summaryrefslogtreecommitdiff
path: root/plugins/setoid_ring/Field_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/setoid_ring/Field_theory.v')
-rw-r--r--plugins/setoid_ring/Field_theory.v2278
1 files changed, 1079 insertions, 1199 deletions
diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v
index 75d3ad86..0f5c49b0 100644
--- a/plugins/setoid_ring/Field_theory.v
+++ b/plugins/setoid_ring/Field_theory.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -9,123 +9,179 @@
Require Ring.
Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms.
Require Import ZArith_base.
-(*Require Import Omega.*)
Set Implicit Arguments.
+(* Set Universe Polymorphism. *)
Section MakeFieldPol.
-(* Field elements *)
- Variable R:Type.
- Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
- Variable (rdiv : R -> R -> R) (rinv : R -> R).
- Variable req : R -> R -> Prop.
-
- Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "x / y" := (rdiv x y).
- Notation "- x" := (ropp x). Notation "/ x" := (rinv x).
- Notation "x == y" := (req x y) (at level 70, no associativity).
-
- (* Equality properties *)
- Variable Rsth : Equivalence req.
- Variable Reqe : ring_eq_ext radd rmul ropp req.
- Variable SRinv_ext : forall p q, p == q -> / p == / q.
-
- (* Field properties *)
- Record almost_field_theory : Prop := mk_afield {
- AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req;
- AF_1_neq_0 : ~ 1 == 0;
- AFdiv_def : forall p q, p / q == p * / q;
- AFinv_l : forall p, ~ p == 0 -> / p * p == 1
- }.
+(* Field elements : R *)
+
+Variable R:Type.
+Bind Scope R_scope with R.
+Delimit Scope R_scope with ring.
+Local Open Scope R_scope.
+
+Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
+Variable (rdiv : R->R->R) (rinv : R->R).
+Variable req : R -> R -> Prop.
+
+Notation "0" := rO : R_scope.
+Notation "1" := rI : R_scope.
+Infix "+" := radd : R_scope.
+Infix "-" := rsub : R_scope.
+Infix "*" := rmul : R_scope.
+Infix "/" := rdiv : R_scope.
+Notation "- x" := (ropp x) : R_scope.
+Notation "/ x" := (rinv x) : R_scope.
+Infix "==" := req (at level 70, no associativity) : R_scope.
+
+(* Equality properties *)
+Variable Rsth : Equivalence req.
+Variable Reqe : ring_eq_ext radd rmul ropp req.
+Variable SRinv_ext : forall p q, p == q -> / p == / q.
+
+(* Field properties *)
+Record almost_field_theory : Prop := mk_afield {
+ AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req;
+ AF_1_neq_0 : ~ 1 == 0;
+ AFdiv_def : forall p q, p / q == p * / q;
+ AFinv_l : forall p, ~ p == 0 -> / p * p == 1
+}.
Section AlmostField.
- Variable AFth : almost_field_theory.
- Let ARth := AFth.(AF_AR).
- Let rI_neq_rO := AFth.(AF_1_neq_0).
- Let rdiv_def := AFth.(AFdiv_def).
- Let rinv_l := AFth.(AFinv_l).
+Variable AFth : almost_field_theory.
+Let ARth := AFth.(AF_AR).
+Let rI_neq_rO := AFth.(AF_1_neq_0).
+Let rdiv_def := AFth.(AFdiv_def).
+Let rinv_l := AFth.(AFinv_l).
- (* Coefficients *)
- Variable C: Type.
- Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
- Variable ceqb : C->C->bool.
- Variable phi : C -> R.
+Add Morphism radd : radd_ext. Proof. exact (Radd_ext Reqe). Qed.
+Add Morphism rmul : rmul_ext. Proof. exact (Rmul_ext Reqe). Qed.
+Add Morphism ropp : ropp_ext. Proof. exact (Ropp_ext Reqe). Qed.
+Add Morphism rsub : rsub_ext. Proof. exact (ARsub_ext Rsth Reqe ARth). Qed.
+Add Morphism rinv : rinv_ext. Proof. exact SRinv_ext. Qed.
- Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
- cO cI cadd cmul csub copp ceqb phi.
+Let eq_trans := Setoid.Seq_trans _ _ Rsth.
+Let eq_sym := Setoid.Seq_sym _ _ Rsth.
+Let eq_refl := Setoid.Seq_refl _ _ Rsth.
-Lemma ceqb_rect : forall c1 c2 (A:Type) (x y:A) (P:A->Type),
- (phi c1 == phi c2 -> P x) -> P y -> P (if ceqb c1 c2 then x else y).
+Let radd_0_l := ARadd_0_l ARth.
+Let radd_comm := ARadd_comm ARth.
+Let radd_assoc := ARadd_assoc ARth.
+Let rmul_1_l := ARmul_1_l ARth.
+Let rmul_0_l := ARmul_0_l ARth.
+Let rmul_comm := ARmul_comm ARth.
+Let rmul_assoc := ARmul_assoc ARth.
+Let rdistr_l := ARdistr_l ARth.
+Let ropp_mul_l := ARopp_mul_l ARth.
+Let ropp_add := ARopp_add ARth.
+Let rsub_def := ARsub_def ARth.
+
+Let radd_0_r := ARadd_0_r Rsth ARth.
+Let rmul_0_r := ARmul_0_r Rsth ARth.
+Let rmul_1_r := ARmul_1_r Rsth ARth.
+Let ropp_0 := ARopp_zero Rsth Reqe ARth.
+Let rdistr_r := ARdistr_r Rsth Reqe ARth.
+
+(* Coefficients : C *)
+
+Variable C: Type.
+Bind Scope C_scope with C.
+Delimit Scope C_scope with coef.
+
+Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
+Variable ceqb : C->C->bool.
+Variable phi : C -> R.
+
+Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
+ cO cI cadd cmul csub copp ceqb phi.
+
+Notation "0" := cO : C_scope.
+Notation "1" := cI : C_scope.
+Infix "+" := cadd : C_scope.
+Infix "-" := csub : C_scope.
+Infix "*" := cmul : C_scope.
+Notation "- x" := (copp x) : C_scope.
+Infix "=?" := ceqb : C_scope.
+Notation "[ x ]" := (phi x) (at level 0).
+
+Let phi_0 := CRmorph.(morph0).
+Let phi_1 := CRmorph.(morph1).
+
+Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c =? c')%coef.
Proof.
-intros.
-generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
-case (ceqb c1 c2); auto.
+generalize (CRmorph.(morph_eq) c c').
+destruct (c =? c')%coef; auto.
Qed.
+(* Power coefficients : Cpow *)
- (* C notations *)
- Notation "x +! y" := (cadd x y) (at level 50).
- Notation "x *! y " := (cmul x y) (at level 40).
- Notation "x -! y " := (csub x y) (at level 50).
- Notation "-! x" := (copp x) (at level 35).
- Notation " x ?=! y" := (ceqb x y) (at level 70, no associativity).
- Notation "[ x ]" := (phi x) (at level 0).
+Variable Cpow : Type.
+Variable Cp_phi : N -> Cpow.
+Variable rpow : R -> Cpow -> R.
+Variable pow_th : power_theory rI rmul req Cp_phi rpow.
+(* sign function *)
+Variable get_sign : C -> option C.
+Variable get_sign_spec : sign_theory copp ceqb get_sign.
+Variable cdiv:C -> C -> C*C.
+Variable cdiv_th : div_theory req cadd cmul phi cdiv.
- (* Useful tactics *)
- Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
- Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
- Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
- Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
- Add Morphism rinv : rinv_ext. exact SRinv_ext. Qed.
+Let rpow_pow := pow_th.(rpow_pow_N).
-Let eq_trans := Setoid.Seq_trans _ _ Rsth.
-Let eq_sym := Setoid.Seq_sym _ _ Rsth.
-Let eq_refl := Setoid.Seq_refl _ _ Rsth.
+(* Polynomial expressions : (PExpr C) *)
+
+Bind Scope PE_scope with PExpr.
+Delimit Scope PE_scope with poly.
+
+Notation NPEeval := (PEeval rO rI radd rmul rsub ropp phi Cp_phi rpow).
+Notation "P @ l" := (NPEeval l P) (at level 10, no associativity).
+
+Arguments PEc _ _%coef.
+
+Notation "0" := (PEc 0) : PE_scope.
+Notation "1" := (PEc 1) : PE_scope.
+Infix "+" := PEadd : PE_scope.
+Infix "-" := PEsub : PE_scope.
+Infix "*" := PEmul : PE_scope.
+Notation "- e" := (PEopp e) : PE_scope.
+Infix "^" := PEpow : PE_scope.
+
+Definition NPEequiv e e' := forall l, e@l == e'@l.
+Infix "===" := NPEequiv (at level 70, no associativity) : PE_scope.
-Hint Resolve eq_refl rdiv_def rinv_l rI_neq_rO CRmorph.(morph1) .
-Hint Resolve (Rmul_ext Reqe) (Rmul_ext Reqe) (Radd_ext Reqe)
- (ARsub_ext Rsth Reqe ARth) (Ropp_ext Reqe) SRinv_ext.
-Hint Resolve (ARadd_0_l ARth) (ARadd_comm ARth) (ARadd_assoc ARth)
- (ARmul_1_l ARth) (ARmul_0_l ARth)
- (ARmul_comm ARth) (ARmul_assoc ARth) (ARdistr_l ARth)
- (ARopp_mul_l ARth) (ARopp_add ARth)
- (ARsub_def ARth) .
-
- (* Power coefficients *)
- Variable Cpow : Type.
- Variable Cp_phi : N -> Cpow.
- Variable rpow : R -> Cpow -> R.
- Variable pow_th : power_theory rI rmul req Cp_phi rpow.
- (* sign function *)
- Variable get_sign : C -> option C.
- Variable get_sign_spec : sign_theory copp ceqb get_sign.
-
- Variable cdiv:C -> C -> C*C.
- Variable cdiv_th : div_theory req cadd cmul phi cdiv.
-
-Notation NPEeval := (PEeval rO radd rmul rsub ropp phi Cp_phi rpow).
