrite (ARopp_zero Rsth Reqe ARth)
+ | rewrite (ARadd_0_l ARth)
+ | rewrite (ARadd_0_r Rsth ARth)
+ | rewrite (ARmul_1_l ARth)
+ | rewrite (ARmul_1_r Rsth ARth)
+ | rewrite (ARmul_0_l ARth)
+ | rewrite (ARmul_0_r Rsth ARth)
+ | rewrite (ARdistr_l ARth)
+ | rewrite (ARdistr_r Rsth Reqe ARth)
+ | rewrite (ARadd_assoc ARth)
+ | rewrite (ARmul_assoc ARth)
+ | progress rewrite (ARopp_add ARth)
+ | progress rewrite (ARsub_def ARth)
+ | progress rewrite <- (ARopp_mul_l ARth)
+ | progress rewrite <- (ARopp_mul_r Rsth Reqe ARth) ].
+
+Ltac gen_add_push add Rsth Reqe ARth x :=
+ repeat (match goal with
+ | |- context [add (add ?y x) ?z] =>
+ progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z)
+ | |- context [add (add x ?y) ?z] =>
+ progress rewrite (ARadd_assoc1 Rsth ARth x y z)
+ end).
+
+Ltac gen_mul_push mul Rsth Reqe ARth x :=
+ repeat (match goal with
+ | |- context [mul (mul ?y x) ?z] =>
+ progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z)
+ | |- context [mul (mul x ?y) ?z] =>
+ progress rewrite (ARmul_assoc1 Rsth ARth x y z)
+ end).
+