summaryrefslogtreecommitdiff
path: root/plugins/setoid_ring/Ncring_polynom.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/setoid_ring/Ncring_polynom.v')
-rw-r--r--plugins/setoid_ring/Ncring_polynom.v111
1 files changed, 37 insertions, 74 deletions
diff --git a/plugins/setoid_ring/Ncring_polynom.v b/plugins/setoid_ring/Ncring_polynom.v
index c0d31587..8e4b613f 100644
--- a/plugins/setoid_ring/Ncring_polynom.v
+++ b/plugins/setoid_ring/Ncring_polynom.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -52,7 +52,7 @@ Instance equalityb_coef : Equalityb C :=
match P, P' with
| Pc c, Pc c' => c =? c'
| PX P i n Q, PX P' i' n' Q' =>
- match Pcompare i i' Eq, Pcompare n n' Eq with
+ match Pos.compare i i', Pos.compare n n' with
| Eq, Eq => if Peq P P' then Peq Q Q' else false
| _,_ => false
end
@@ -67,7 +67,7 @@ Instance equalityb_pol : Equalityb Pol :=
match P with
| Pc c => if c =? 0 then Q else PX P i n Q
| PX P' i' n' Q' =>
- match Pcompare i i' Eq with
+ match Pos.compare i i' with
| Eq => if Q' =? P0 then PX P' i (n + n') Q else PX P i n Q
| _ => PX P i n Q
end
@@ -109,13 +109,13 @@ Fixpoint PaddX (i n:positive)(Q:Pol){struct Q}:=
match Q with
| Pc c => mkPX P i n Q
| PX P' i' n' Q' =>
- match Pcompare i i' Eq with
+ match Pos.compare i i' with
| (* i > i' *)
Gt => mkPX P i n Q
| (* i < i' *)
Lt => mkPX P' i' n' (PaddX i n Q')
| (* i = i' *)
- Eq => match ZPminus n n' with
+ Eq => match Z.pos_sub n n' with
| (* n > n' *)
Zpos k => mkPX (PaddX i k P') i' n' Q'
| (* n = n' *)
@@ -178,61 +178,25 @@ Definition Psub(P P':Pol):= P ++ (--P').
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
+
(** Proofs *)
- Lemma ZPminus_spec : forall x y,
- match ZPminus x y with
- | Z0 => x = y
- | Zpos k => x = (y + k)%positive
- | Zneg k => y = (x + k)%positive
+
+ Ltac destr_pos_sub H :=
+ match goal with |- context [Z.pos_sub ?x ?y] =>
+ assert (H := Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
- Proof.
- induction x;destruct y.
- replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial.
- assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble;
-rewrite Hh;trivial.
- replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));
-trivial.
- assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;
-rewrite Hh;trivial.
- apply Pplus_xI_double_minus_one.
- simpl;trivial.
- replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));
-trivial.
- assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;
-rewrite Hh;trivial.
- apply Pplus_xI_double_minus_one.
- replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial.
- assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite Hh;
-trivial.
- replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial.
- replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- simpl;trivial.
- Qed.
Lemma Peq_ok : forall P P',
(P =? P') = true -> forall l, P@l == P'@ l.
Proof.
- induction P;destruct P';simpl;intros;try discriminate;trivial.
- apply ring_morphism_eq.
- apply Ceqb_eq ;trivial.
- assert (H1h := IHP1 P'1);assert (H2h := IHP2 P'2).
- simpl in H1h. destruct (Peq P2 P'1). simpl in H2h;
-destruct (Peq P3 P'2).
- rewrite (H1h);trivial . rewrite (H2h);trivial.
-assert (H3h := Pcompare_Eq_eq p p1);
- destruct (Pos.compare_cont p p1 Eq);
-assert (H4h := Pcompare_Eq_eq p0 p2);
-destruct (Pos.compare_cont p0 p2 Eq); try (discriminate H).
- rewrite H3h;trivial. rewrite H4h;trivial. reflexivity.
- destruct (Pos.compare_cont p p1 Eq); destruct (Pos.compare_cont p0 p2 Eq);
- try (discriminate H).
- destruct (Pos.compare_cont p p1 Eq); destruct (Pos.compare_cont p0 p2 Eq);
- try (discriminate H).
+ induction P;destruct P';simpl;intros ;try easy.
+ - now apply ring_morphism_eq, Ceqb_eq.
+ - specialize (IHP1 P'1). specialize (IHP2 P'2).
+ simpl in IHP1, IHP2.
+ destruct (Pos.compare_spec p p1); try discriminate;
+ destruct (Pos.compare_spec p0 p2); try discriminate.
+ destruct (Peq P2 P'1); try discriminate.
+ subst; now rewrite IHP1, IHP2.
Qed.