-Notation Nnorm:= (norm_subst cO cI cadd cmul csub copp ceqb cdiv).
-
-Notation NPphi_dev := (Pphi_dev rO rI radd rmul rsub ropp cO cI ceqb phi get_sign).
-Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi rpow get_sign).
+Instance NPEequiv_eq : Equivalence NPEequiv.
+Proof.
+ split; red; unfold NPEequiv; intros; [reflexivity|symmetry|etransitivity];
+ eauto.
+Qed.
+
+Instance NPEeval_ext : Proper (eq ==> NPEequiv ==> req) NPEeval.
+Proof.
+ intros l l' <- e e' He. now rewrite (He l).
+Qed.
+
+Notation Nnorm :=
+ (norm_subst cO cI cadd cmul csub copp ceqb cdiv).
+Notation NPphi_dev :=
+ (Pphi_dev rO rI radd rmul rsub ropp cO cI ceqb phi get_sign).
+Notation NPphi_pow :=
+ (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi rpow get_sign).
(* add abstract semi-ring to help with some proofs *)
Add Ring Rring : (ARth_SRth ARth).
-Local Hint Extern 2 (_ == _) => f_equiv.
-
(* additional ring properties *)
-Lemma rsub_0_l : forall r, 0 - r == - r.
-intros; rewrite (ARsub_def ARth);ring.
+Lemma rsub_0_l r : 0 - r == - r.
+Proof.
+rewrite rsub_def; ring.
Qed.
-Lemma rsub_0_r : forall r, r - 0 == r.
-intros; rewrite (ARsub_def ARth).
-rewrite (ARopp_zero Rsth Reqe ARth); ring.
+Lemma rsub_0_r r : r - 0 == r.
+Proof.
+rewrite rsub_def, ropp_0; ring.
Qed.
(***************************************************************************
@@ -134,452 +190,525 @@ Qed.
***************************************************************************)
-Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p.
+Theorem rdiv_simpl p q : ~ q == 0 -> q * (p / q) == p.
Proof.
-intros p q H.
+intros.
rewrite rdiv_def.
-transitivity (/ q * q * p); [ ring | idtac ].
-rewrite rinv_l; auto.
+transitivity (/ q * q * p); [ ring | ].
+now rewrite rinv_l.
Qed.
-Hint Resolve rdiv_simpl .
-Instance SRdiv_ext: Proper (req ==> req ==> req) rdiv.
+Instance rdiv_ext: Proper (req ==> req ==> req) rdiv.
Proof.
-intros p1 p2 Ep q1 q2 Eq.
-transitivity (p1 * / q1); auto.
-transitivity (p2 * / q2); auto.
+intros p1 p2 Ep q1 q2 Eq. now rewrite !rdiv_def, Ep, Eq.
Qed.
-Hint Resolve SRdiv_ext.
-Lemma rmul_reg_l : forall p q1 q2,
+Lemma rmul_reg_l p q1 q2 :
~ p == 0 -> p * q1 == p * q2 -> q1 == q2.
Proof.
-intros p q1 q2 H EQ.
-rewrite <- (@rdiv_simpl q1 p) by trivial.
-rewrite <- (@rdiv_simpl q2 p) by trivial.
-rewrite !rdiv_def, !(ARmul_assoc ARth).
-now rewrite EQ.
+intros H EQ.
+assert (H' : p * (q1 / p) == p * (q2 / p)).
+{ now rewrite !rdiv_def, !rmul_assoc, EQ. }
+now rewrite !rdiv_simpl in H'.
Qed.
-Theorem field_is_integral_domain : forall r1 r2,
+Theorem field_is_integral_domain r1 r2 :
~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0.
Proof.
-intros r1 r2 H1 H2. contradict H2.
-transitivity (1 * r2); auto.
-transitivity (/ r1 * r1 * r2); auto.
-rewrite <- (ARmul_assoc ARth).
-rewrite H2.
-apply ARmul_0_r with (1 := Rsth) (2 := ARth).
+intros H1 H2. contradict H2.
+transitivity (/r1 * r1 * r2).
+- now rewrite rinv_l.
+- now rewrite <- rmul_assoc, H2.
Qed.
-Theorem ropp_neq_0 : forall r,
+Theorem ropp_neq_0 r :
~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0.
+Proof.
intros.
setoid_replace (- r) with (- (1) * r).
- apply field_is_integral_domain; trivial.
- rewrite <- (ARopp_mul_l ARth).
- rewrite (ARmul_1_l ARth).
- reflexivity.
+- apply field_is_integral_domain; trivial.
+- now rewrite <- ropp_mul_l, rmul_1_l.
Qed.
-Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1.
-intros.
-rewrite (AFdiv_def AFth).
-rewrite (ARmul_comm ARth).
-apply (AFinv_l AFth).
-trivial.
+Theorem rdiv_r_r r : ~ r == 0 -> r / r == 1.
+Proof.
+intros. rewrite rdiv_def, rmul_comm. now apply rinv_l.
Qed.
-Theorem rdiv1: forall r, r == r / 1.
-intros r; transitivity (1 * (r / 1)); auto.
+Theorem rdiv1 r : r == r / 1.
+Proof.
+transitivity (1 * (r / 1)).
+- symmetry; apply rdiv_simpl. apply rI_neq_rO.
+- apply rmul_1_l.
Qed.
-Theorem rdiv2:
- forall r1 r2 r3 r4,
- ~ r2 == 0 ->
- ~ r4 == 0 ->
- r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4).
+Theorem rdiv2 a b c d :
+ ~ b == 0 ->
+ ~ d == 0 ->
+ a / b + c / d == (a * d + c * b) / (b * d).
Proof.
-intros r1 r2 r3 r4 H H0.
-assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
-apply rmul_reg_l with (r2 * r4); trivial.
+intros H H0.
+assert (~ b * d == 0) by now apply field_is_integral_domain.
+apply rmul_reg_l with (b * d); trivial.
rewrite rdiv_simpl; trivial.
-rewrite (ARdistr_r Rsth Reqe ARth).
-apply (Radd_ext Reqe).
-- transitivity (r2 * (r1 / r2) * r4); [ ring | auto ].
-- transitivity (r2 * (r4 * (r3 / r4))); auto.
- transitivity (r2 * r3); auto.
+rewrite rdistr_r.
+apply radd_ext.
+- now rewrite <- rmul_assoc, (rmul_comm d), rmul_assoc, rdiv_simpl.
+- now rewrite (rmul_comm c), <- rmul_assoc, rdiv_simpl.
Qed.
-Theorem rdiv2b:
- forall r1 r2 r3 r4 r5,
- ~ (r2*r5) == 0 ->
- ~ (r4*r5) == 0 ->
- r1 / (r2*r5) + r3 / (r4*r5) == (r1 * r4 + r3 * r2) / (r2 * (r4 * r5)).
+Theorem rdiv2b a b c d e :
+ ~ (b*e) == 0 ->
+ ~ (d*e) == 0 ->
+ a / (b*e) + c / (d*e) == (a * d + c * b) / (b * (d * e)).
Proof.
-intros r1 r2 r3 r4 r5 H H0.
-assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring).
-assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring).
-assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring).
-assert (HH4: ~ r2 * (r4 * r5) == 0)
+intros H H0.
+assert (~ b == 0) by (contradict H; rewrite H; ring).
+assert (~ e == 0) by (contradict H; rewrite H; ring).
+assert (~ d == 0) by (contradict H0; rewrite H0; ring).
+assert (~ b * (d * e) == 0)
by (repeat apply field_is_integral_domain; trivial).
-apply rmul_reg_l with (r2 * (r4 * r5)); trivial.
+apply rmul_reg_l with (b * (d * e)); trivial.
rewrite rdiv_simpl; trivial.
-rewrite (ARdistr_r Rsth Reqe ARth).
-apply (Radd_ext Reqe).
- transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ].
- transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ].
-Qed.
-
-Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2.
-Proof.
-intros r1 r2.
-transitivity (- (r1 * / r2)); auto.
-transitivity (- r1 * / r2); auto.
-Qed.
-Hint Resolve rdiv5 .
-
-Theorem rdiv3 r1 r2 r3 r4 :
- ~ r2 == 0 ->
- ~ r4 == 0 ->
- r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4).
-Proof.
-intros H2 H4.
-assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
-transitivity (r1 / r2 + - (r3 / r4)); auto.
-transitivity (r1 / r2 + - r3 / r4); auto.
-transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)).
-apply rdiv2; auto.
-f_equiv.
-transitivity (r1 * r4 + - (r3 * r2)); auto.
-Qed.
-
-
-Theorem rdiv3b:
- forall r1 r2 r3 r4 r5,
- ~ (r2 * r5) == 0 ->
- ~ (r4 * r5) == 0 ->
- r1 / (r2*r5) - r3 / (r4*r5) == (r1 * r4 - r3 * r2) / (r2 * (r4 * r5)).
-Proof.
-intros r1 r2 r3 r4 r5 H H0.
-transitivity (r1 / (r2 * r5) + - (r3 / (r4 * r5))); auto.
-transitivity (r1 / (r2 * r5) + - r3 / (r4 * r5)); auto.
-transitivity ((r1 * r4 + - r3 * r2) / (r2 * (r4 * r5))).
-apply rdiv2b; auto; try ring.
-apply (SRdiv_ext); auto.
-transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto.
-Qed.
-
-Theorem rdiv6:
- forall r1 r2,
- ~ r1 == 0 -> ~ r2 == 0 -> / (r1 / r2) == r2 / r1.
-intros r1 r2 H H0.
-assert (~ r1 / r2 == 0) as Hk.
- intros H1; case H.
- transitivity (r2 * (r1 / r2)); auto.
- rewrite H1; ring.
- apply rmul_reg_l with (r1 / r2); auto.
- transitivity (/ (r1 / r2) * (r1 / r2)); auto.
- transitivity 1; auto.
- repeat rewrite rdiv_def.
- transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ].
- repeat rewrite rinv_l; auto.
-Qed.
-Hint Resolve rdiv6 .
-
- Theorem rdiv4:
- forall r1 r2 r3 r4,
- ~ r2 == 0 ->
- ~ r4 == 0 ->
- (r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4).
-Proof.
-intros r1 r2 r3 r4 H H0.
-assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
-apply rmul_reg_l with (r2 * r4); trivial.
-rewrite rdiv_simpl; trivial.
-transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ].
-repeat rewrite rdiv_simpl; trivial.
+rewrite rdistr_r.
+apply radd_ext.
+- transitivity ((b * e) * (a / (b * e)) * d);
+ [ ring | now rewrite rdiv_simpl ].
+- transitivity ((d * e) * (c / (d * e)) * b);
+ [ ring | now rewrite rdiv_simpl ].
Qed.
- Theorem rdiv4b:
- forall r1 r2 r3 r4 r5 r6,
- ~ r2 * r5 == 0 ->
- ~ r4 * r6 == 0 ->
- ((r1 * r6) / (r2 * r5)) * ((r3 * r5) / (r4 * r6)) == (r1 * r3) / (r2 * r4).
+Theorem rdiv5 a b : - (a / b) == - a / b.
Proof.
-intros r1 r2 r3 r4 r5 r6 H H0.
-rewrite rdiv4; auto.
-transitivity ((r5 * r6) * (r1 * r3) / ((r5 * r6) * (r2 * r4))).
-apply SRdiv_ext; ring.
-assert (HH: ~ r5*r6 == 0).
- apply field_is_integral_domain.
- intros H1; case H; rewrite H1; ring.
- intros H1; case H0; rewrite H1; ring.
-rewrite <- rdiv4 ; auto.
- rewrite rdiv_r_r; auto.
+now rewrite !rdiv_def, ropp_mul_l.
+Qed.
- apply field_is_integral_domain.
- intros H1; case H; rewrite H1; ring.
- intros H1; case H0; rewrite H1; ring.
+Theorem rdiv3b a b c d e :
+ ~ (b * e) == 0 ->
+ ~ (d * e) == 0 ->
+ a / (b*e) - c / (d*e) == (a * d - c * b) / (b * (d * e)).
+Proof.
+intros H H0.
+rewrite !rsub_def, rdiv5, ropp_mul_l.
+now apply rdiv2b.
Qed.
+Theorem rdiv6 a b :
+ ~ a == 0 -> ~ b == 0 -> / (a / b) == b / a.
+Proof.
+intros H H0.
+assert (Hk : ~ a / b == 0).
+{ contradict H.
+ transitivity (b * (a / b)).
+ - now rewrite rdiv_simpl.
+ - rewrite H. apply rmul_0_r. }
+apply rmul_reg_l with (a / b); trivial.
+rewrite (rmul_comm (a / b)), rinv_l; trivial.
+rewrite !rdiv_def.
+transitivity (/ a * a * (/ b * b)); [ | ring ].
+now rewrite !rinv_l, rmul_1_l.
+Qed.
+
+Theorem rdiv4 a b c d :
+ ~ b == 0 ->
+ ~ d == 0 ->
+ (a / b) * (c / d) == (a * c) / (b * d).
+Proof.
+intros H H0.
+assert (~ b * d == 0) by now apply field_is_integral_domain.
+apply rmul_reg_l with (b * d); trivial.
+rewrite rdiv_simpl; trivial.
+transitivity (b * (a / b) * (d * (c / d))); [ ring | ].
+rewrite !rdiv_simpl; trivial.
+Qed.
-Theorem rdiv7:
- forall r1 r2 r3 r4,
- ~ r2 == 0 ->
- ~ r3 == 0 ->
- ~ r4 == 0 ->
- (r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3).
+Theorem rdiv4b a b c d e f :
+ ~ b * e == 0 ->
+ ~ d * f == 0 ->
+ ((a * f) / (b * e)) * ((c * e) / (d * f)) == (a * c) / (b * d).
+Proof.
+intros H H0.
+assert (~ b == 0) by (contradict H; rewrite H; ring).
+assert (~ e == 0) by (contradict H; rewrite H; ring).
+assert (~ d == 0) by (contradict H0; rewrite H0; ring).
+assert (~ f == 0) by (contradict H0; rewrite H0; ring).
+assert (~ b*d == 0) by now apply field_is_integral_domain.
+assert (~ e*f == 0) by now apply field_is_integral_domain.
+rewrite rdiv4; trivial.
+transitivity ((e * f) * (a * c) / ((e * f) * (b * d))).
+- apply rdiv_ext; ring.
+- rewrite <- rdiv4, rdiv_r_r; trivial.
+Qed.
+
+Theorem rdiv7 a b c d :
+ ~ b == 0 ->
+ ~ c == 0 ->
+ ~ d == 0 ->
+ (a / b) / (c / d) == (a * d) / (b * c).
Proof.
intros.
-rewrite (rdiv_def (r1 / r2)).
+rewrite (rdiv_def (a / b)).
rewrite rdiv6; trivial.
apply rdiv4; trivial.
Qed.
-Theorem rdiv7b:
- forall r1 r2 r3 r4 r5 r6,
- ~ r2 * r6 == 0 ->
- ~ r3 * r5 == 0 ->
- ~ r4 * r6 == 0 ->
- ((r1 * r5) / (r2 * r6)) / ((r3 * r5) / (r4 * r6)) == (r1 * r4) / (r2 * r3).
+Theorem rdiv7b a b c d e f :
+ ~ b * f == 0 ->
+ ~ c * e == 0 ->
+ ~ d * f == 0 ->
+ ((a * e) / (b * f)) / ((c * e) / (d * f)) == (a * d) / (b * c).
+Proof.
+intros Hbf Hce Hdf.
+assert (~ c==0) by (contradict Hce; rewrite Hce; ring).
+assert (~ e==0) by (contradict Hce; rewrite Hce; ring).
+assert (~ b==0) by (contradict Hbf; rewrite Hbf; ring).
+assert (~ f==0) by (contradict Hbf; rewrite Hbf; ring).
+assert (~ b*c==0) by now apply field_is_integral_domain.
+assert (~ e*f==0) by now apply field_is_integral_domain.
+rewrite rdiv7; trivial.
+transitivity ((e * f) * (a * d) / ((e * f) * (b * c))).
+- apply rdiv_ext; ring.
+- now rewrite <- rdiv4, rdiv_r_r.
+Qed.
+
+Theorem rinv_nz a : ~ a == 0 -> ~ /a == 0.
+Proof.
+intros H H0. apply rI_neq_rO.
+rewrite <- (rdiv_r_r H), rdiv_def, H0. apply rmul_0_r.
+Qed.
+
+Theorem rdiv8 a b : ~ b == 0 -> a == 0 -> a / b == 0.
+Proof.
+intros H H0.
+now rewrite rdiv_def, H0, rmul_0_l.
+Qed.
+
+Theorem cross_product_eq a b c d :
+ ~ b == 0 -> ~ d == 0 -> a * d == c * b -> a / b == c / d.
Proof.
intros.
-rewrite rdiv7; auto.
-transitivity ((r5 * r6) * (r1 * r4) / ((r5 * r6) * (r2 * r3))).
-apply SRdiv_ext; ring.
-assert (HH: ~ r5*r6 == 0).
- apply field_is_integral_domain.
- intros H2; case H0; rewrite H2; ring.
- intros H2; case H1; rewrite H2; ring.
-rewrite <- rdiv4 ; auto.
-rewrite rdiv_r_r; auto.
- apply field_is_integral_domain.
- intros H2; case H; rewrite H2; ring.
- intros H2; case H0; rewrite H2; ring.
+transitivity (a / b * (d / d)).
+- now rewrite rdiv_r_r, rmul_1_r.
+- now rewrite rdiv4, H1, (rmul_comm b d), <- rdiv4, rdiv_r_r.
Qed.
+(* Results about [pow_pos] and [pow_N] *)
-Theorem rdiv8: forall r1 r2, ~ r2 == 0 -> r1 == 0 -> r1 / r2 == 0.
-intros r1 r2 H H0.
-transitivity (r1 * / r2); auto.
-transitivity (0 * / r2); auto.
+Instance pow_ext : Proper (req ==> eq ==> req) (pow_pos rmul).
+Proof.
+intros x y H p p' <-.
+induction p as [p IH| p IH|];simpl; trivial; now rewrite !IH, ?H.
Qed.
+Instance pow_N_ext : Proper (req ==> eq ==> req) (pow_N rI rmul).
+Proof.
+intros x y H n n' <-. destruct n; simpl; trivial. now apply pow_ext.
+Qed.
-Theorem cross_product_eq : forall r1 r2 r3 r4,
- ~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4.
-intros.
-transitivity (r1 / r2 * (r4 / r4)).
- rewrite rdiv_r_r; trivial.
- symmetry .
- apply (ARmul_1_r Rsth ARth).
- rewrite rdiv4; trivial.
- rewrite H1.
- rewrite (ARmul_comm ARth r2 r4).
- rewrite <- rdiv4; trivial.
- rewrite rdiv_r_r by trivial.
- apply (ARmul_1_r Rsth ARth).
+Lemma pow_pos_0 p : pow_pos rmul 0 p == 0.
+Proof.
+induction p;simpl;trivial; now rewrite !IHp.
Qed.
+Lemma pow_pos_1 p : pow_pos rmul 1 p == 1.
+Proof.
+induction p;simpl;trivial; ring [IHp].
+Qed.
+
+Lemma pow_pos_cst c p : pow_pos rmul [c] p == [pow_pos cmul c p].
+Proof.
+induction p;simpl;trivial; now rewrite !CRmorph.(morph_mul), !IHp.
+Qed.
+
+Lemma pow_pos_mul_l x y p :
+ pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p.
+Proof.
+induction p;simpl;trivial; ring [IHp].
+Qed.
+
+Lemma pow_pos_add_r x p1 p2 :
+ pow_pos rmul x (p1+p2) == pow_pos rmul x p1 * pow_pos rmul x p2.
+Proof.
+ exact (Ring_theory.pow_pos_add Rsth rmul_ext rmul_assoc x p1 p2).
+Qed.