Lemma Pphi0 : forall l, P0@l == 0.
@@ -255,12 +219,12 @@ destruct (Pos.compare_cont p0 p2 Eq); try (discriminate H).
simpl; case_eq (Ceqb c 0);simpl;try reflexivity.
intros.
rewrite Hh. rewrite ring_morphism0.
- rsimpl. apply Ceqb_eq. trivial. assert (Hh1 := Pcompare_Eq_eq i p);
-destruct (Pos.compare_cont i p Eq).
+ rsimpl. apply Ceqb_eq. trivial.
+ destruct (Pos.compare_spec i p).
assert (Hh := @Peq_ok P3 P0). case_eq (P3=? P0). intro. simpl.
rewrite Hh.
- rewrite Pphi0. rsimpl. rewrite Pplus_comm. rewrite pow_pos_Pplus;rsimpl.
-rewrite Hh1;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity.
+ rewrite Pphi0. rsimpl. rewrite Pos.add_comm. rewrite pow_pos_add;rsimpl.
+ subst;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity.
simpl. reflexivity.
Qed.
@@ -331,13 +295,13 @@ Lemma PaddXPX: forall P i n Q,
match Q with
| Pc c => mkPX P i n Q
| PX P' i' n' Q' =>
- match Pcompare i i' Eq with
+ match Pos.compare i i' with
| (* i > i' *)
Gt => mkPX P i n Q
| (* i < i' *)
Lt => mkPX P' i' n' (PaddX Padd P i n Q')
| (* i = i' *)
- Eq => match ZPminus n n' with
+ Eq => match Z.pos_sub n n' with
| (* n > n' *)
Zpos k => mkPX (PaddX Padd P i k P') i' n' Q'
| (* n = n' *)
@@ -359,17 +323,17 @@ Lemma PaddX_ok2 : forall P2,
induction P2;simpl;intros. split. intros. apply PaddCl_ok.
induction P. unfold PaddX. intros. rewrite mkPX_ok.
simpl. rsimpl.
-intros. simpl. assert (Hh := Pcompare_Eq_eq k p);
- destruct (Pos.compare_cont k p Eq).
- assert (H1h := ZPminus_spec n p0);destruct (ZPminus n p0). Esimpl2.
+intros. simpl.
+ destruct (Pos.compare_spec k p) as [Hh|Hh|Hh].
+ destr_pos_sub H1h. Esimpl2.
rewrite Hh; trivial. rewrite H1h. reflexivity.
simpl. rewrite mkPX_ok. rewrite IHP1. Esimpl2.
- rewrite Pplus_comm in H1h.
+ rewrite Pos.add_comm in H1h.
rewrite H1h.
-rewrite pow_pos_Pplus. Esimpl2.
+rewrite pow_pos_add. Esimpl2.
rewrite Hh; trivial. reflexivity.
-rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pplus_comm in H1h.
-rewrite H1h. Esimpl2. rewrite pow_pos_Pplus. Esimpl2.
+rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pos.add_comm in H1h.
+rewrite H1h. Esimpl2. rewrite pow_pos_add. Esimpl2.
rewrite Hh; trivial. reflexivity.
rewrite mkPX_ok. rewrite IHP2. Esimpl2.
rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0)
@@ -382,19 +346,18 @@ split. intros. rewrite H0. rewrite H1.
Esimpl2.
induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. reflexivity.
intros. rewrite PaddXPX.
-assert (H3h := Pcompare_Eq_eq k p1);
- destruct (Pos.compare_cont k p1 Eq).
-assert (H4h := ZPminus_spec n p2);destruct (ZPminus n p2).
+destruct (Pos.compare_spec k p1) as [H3h|H3h|H3h].
+destr_pos_sub H4h.
rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. Esimpl2.
rewrite H4h. rewrite H3h;trivial. reflexivity.
rewrite mkPX_ok. rewrite IHP1. Esimpl2. rewrite H3h;trivial.
-rewrite Pplus_comm in H4h.
-rewrite H4h. rewrite pow_pos_Pplus. Esimpl2.
+rewrite Pos.add_comm in H4h.
+rewrite H4h. rewrite pow_pos_add. Esimpl2.
rewrite mkPX_ok. simpl. rewrite H0. rewrite H1.
rewrite mkPX_ok.
Esimpl2. rewrite H3h;trivial.
- rewrite Pplus_comm in H4h.
-rewrite H4h. rewrite pow_pos_Pplus. Esimpl2.
+ rewrite Pos.add_comm in H4h.
+rewrite H4h. rewrite pow_pos_add. Esimpl2.
rewrite mkPX_ok. simpl. rewrite IHP2. Esimpl2.
gen_add_push (P2 @ l * pow_pos (nth 0 p1 l) p2). try reflexivity.
rewrite mkPX_ok. simpl. reflexivity.