+
+Lemma pow_pos_mul_r x p1 p2 :
+ pow_pos rmul x (p1*p2) == pow_pos rmul (pow_pos rmul x p1) p2.
+Proof.
+induction p1;simpl;intros; rewrite ?pow_pos_mul_l, ?pow_pos_add_r;
+ simpl; trivial; ring [IHp1].
+Qed.
+
+Lemma pow_pos_nz x p : ~x==0 -> ~pow_pos rmul x p == 0.
+Proof.
+ intros Hx. induction p;simpl;trivial;
+ repeat (apply field_is_integral_domain; trivial).
+Qed.
+
+Lemma pow_pos_div a b p : ~ b == 0 ->
+ pow_pos rmul (a / b) p == pow_pos rmul a p / pow_pos rmul b p.
+Proof.
+ intros.
+ induction p; simpl; trivial.
+ - rewrite IHp.
+ assert (nz := pow_pos_nz p H).
+ rewrite !rdiv4; trivial.
+ apply field_is_integral_domain; trivial.
+ - rewrite IHp.
+ assert (nz := pow_pos_nz p H).
+ rewrite !rdiv4; trivial.
+Qed.
+
+(* === is a morphism *)
+
+Instance PEadd_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEadd C).
+Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed.
+Instance PEsub_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEsub C).
+Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed.
+Instance PEmul_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEmul C).
+Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed.
+Instance PEopp_ext : Proper (NPEequiv ==> NPEequiv) (@PEopp C).
+Proof. intros ? ? E l. simpl. now rewrite E. Qed.
+Instance PEpow_ext : Proper (NPEequiv ==> eq ==> NPEequiv) (@PEpow C).
+Proof.
+ intros ? ? E ? ? <- l. simpl. rewrite !rpow_pow. apply pow_N_ext; trivial.
+Qed.
+
+Lemma PE_1_l (e : PExpr C) : (1 * e === e)%poly.
+Proof.
+ intros l. simpl. rewrite phi_1. apply rmul_1_l.
+Qed.
+
+Lemma PE_1_r (e : PExpr C) : (e * 1 === e)%poly.
+Proof.
+ intros l. simpl. rewrite phi_1. apply rmul_1_r.
+Qed.
+
+Lemma PEpow_0_r (e : PExpr C) : (e ^ 0 === 1)%poly.
+Proof.
+ intros l. simpl. now rewrite !rpow_pow.
+Qed.
+
+Lemma PEpow_1_r (e : PExpr C) : (e ^ 1 === e)%poly.
+Proof.
+ intros l. simpl. now rewrite !rpow_pow.
+Qed.
+
+Lemma PEpow_1_l n : (1 ^ n === 1)%poly.
+Proof.
+ intros l. simpl. rewrite rpow_pow. destruct n; simpl.
+ - now rewrite phi_1.
+ - now rewrite phi_1, pow_pos_1.
+Qed.
+
+Lemma PEpow_add_r (e : PExpr C) n n' :
+ (e ^ (n+n') === e ^ n * e ^ n')%poly.
+Proof.
+ intros l. simpl. rewrite !rpow_pow.
+ destruct n; simpl.
+ - rewrite rmul_1_l. trivial.
+ - destruct n'; simpl.
+ + rewrite rmul_1_r. trivial.
+ + apply pow_pos_add_r.
+Qed.
+
+Lemma PEpow_mul_l (e e' : PExpr C) n :
+ ((e * e') ^ n === e ^ n * e' ^ n)%poly.
+Proof.
+ intros l. simpl. rewrite !rpow_pow. destruct n; simpl; trivial.
+ - symmetry; apply rmul_1_l.
+ - apply pow_pos_mul_l.
+Qed.
+
+Lemma PEpow_mul_r (e : PExpr C) n n' :
+ (e ^ (n * n') === (e ^ n) ^ n')%poly.
+Proof.
+ intros l. simpl. rewrite !rpow_pow.
+ destruct n, n'; simpl; trivial.
+ - now rewrite pow_pos_1.
+ - apply pow_pos_mul_r.
+Qed.
+
+Lemma PEpow_nz l e n : ~ e @ l == 0 -> ~ (e^n) @ l == 0.
+Proof.
+ intros. simpl. rewrite rpow_pow. destruct n; simpl.
+ - apply rI_neq_rO.
+ - now apply pow_pos_nz.
+Qed.
+
+
(***************************************************************************
Some equality test
***************************************************************************)
+Local Notation "a &&& b" := (if a then b else false)
+ (at level 40, left associativity).
+
(* equality test *)
-Fixpoint PExpr_eq (e1 e2 : PExpr C) {struct e1} : bool :=
- match e1, e2 with
- PEc c1, PEc c2 => ceqb c1 c2
- | PEX p1, PEX p2 => Pos.eqb p1 p2
- | PEadd e3 e5, PEadd e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
- | PEsub e3 e5, PEsub e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
- | PEmul e3 e5, PEmul e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
- | PEopp e3, PEopp e4 => PExpr_eq e3 e4
- | PEpow e3 n3, PEpow e4 n4 => if N.eqb n3 n4 then PExpr_eq e3 e4 else false
+Fixpoint PExpr_eq (e e' : PExpr C) {struct e} : bool :=
+ match e, e' with
+ | PEc c, PEc c' => ceqb c c'
+ | PEX _ p, PEX _ p' => Pos.eqb p p'
+ | e1 + e2, e1' + e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2'
+ | e1 - e2, e1' - e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2'
+ | e1 * e2, e1' * e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2'
+ | - e, - e' => PExpr_eq e e'
+ | e ^ n, e' ^ n' => N.eqb n n' &&& PExpr_eq e e'
| _, _ => false
- end.
-
-Add Morphism (pow_pos rmul) with signature req ==> eq ==> req as pow_morph.
-intros x y H p;induction p as [p IH| p IH|];simpl;auto;ring[IH].
-Qed.
-
-Add Morphism (pow_N rI rmul) with signature req ==> eq ==> req as pow_N_morph.
-intros x y H [|p];simpl;auto. apply pow_morph;trivial.
-Qed.
-
-Theorem PExpr_eq_semi_correct:
- forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2.
-intros l e1; elim e1.
-intros c1; intros e2; elim e2; simpl; (try (intros; discriminate)).
-intros c2; apply (morph_eq CRmorph).
-intros p1; intros e2; elim e2; simpl; (try (intros; discriminate)).
-intros p2; case Pos.eqb_spec; intros; now subst.
-intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
-intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
- (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
- (try (intros; discriminate)); auto.
-intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
-intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
- (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
- (try (intros; discriminate)); auto.
-intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
-intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
- (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
- (try (intros; discriminate)); auto.
-intros e3 rec e2; (case e2; simpl; (try (intros; discriminate))).
-intros e4; generalize (rec e4); case (PExpr_eq e3 e4);
- (try (intros; discriminate)); auto.
-intros e3 rec n3 e2;(case e2;simpl;(try (intros;discriminate))).
-intros e4 n4; case N.eqb_spec; try discriminate; intros EQ H; subst.
-repeat rewrite pow_th.(rpow_pow_N). rewrite (rec _ H);auto.
-Qed.
-
-(* add *)
-Definition NPEadd e1 e2 :=
- match e1, e2 with
- PEc c1, PEc c2 => PEc (cadd c1 c2)
- | PEc c, _ => if ceqb c cO then e2 else PEadd e1 e2
- | _, PEc c => if ceqb c cO then e1 else PEadd e1 e2
- (* Peut t'on factoriser ici ??? *)
- | _, _ => PEadd e1 e2
- end.
+ end%poly.
-Theorem NPEadd_correct:
- forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2).
+Lemma if_true (a b : bool) : a &&& b = true -> a = true /\ b = true.
Proof.
-intros l e1 e2.
-destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
- try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl;
- try (ring [(morph0 CRmorph)]).
- apply (morph_add CRmorph).
+ destruct a, b; split; trivial.
Qed.
-Definition NPEpow x n :=
- match n with
- | N0 => PEc cI
- | Npos p =>
- if Pos.eqb p xH then x else
- match x with
- | PEc c =>
- if ceqb c cI then PEc cI else if ceqb c cO then PEc cO else PEc (pow_pos cmul c p)
- | _ => PEpow x n
- end
- end.
-
-Theorem NPEpow_correct : forall l e n,
- NPEeval l (NPEpow e n) == NPEeval l (PEpow e n).
+Theorem PExpr_eq_semi_ok e e' :
+ PExpr_eq e e' = true -> (e === e')%poly.
+Proof.
+revert e'; induction e; destruct e'; simpl; try discriminate.
+- intros H l. now apply (morph_eq CRmorph).
+- case Pos.eqb_spec; intros; now subst.
+- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
+- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
+- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2.
+- intros H. now rewrite IHe.
+- intros H. destruct (if_true _ _ H).
+ apply N.eqb_eq in H0. now rewrite IHe, H0.
+Qed.
+
+Lemma PExpr_eq_spec e e' : BoolSpec (e === e')%poly True (PExpr_eq e e').
Proof.
- destruct n;simpl.
- rewrite pow_th.(rpow_pow_N);simpl;auto.
- fold (p =? 1)%positive.
- case Pos.eqb_spec; intros H; (rewrite H || clear H).
- now rewrite pow_th.(rpow_pow_N).
- destruct e;simpl;auto.
- repeat apply ceqb_rect;simpl;intros;rewrite pow_th.(rpow_pow_N);simpl.
- symmetry;induction p;simpl;trivial; ring [IHp H CRmorph.(morph1)].
- symmetry; induction p;simpl;trivial;ring [IHp CRmorph.(morph0)].
- induction p;simpl;auto;repeat rewrite CRmorph.(morph_mul);ring [IHp].
+ assert (H := PExpr_eq_semi_ok e e').
+ destruct PExpr_eq; constructor; intros; trivial. now apply H.
Qed.
-(* mul *)
-Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C :=
- match x, y with
- PEc c1, PEc c2 => PEc (cmul c1 c2)
- | PEc c, _ =>
- if ceqb c cI then y else if ceqb c cO then PEc cO else PEmul x y
- | _, PEc c =>
- if ceqb c cI then x else if ceqb c cO then PEc cO else PEmul x y
- | PEpow e1 n1, PEpow e2 n2 =>
- if N.eqb n1 n2 then NPEpow (NPEmul e1 e2) n1 else PEmul x y
- | _, _ => PEmul x y
- end.
+(** Smart constructors for polynomial expression,
+ with reduction of constants *)
-Lemma pow_pos_mul : forall x y p, pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p.
-induction p;simpl;auto;try ring [IHp].
-Qed.
+Definition NPEadd e1 e2 :=
+ match e1, e2 with
+ | PEc c1, PEc c2 => PEc (c1 + c2)
+ | PEc c, _ => if (c =? 0)%coef then e2 else e1 + e2
+ | _, PEc c => if (c =? 0)%coef then e1 else e1 + e2
+ (* Peut t'on factoriser ici ??? *)
+ | _, _ => (e1 + e2)
+ end%poly.
+Infix "++" := NPEadd (at level 60, right associativity).
-Theorem NPEmul_correct : forall l e1 e2,
- NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2).
-induction e1;destruct e2; simpl;try reflexivity;
- repeat apply ceqb_rect;
- try (intro eq_c; rewrite eq_c); simpl; try reflexivity;
- try ring [(morph0 CRmorph) (morph1 CRmorph)].
- apply (morph_mul CRmorph).
-case N.eqb_spec; intros H; try rewrite <- H; clear H.
-rewrite NPEpow_correct. simpl.
-repeat rewrite pow_th.(rpow_pow_N).
-rewrite IHe1; destruct n;simpl;try ring.
-apply pow_pos_mul.
-simpl;auto.
+Theorem NPEadd_ok e1 e2 : (e1 ++ e2 === e1 + e2)%poly.
+Proof.
+intros l.
+destruct e1, e2; simpl; try reflexivity; try (case ceqb_spec);
+try intro H; try rewrite H; simpl;
+try apply eq_refl; try (ring [phi_0]).
+apply (morph_add CRmorph).
Qed.
-(* sub *)
Definition NPEsub e1 e2 :=
match e1, e2 with
- PEc c1, PEc c2 => PEc (csub c1 c2)
- | PEc c, _ => if ceqb c cO then PEopp e2 else PEsub e1 e2
- | _, PEc c => if ceqb c cO then e1 else PEsub e1 e2
+ | PEc c1, PEc c2 => PEc (c1 - c2)
+ | PEc c, _ => if (c =? 0)%coef then - e2 else e1 - e2
+ | _, PEc c => if (c =? 0)%coef then e1 else e1 - e2
(* Peut-on factoriser ici *)
- | _, _ => PEsub e1 e2
- end.
+ | _, _ => e1 - e2
+ end%poly.
+Infix "--" := NPEsub (at level 50, left associativity).
-Theorem NPEsub_correct:
- forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2).
-intros l e1 e2.
-destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
- try (intro eq_c; rewrite eq_c); simpl;
- try rewrite (morph0 CRmorph); try reflexivity;
+Theorem NPEsub_ok e1 e2: (e1 -- e2 === e1 - e2)%poly.
+Proof.
+intros l.
+destruct e1, e2; simpl; try reflexivity; try case ceqb_spec;
+ try intro H; try rewrite H; simpl;
+ try rewrite phi_0; try reflexivity;
try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r).
apply (morph_sub CRmorph).
Qed.
-(* opp *)
Definition NPEopp e1 :=
- match e1 with PEc c1 => PEc (copp c1) | _ => PEopp e1 end.
+ match e1 with PEc c1 => PEc (- c1) | _ => - e1 end%poly.
+
+Theorem NPEopp_ok e : (NPEopp e === -e)%poly.
+Proof.
+intros l. destruct e; simpl; trivial. apply (morph_opp CRmorph).
+Qed.
+
+Definition NPEpow x n :=
+ match n with
+ | N0 => 1
+ | Npos p =>
+ if (p =? 1)%positive then x else
+ match x with
+ | PEc c =>
+ if (c =? 1)%coef then 1
+ else if (c =? 0)%coef then 0
+ else PEc (pow_pos cmul c p)
+ | _ => x ^ n
+ end
+ end%poly.
+Infix "^^" := NPEpow (at level 35, right associativity).
-Theorem NPEopp_correct:
- forall l e1, NPEeval l (NPEopp e1) == NPEeval l (PEopp e1).
-intros l e1; case e1; simpl; auto.
-intros; apply (morph_opp CRmorph).
+Theorem NPEpow_ok e n : (e ^^ n === e ^ n)%poly.
+Proof.
+ intros l. unfold NPEpow; destruct n.
+ - simpl; now rewrite rpow_pow.
+ - case Pos.eqb_spec; [intro; subst | intros _].
+ + simpl. now rewrite rpow_pow.
+ + destruct e;simpl;trivial.
+ repeat case ceqb_spec; intros; rewrite ?rpow_pow, ?H; simpl.
+ * now rewrite phi_1, pow_pos_1.
+ * now rewrite phi_0, pow_pos_0.
+ * now rewrite pow_pos_cst.
+Qed.
+
+Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C :=
+ match x, y with
+ | PEc c1, PEc c2 => PEc (c1 * c2)
+ | PEc c, _ => if (c =? 1)%coef then y else if (c =? 0)%coef then 0 else x * y
+ | _, PEc c => if (c =? 1)%coef then x else if (c =? 0)%coef then 0 else x * y
+ | e1 ^ n1, e2 ^ n2 => if (n1 =? n2)%N then (NPEmul e1 e2)^^n1 else x * y
+ | _, _ => x * y
+ end%poly.
+Infix "**" := NPEmul (at level 40, left associativity).
+
+Theorem NPEmul_ok e1 e2 : (e1 ** e2 === e1 * e2)%poly.
+Proof.
+intros l.
+revert e2; induction e1;destruct e2; simpl;try reflexivity;
+ repeat (case ceqb_spec; intro H; try rewrite H; clear H);
+ simpl; try reflexivity; try ring [phi_0 phi_1].
+ apply (morph_mul CRmorph).
+case N.eqb_spec; [intros <- | reflexivity].
+rewrite NPEpow_ok. simpl.
+rewrite !rpow_pow. rewrite IHe1.
+destruct n; simpl; [ ring | apply pow_pos_mul_l ].
Qed.
(* simplification *)
-Fixpoint PExpr_simp (e : PExpr C) : PExpr C :=
+Fixpoint PEsimp (e : PExpr C) : PExpr C :=
match e with
- PEadd e1 e2 => NPEadd (PExpr_simp e1) (PExpr_simp e2)
- | PEmul e1 e2 => NPEmul (PExpr_simp e1) (PExpr_simp e2)
- | PEsub e1 e2 => NPEsub (PExpr_simp e1) (PExpr_simp e2)
- | PEopp e1 => NPEopp (PExpr_simp e1)
- | PEpow e1 n1 => NPEpow (PExpr_simp e1) n1
+ | e1 + e2 => (PEsimp e1) ++ (PEsimp e2)
+ | e1 * e2 => (PEsimp e1) ** (PEsimp e2)
+ | e1 - e2 => (PEsimp e1) -- (PEsimp e2)
+ | - e1 => NPEopp (PEsimp e1)
+ | e1 ^ n1 => (PEsimp e1) ^^ n1
| _ => e
- end.
+ end%poly.
-Theorem PExpr_simp_correct:
- forall l e, NPEeval l (PExpr_simp e) == NPEeval l e.
-intros l e; elim e; simpl; auto.
-intros e1 He1 e2 He2.
-transitivity (NPEeval l (PEadd (PExpr_simp e1) (PExpr_simp e2))); auto.
-apply NPEadd_correct.
-simpl; auto.
-intros e1 He1 e2 He2.
-transitivity (NPEeval l (PEsub (PExpr_simp e1) (PExpr_simp e2))); auto.
-apply NPEsub_correct.
-simpl; auto.
-intros e1 He1 e2 He2.
-transitivity (NPEeval l (PEmul (PExpr_simp e1) (PExpr_simp e2))); auto.
-apply NPEmul_correct.
-simpl; auto.
-intros e1 He1.
-transitivity (NPEeval l (PEopp (PExpr_simp e1))); auto.
-apply NPEopp_correct.
-simpl; auto.
-intros e1 He1 n;simpl.
-rewrite NPEpow_correct;simpl.
-repeat rewrite pow_th.(rpow_pow_N).
-rewrite He1;auto.
+Theorem PEsimp_ok e : (PEsimp e === e)%poly.
+Proof.
+induction e; simpl.
+- reflexivity.
+- reflexivity.
+- intro l; trivial.
+- intro l; trivial.
+- rewrite NPEadd_ok. now f_equiv.
+- rewrite NPEsub_ok. now f_equiv.
+- rewrite NPEmul_ok. now f_equiv.
+- rewrite NPEopp_ok. now f_equiv.
+- rewrite NPEpow_ok. now f_equiv.
Qed.
@@ -592,7 +721,9 @@ Qed.
(* The input: syntax of a field expression *)
Inductive FExpr : Type :=
- FEc: C -> FExpr
+ | FEO : FExpr
+ | FEI : FExpr
+ | FEc: C -> FExpr
| FEX: positive -> FExpr
| FEadd: FExpr -> FExpr -> FExpr
| FEsub: FExpr -> FExpr -> FExpr
@@ -604,6 +735,8 @@ Inductive FExpr : Type :=
Fixpoint FEeval (l : list R) (pe : FExpr) {struct pe} : R :=
match pe with
+ | FEO => rO
+ | FEI => rI
| FEc c => phi c
| FEX x => BinList.nth 0 x l
| FEadd x y => FEeval l x + FEeval l y
@@ -633,44 +766,46 @@ Record linear : Type := mk_linear {
Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop :=
match le with
| nil => True
- | e1 :: nil => ~ req (NPEeval l e1) rO
- | e1 :: l1 => ~ req (NPEeval l e1) rO /\ PCond l l1
+ | e1 :: nil => ~ req (e1 @ l) rO
+ | e1 :: l1 => ~ req (e1 @ l) rO /\ PCond l l1
end.
-Theorem PCond_cons_inv_l :
- forall l a l1, PCond l (a::l1) -> ~ NPEeval l a == 0.
-intros l a l1 H.
-destruct l1; simpl in H |- *; trivial.
-destruct H; trivial.
+Theorem PCond_cons l a l1 :
+ PCond l (a :: l1) <-> ~ a @ l == 0 /\ PCond l l1.
+Proof.
+destruct l1.
+- simpl. split; [split|destruct 1]; trivial.
+- reflexivity.
Qed.
-Theorem PCond_cons_inv_r : forall l a l1, PCond l (a :: l1) -> PCond l l1.
-intros l a l1 H.
-destruct l1; simpl in H |- *; trivial.
-destruct H; trivial.
+Theorem PCond_cons_inv_l l a l1 : PCond l (a::l1) -> ~ a @ l == 0.
+Proof.
+rewrite PCond_cons. now destruct 1.
Qed.
-Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1.
-intros l l1 l2; elim l1; simpl app.
- simpl; auto.
- destruct l0; simpl in *.
- destruct l2; firstorder.
- firstorder.
+Theorem PCond_cons_inv_r l a l1 : PCond l (a :: l1) -> PCond l l1.
+Proof.
+rewrite PCond_cons. now destruct 1.
Qed.
-Theorem PCond_app_inv_r: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l2.
-intros l l1 l2; elim l1; simpl app; auto.
-intros a l0 H H0; apply H; apply PCond_cons_inv_r with ( 1 := H0 ).
+Theorem PCond_app l l1 l2 :
+ PCond l (l1 ++ l2) <-> PCond l l1 /\ PCond l l2.
+Proof.
+induction l1.
+- simpl. split; [split|destruct 1]; trivial.
+- simpl app. rewrite !PCond_cons, IHl1. symmetry; apply and_assoc.
Qed.
+
(* An unsatisfiable condition: issued when a division by zero is detected *)
-Definition absurd_PCond := cons (PEc cO) nil.
+Definition absurd_PCond := cons 0%poly nil.
Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
+Proof.
unfold absurd_PCond; simpl.
red; intros.
apply H.
-apply (morph0 CRmorph).
+apply phi_0.
Qed.
(***************************************************************************
@@ -679,167 +814,124 @@ Qed.
***************************************************************************)
-Fixpoint isIn (e1:PExpr C) (p1:positive)
- (e2:PExpr C) (p2:positive) {struct e2}: option (N * PExpr C) :=
+Definition default_isIn e1 p1 e2 p2 :=
+ if PExpr_eq e1 e2 then
+ match Z.pos_sub p1 p2 with
+ | Zpos p => Some (Npos p, 1%poly)
+ | Z0 => Some (N0, 1%poly)
+ | Zneg p => Some (N0, e2 ^^ Npos p)
+ end
+ else None.
+
+Fixpoint isIn e1 p1 e2 p2 {struct e2}: option (N * PExpr C) :=
match e2 with
- | PEmul e3 e4 =>
+ | e3 * e4 =>
match isIn e1 p1 e3 p2 with
- | Some (N0, e5) => Some (N0, NPEmul e5 (NPEpow e4 (Npos p2)))
+ | Some (N0, e5) => Some (N0, e5 ** (e4 ^^ Npos p2))
| Some (Npos p, e5) =>
match isIn e1 p e4 p2 with
- | Some (n, e6) => Some (n, NPEmul e5 e6)
- | None => Some (Npos p, NPEmul e5 (NPEpow e4 (Npos p2)))
+ | Some (n, e6) => Some (n, e5 ** e6)
+ | None => Some (Npos p, e5 ** (e4 ^^ Npos p2))
end
| None =>
match isIn e1 p1 e4 p2 with
- | Some (n, e5) => Some (n,NPEmul (NPEpow e3 (Npos p2)) e5)
+ | Some (n, e5) => Some (n, (e3 ^^ Npos p2) ** e5)
| None => None
end
end
- | PEpow e3 N0 => None
- | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pos.mul p3 p2)
- | _ =>
- if PExpr_eq e1 e2 then
- match Z.pos_sub p1 p2 with
- | Zpos p => Some (Npos p, PEc cI)
- | Z0 => Some (N0, PEc cI)
- | Zneg p => Some (N0, NPEpow e2 (Npos p))
- end
- else None
- end.
+ | e3 ^ N0 => None
+ | e3 ^ Npos p3 => isIn e1 p1 e3 (Pos.mul p3 p2)
+ | _ => default_isIn e1 p1 e2 p2
+ end%poly.
Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end.
Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end.
- Notation pow_pos_add :=
- (Ring_theory.pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
-
Lemma Z_pos_sub_gt p q : (p > q)%positive ->
Z.pos_sub p q = Zpos (p - q).
Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed.
Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption.
- Lemma isIn_correct_aux : forall l e1 e2 p1 p2,
- match
- (if PExpr_eq e1 e2 then
- match Z.sub (Zpos p1) (Zpos p2) with
- | Zpos p => Some (Npos p, PEc cI)
- | Z0 => Some (N0, PEc cI)
- | Zneg p => Some (N0, NPEpow e2 (Npos p))
- end
- else None)
- with
+ Lemma default_isIn_ok e1 e2 p1 p2 :
+ match default_isIn e1 p1 e2 p2 with
| Some(n, e3) =>
- NPEeval l (PEpow e2 (Npos p2)) ==
- NPEeval l (PEmul (PEpow e1 (ZtoN (Zpos p1 - NtoZ n))) e3) /\
- (Zpos p1 > NtoZ n)%Z
- | _ => True
+ let n' := ZtoN (Zpos p1 - NtoZ n) in
+ (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly
+ /\ (Zpos p1 > NtoZ n)%Z
+ | _ => True
end.
Proof.
- intros l e1 e2 p1 p2; generalize (PExpr_eq_semi_correct l e1 e2);
- case (PExpr_eq e1 e2); simpl; auto; intros H.
+ unfold default_isIn.
+ case PExpr_eq_spec; trivial. intros EQ.
rewrite Z.pos_sub_spec.
- case Pos.compare_spec;intros;simpl.
- - repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:reflexivity.
- subst. rewrite H by trivial. ring [ (morph1 CRmorph)].
- - fold (p2 - p1 =? 1)%positive.
- fold (NPEpow e2 (Npos (p2 - p1))).
- rewrite NPEpow_correct;simpl.
- repeat rewrite pow_th.(rpow_pow_N);simpl.
- rewrite H;trivial. split. 2:reflexivity.
- rewrite <- pow_pos_add. now rewrite Pos.add_comm, Pos.sub_add.
- - repeat rewrite pow_th.(rpow_pow_N);simpl.
- rewrite H;trivial.
- rewrite Z.pos_sub_gt by now apply Pos.sub_decr.
- replace (p1 - (p1 - p2))%positive with p2;
- [| rewrite Pos.sub_sub_distr, Pos.add_comm;
- auto using Pos.add_sub, Pos.sub_decr ].
- split.
- simpl. ring [ (morph1 CRmorph)].
- now apply Z.lt_gt, Pos.sub_decr.
-Qed.
-
-Lemma pow_pos_pow_pos : forall x p1 p2, pow_pos rmul (pow_pos rmul x p1) p2 == pow_pos rmul x (p1*p2).
-induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_add;simpl.
-ring [(IHp1 p2)]. ring [(IHp1 p2)]. auto.
-Qed.
-
-
-Theorem isIn_correct: forall l e1 p1 e2 p2,
+ case Pos.compare_spec;intros H; split; try reflexivity.
+ - simpl. now rewrite PE_1_r, H, EQ.
+ - rewrite NPEpow_ok, EQ, <- PEpow_add_r. f_equiv.
+ simpl. f_equiv. now rewrite Pos.add_comm, Pos.sub_add.
+ - simpl. rewrite PE_1_r, EQ. f_equiv.
+ rewrite Z.pos_sub_gt by now apply Pos.sub_decr. simpl. f_equiv.
+ rewrite Pos.sub_sub_distr, Pos.add_comm; trivial.
+ rewrite Pos.add_sub; trivial.
+ apply Pos.sub_decr; trivial.
+ - simpl. now apply Z.lt_gt, Pos.sub_decr.
+Qed.
+
+Ltac npe_simpl := rewrite ?NPEmul_ok, ?NPEpow_ok, ?PEpow_mul_l.
+Ltac npe_ring := intro l; simpl; ring.
+
+Theorem isIn_ok e1 p1 e2 p2 :
match isIn e1 p1 e2 p2 with
| Some(n, e3) =>
- NPEeval l (PEpow e2 (Npos p2)) ==
- NPEeval l (PEmul (PEpow e1 (ZtoN (Zpos p1 - NtoZ n))) e3) /\
- (Zpos p1 > NtoZ n)%Z
+ let n' := ZtoN (Zpos p1 - NtoZ n) in
+ (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly
+ /\ (Zpos p1 > NtoZ n)%Z
| _ => True
end.
Proof.
Opaque NPEpow.
-intros l e1 p1 e2; generalize p1;clear p1;elim e2; intros;
- try (refine (isIn_correct_aux l e1 _ p1 p2);fail);simpl isIn.
-generalize (H p1 p2);clear H;destruct (isIn e1 p1 p p2). destruct p3.
-destruct n.
- simpl. rewrite NPEmul_correct. simpl; rewrite NPEpow_correct;simpl.
- repeat rewrite pow_th.(rpow_pow_N);simpl.
- rewrite pow_pos_mul;intros (H,H1);split;[ring[H]|trivial].
- generalize (H0 p4 p2);clear H0;destruct (isIn e1 p4 p0 p2). destruct p5.
- destruct n;simpl.
- rewrite NPEmul_correct;repeat rewrite pow_th.(rpow_pow_N);simpl.
- intros (H1,H2) (H3,H4).
- simpl_pos_sub. simpl in H3.
- rewrite pow_pos_mul. rewrite H1;rewrite H3.
- assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *
- (pow_pos rmul (NPEeval l e1) p4 * NPEeval l p5) ==
- pow_pos rmul (NPEeval l e1) p4 * pow_pos rmul (NPEeval l e1) (p1 - p4) *
- NPEeval l p3 *NPEeval l p5) by ring. rewrite H;clear H.
- rewrite <- pow_pos_add.
- rewrite Pos.add_comm, Pos.sub_add by (now apply Z.gt_lt in H4).
- split. symmetry;apply ARth.(ARmul_assoc). reflexivity.
- repeat rewrite pow_th.(rpow_pow_N);simpl.
- intros (H1,H2) (H3,H4).
- simpl_pos_sub. simpl in H1, H3.
- assert (Zpos p1 > Zpos p6)%Z.
- apply Zgt_trans with (Zpos p4). exact H4. exact H2.
- simpl_pos_sub.
- split. 2:exact H.
- rewrite pow_pos_mul. simpl;rewrite H1;rewrite H3.
- assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *
- (pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p5) ==
- pow_pos rmul (NPEeval l e1) (p1 - p4) * pow_pos rmul (NPEeval l e1) (p4 - p6) *
- NPEeval l p3 * NPEeval l p5) by ring. rewrite H0;clear H0.
- rewrite <- pow_pos_add.
- replace (p1 - p4 + (p4 - p6))%positive with (p1 - p6)%positive.
- rewrite NPEmul_correct. simpl;ring.
- assert
- (Zpos p1 - Zpos p6 = Zpos p1 - Zpos p4 + (Zpos p4 - Zpos p6))%Z.
- change ((Zpos p1 - Zpos p6)%Z = (Zpos p1 + (- Zpos p4) + (Zpos p4 +(- Zpos p6)))%Z).
- rewrite <- Z.add_assoc. rewrite (Z.add_assoc (- Zpos p4)).
- simpl. rewrite Z.pos_sub_diag. simpl. reflexivity.
- unfold Z.sub, Z.opp in H0. simpl in H0.
- simpl_pos_sub. inversion H0; trivial.
- simpl. repeat rewrite pow_th.(rpow_pow_N).
- intros H1 (H2,H3). simpl_pos_sub.
- rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
- simpl in H2. rewrite pow_th.(rpow_pow_N);simpl.
- rewrite pow_pos_mul. split. ring [H2]. exact H3.
- generalize (H0 p1 p2);clear H0;destruct (isIn e1 p1 p0 p2). destruct p3.
- destruct n;simpl. rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
- repeat rewrite pow_th.(rpow_pow_N);simpl.
- intros (H1,H2);split;trivial. rewrite pow_pos_mul;ring [H1].
- rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
- repeat rewrite pow_th.(rpow_pow_N);simpl. rewrite pow_pos_mul.
- intros (H1, H2);rewrite H1;split.
- simpl_pos_sub. simpl in H1;ring [H1]. trivial.
- trivial.
- destruct n. trivial.
- generalize (H p1 (p0*p2)%positive);clear H;destruct (isIn e1 p1 p (p0*p2)). destruct p3.
- destruct n;simpl. repeat rewrite pow_th.(rpow_pow_N). simpl.
- intros (H1,H2);split. rewrite pow_pos_pow_pos. trivial. trivial.
- repeat rewrite pow_th.(rpow_pow_N). simpl.
- intros (H1,H2);split;trivial.
- rewrite pow_pos_pow_pos;trivial.
- trivial.
+revert p1 p2.
+induction e2; intros p1 p2;
+ try refine (default_isIn_ok e1 _ p1 p2); simpl isIn.
+- specialize (IHe2_1 p1 p2).
+ destruct isIn as [([|p],e)|].
+ + split; [|reflexivity].
+ clear IHe2_2.
+ destruct IHe2_1 as (IH,_).
+ npe_simpl. rewrite IH. npe_ring.
+ + specialize (IHe2_2 p p2).
+ destruct isIn as [([|p'],e')|].
+ * destruct IHe2_1 as (IH1,GT1).
+ destruct IHe2_2 as (IH2,GT2).
+ split; [|simpl; apply Zgt_trans with (Z.pos p); trivial].
+ npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl.
+ replace (N.pos p1) with (N.pos p + N.pos (p1 - p))%N.
+ rewrite PEpow_add_r; npe_ring.
+ { simpl. f_equal. rewrite Pos.add_comm, Pos.sub_add. trivial.
+ now apply Pos.gt_lt. }
+ * destruct IHe2_1 as (IH1,GT1).
+ destruct IHe2_2 as (IH2,GT2).
+ assert (Z.pos p1 > Z.pos p')%Z by (now apply Zgt_trans with (Zpos p)).
+ split; [|simpl; trivial].
+ npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl.
+ replace (N.pos (p1 - p')) with (N.pos (p1 - p) + N.pos (p - p'))%N.
+ rewrite PEpow_add_r; npe_ring.
+ { simpl. f_equal. rewrite Pos.add_sub_assoc, Pos.sub_add; trivial.
+ now apply Pos.gt_lt.
+ now apply Pos.gt_lt. }
+ * destruct IHe2_1 as (IH,GT). split; trivial.
+ npe_simpl. rewrite IH. npe_ring.
+ + specialize (IHe2_2 p1 p2).
+ destruct isIn as [(n,e)|]; trivial.
+ destruct IHe2_2 as (IH,GT). split; trivial.
+ set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d.
+ npe_simpl. rewrite IH. npe_ring.
+- destruct n; trivial.
+ specialize (IHe2 p1 (p * p2)%positive).
+ destruct isIn as [(n,e)|]; trivial.
+ destruct IHe2 as (IH,GT). split; trivial.
+ set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d.
+ now rewrite <- PEpow_mul_r.
Qed.
Record rsplit : Type := mk_rsplit {
@@ -852,121 +944,122 @@ Notation left := rsplit_left.
Notation right := rsplit_right.
Notation common := rsplit_common.
-Fixpoint split_aux (e1: PExpr C) (p:positive) (e2:PExpr C) {struct e1}: rsplit :=
+Fixpoint split_aux e1 p e2 {struct e1}: rsplit :=
match e1 with
- | PEmul e3 e4 =>
+ | e3 * e4 =>
let r1 := split_aux e3 p e2 in
let r2 := split_aux e4 p (right r1) in
- mk_rsplit (NPEmul (left r1) (left r2))
- (NPEmul (common r1) (common r2))
- (right r2)
- | PEpow e3 N0 => mk_rsplit (PEc cI) (PEc cI) e2
- | PEpow e3 (Npos p3) => split_aux e3 (Pos.mul p3 p) e2
+ mk_rsplit (left r1 ** left r2)
+ (common r1 ** common r2)
+ (right r2)
+ | e3 ^ N0 => mk_rsplit 1 1 e2
+ | e3 ^ Npos p3 => split_aux e3 (Pos.mul p3 p) e2
| _ =>
- match isIn e1 p e2 xH with
- | Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3
- | Some (Npos q, e3) => mk_rsplit (NPEpow e1 (Npos q)) (NPEpow e1 (Npos (p - q))) e3
- | None => mk_rsplit (NPEpow e1 (Npos p)) (PEc cI) e2
+ match isIn e1 p e2 1 with
+ | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3
+ | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3
+ | None => mk_rsplit (e1 ^^ Npos p) 1 e2
end
- end.
+ end%poly.
-Lemma split_aux_correct_1 : forall l e1 p e2,
- let res := match isIn e1 p e2 xH with
- | Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3
- | Some (Npos q, e3) => mk_rsplit (NPEpow e1 (Npos q)) (NPEpow e1 (Npos (p - q))) e3
- | None => mk_rsplit (NPEpow e1 (Npos p)) (PEc cI) e2
- end in
- NPEeval l (PEpow e1 (Npos p)) == NPEeval l (NPEmul (left res) (common res))
- /\
- NPEeval l e2 == NPEeval l (NPEmul (right res) (common res)).
-Proof.
- intros. unfold res;clear res; generalize (isIn_correct l e1 p e2 xH).
- destruct (isIn e1 p e2 1). destruct p0.
+Lemma split_aux_ok1 e1 p e2 :
+ (let res := match isIn e1 p e2 1 with
+ | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3
+ | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3
+ | None => mk_rsplit (e1 ^^ Npos p) 1 e2
+ end
+ in
+ e1 ^ Npos p === left res * common res
+ /\ e2 === right res * common res)%poly.
+Proof.
Opaque NPEpow NPEmul.
- destruct n;simpl;
- (repeat rewrite NPEmul_correct;simpl;
- repeat rewrite NPEpow_correct;simpl;
- repeat rewrite pow_th.(rpow_pow_N);simpl).
- intros (H, Hgt);split;try ring [H CRmorph.(morph1)].
- intros (H, Hgt). simpl_pos_sub. simpl in H;split;try ring [H].
- apply Z.gt_lt in Hgt.
- now rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add.
- simpl;intros. repeat rewrite NPEmul_correct;simpl.
- rewrite NPEpow_correct;simpl. split;ring [CRmorph.(morph1)].
-Qed.
-
-Theorem split_aux_correct: forall l e1 p e2,
- NPEeval l (PEpow e1 (Npos p)) ==
- NPEeval l (NPEmul (left (split_aux e1 p e2)) (common (split_aux e1 p e2)))
-/\
- NPEeval l e2 == NPEeval l (NPEmul (right (split_aux e1 p e2))
- (common (split_aux e1 p e2))).
-Proof.
-intros l; induction e1;intros k e2; try refine (split_aux_correct_1 l _ k e2);simpl.
-generalize (IHe1_1 k e2); clear IHe1_1.
-generalize (IHe1_2 k (rsplit_right (split_aux e1_1 k e2))); clear IHe1_2.
-simpl. repeat (rewrite NPEmul_correct;simpl).
-repeat rewrite pow_th.(rpow_pow_N);simpl.
-intros (H1,H2) (H3,H4);split.
-rewrite pow_pos_mul. rewrite H1;rewrite H3. ring.
-rewrite H4;rewrite H2;ring.
-destruct n;simpl.
-split. repeat rewrite pow_th.(rpow_pow_N);simpl.
-rewrite NPEmul_correct. simpl.
- induction k;simpl;try ring [CRmorph.(morph1)]; ring [IHk CRmorph.(morph1)].
- rewrite NPEmul_correct;simpl. ring [CRmorph.(morph1)].
-generalize (IHe1 (p*k)%positive e2);clear IHe1;simpl.
-repeat rewrite NPEmul_correct;simpl.
-repeat rewrite pow_th.(rpow_pow_N);simpl.
-rewrite pow_pos_pow_pos. intros [H1 H2];split;ring [H1 H2].
+ intros. unfold res;clear res; generalize (isIn_ok e1 p e2 xH).
+ destruct (isIn e1 p e2 1) as [([|p'],e')|]; simpl.
+ - intros (H1,H2); split; npe_simpl.
+ + now rewrite PE_1_l.
+ + rewrite PEpow_1_r in H1. rewrite H1. npe_ring.
+ - intros (H1,H2); split; npe_simpl.
+ + rewrite <- PEpow_add_r. f_equiv. simpl. f_equal.
+ rewrite Pos.add_comm, Pos.sub_add; trivial.
+ now apply Z.gt_lt in H2.
+ + rewrite PEpow_1_r in H1. rewrite H1. simpl_pos_sub. simpl. npe_ring.
+ - intros _; split; npe_simpl; now rewrite PE_1_r.
+Qed.
+
+Theorem split_aux_ok: forall e1 p e2,
+ (e1 ^ Npos p === left (split_aux e1 p e2) * common (split_aux e1 p e2)
+ /\ e2 === right (split_aux e1 p e2) * common (split_aux e1 p e2))%poly.
+Proof.
+induction e1;intros k e2; try refine (split_aux_ok1 _ k e2);simpl.
+destruct (IHe1_1 k e2) as (H1,H2).
+destruct (IHe1_2 k (right (split_aux e1_1 k e2))) as (H3,H4).
+clear IHe1_1 IHe1_2.
+- npe_simpl; split.
+ * rewrite H1, H3. npe_ring.
+ * rewrite H2 at 1. rewrite H4 at 1. npe_ring.
+- destruct n; simpl.
+ + rewrite PEpow_0_r, PEpow_1_l, !PE_1_r. now split.
+ + rewrite <- PEpow_mul_r. simpl. apply IHe1.
Qed.
Definition split e1 e2 := split_aux e1 xH e2.
-Theorem split_correct_l: forall l e1 e2,
- NPEeval l e1 == NPEeval l (NPEmul (left (split e1 e2))
- (common (split e1 e2))).
+Theorem split_ok_l e1 e2 :
+ (e1 === left (split e1 e2) * common (split e1 e2))%poly.
+Proof.
+destruct (split_aux_ok e1 xH e2) as (H,_). now rewrite <- H, PEpow_1_r.
+Qed.
+
+Theorem split_ok_r e1 e2 :
+ (e2 === right (split e1 e2) * common (split e1 e2))%poly.
Proof.
-intros l e1 e2; case (split_aux_correct l e1 xH e2);simpl.
-rewrite pow_th.(rpow_pow_N);simpl;auto.
+destruct (split_aux_ok e1 xH e2) as (_,H). trivial.
Qed.
-Theorem split_correct_r: forall l e1 e2,
- NPEeval l e2 == NPEeval l (NPEmul (right (split e1 e2))
- (common (split e1 e2))).
+Lemma split_nz_l l e1 e2 :
+ ~ e1 @ l == 0 -> ~ left (split e1 e2) @ l == 0.
Proof.
-intros l e1 e2; case (split_aux_correct l e1 xH e2);simpl;auto.
+ intros H. contradict H. rewrite (split_ok_l e1 e2); simpl.
+ now rewrite H, rmul_0_l.
+Qed.
+
+Lemma split_nz_r l e1 e2 :
+ ~ e2 @ l == 0 -> ~ right (split e1 e2) @ l == 0.
+Proof.
+ intros H. contradict H. rewrite (split_ok_r e1 e2); simpl.
+ now rewrite H, rmul_0_l.
Qed.
Fixpoint Fnorm (e : FExpr) : linear :=
match e with
- | FEc c => mk_linear (PEc c) (PEc cI) nil
- | FEX x => mk_linear (PEX C x) (PEc cI) nil
+ | FEO => mk_linear 0 1 nil
+ | FEI => mk_linear 1 1 nil
+ | FEc c => mk_linear (PEc c) 1 nil
+ | FEX x => mk_linear (PEX C x) 1 nil
| FEadd e1 e2 =>
let x := Fnorm e1 in
let y := Fnorm e2 in
let s := split (denum x) (denum y) in
mk_linear
- (NPEadd (NPEmul (num x) (right s)) (NPEmul (num y) (left s)))
- (NPEmul (left s) (NPEmul (right s) (common s)))
- (condition x ++ condition y)
-
+ ((num x ** right s) ++ (num y ** left s))
+ (left s ** (right s ** common s))
+ (condition x ++ condition y)%list
| FEsub e1 e2 =>
let x := Fnorm e1 in
let y := Fnorm e2 in
let s := split (denum x) (denum y) in
mk_linear
- (NPEsub (NPEmul (num x) (right s)) (NPEmul (num y) (left s)))
- (NPEmul (left s) (NPEmul (right s) (common s)))
- (condition x ++ condition y)
+ ((num x ** right s) -- (num y ** left s))
+ (left s ** (right s ** common s))
+ (condition x ++ condition y)%list
| FEmul e1 e2 =>
let x := Fnorm e1 in
let y := Fnorm e2 in
let s1 := split (num x) (denum y) in
let s2 := split (num y) (denum x) in
- mk_linear (NPEmul (left s1) (left s2))
- (NPEmul (right s2) (right s1))
- (condition x ++ condition y)
+ mk_linear (left s1 ** left s2)
+ (right s2 ** right s1)
+ (condition x ++ condition y)%list
| FEopp e1 =>
let x := Fnorm e1 in
mk_linear (NPEopp (num x)) (denum x) (condition x)
@@ -978,15 +1071,14 @@ Fixpoint Fnorm (e : FExpr) : linear :=
let y := Fnorm e2 in
let s1 := split (num x) (num y) in
let s2 := split (denum x) (denum y) in
- mk_linear (NPEmul (left s1) (right s2))
- (NPEmul (left s2) (right s1))
- (num y :: condition x ++ condition y)
+ mk_linear (left s1 ** right s2)
+ (left s2 ** right s1)
+ (num y :: condition x ++ condition y)%list
| FEpow e1 n =>
let x := Fnorm e1 in
- mk_linear (NPEpow (num x) n) (NPEpow (denum x) n) (condition x)
+ mk_linear ((num x)^^n) ((denum x)^^n) (condition x)
end.
-
(* Example *)
(*
Eval compute
@@ -996,93 +1088,31 @@ Eval compute
(FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))).
*)
- Lemma pow_pos_not_0 : forall x, ~x==0 -> forall p, ~pow_pos rmul x p == 0.
+Theorem Pcond_Fnorm l e :
+ PCond l (condition (Fnorm e)) -> ~ (denum (Fnorm e))@l == 0.
Proof.
- induction p;simpl.
- intro Hp;assert (H1 := @rmul_reg_l _ (pow_pos rmul x p * pow_pos rmul x p) 0 H).
- apply IHp.
- rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp).
- reflexivity.
- rewrite H1. ring. rewrite Hp;ring.
- intro Hp;apply IHp. rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp).
- reflexivity. rewrite Hp;ring. trivial.
-Qed.
-
-Theorem Pcond_Fnorm:
- forall l e,
- PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0.
-intros l e; elim e.
- simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
- simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
- intros e1 Hrec1 e2 Hrec2 Hcond.
- simpl condition in Hcond.
- simpl denum.
- rewrite NPEmul_correct.
- simpl.
- apply field_is_integral_domain.
- intros HH; case Hrec1; auto.
- apply PCond_app_inv_l with (1 := Hcond).
- rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
- rewrite NPEmul_correct; simpl; rewrite HH; ring.
- intros HH; case Hrec2; auto.
- apply PCond_app_inv_r with (1 := Hcond).
- rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
- intros e1 Hrec1 e2 Hrec2 Hcond.
- simpl condition in Hcond.
- simpl denum.
- rewrite NPEmul_correct.
- simpl.
- apply field_is_integral_domain.
- intros HH; case Hrec1; auto.
- apply PCond_app_inv_l with (1 := Hcond).
- rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
- rewrite NPEmul_correct; simpl; rewrite HH; ring.
- intros HH; case Hrec2; auto.
- apply PCond_app_inv_r with (1 := Hcond).
- rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
- intros e1 Hrec1 e2 Hrec2 Hcond.
- simpl condition in Hcond.
- simpl denum.
- rewrite NPEmul_correct.
- simpl.
- apply field_is_integral_domain.
- intros HH; apply Hrec1.
- apply PCond_app_inv_l with (1 := Hcond).
- rewrite (split_correct_r l (num (Fnorm e2)) (denum (Fnorm e1))).
- rewrite NPEmul_correct; simpl; rewrite HH; ring.
- intros HH; apply Hrec2.
- apply PCond_app_inv_r with (1 := Hcond).
- rewrite (split_correct_r l (num (Fnorm e1)) (denum (Fnorm e2))).
- rewrite NPEmul_correct; simpl; rewrite HH; ring.
- intros e1 Hrec1 Hcond.
- simpl condition in Hcond.
- simpl denum.
- auto.
- intros e1 Hrec1 Hcond.
- simpl condition in Hcond.
- simpl denum.
- apply PCond_cons_inv_l with (1:=Hcond).
- intros e1 Hrec1 e2 Hrec2 Hcond.
- simpl condition in Hcond.
- simpl denum.
- rewrite NPEmul_correct.
- simpl.
- apply field_is_integral_domain.
- intros HH; apply Hrec1.
- specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1.
- apply PCond_app_inv_l with (1 := Hcond1).
- rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
- rewrite NPEmul_correct; simpl; rewrite HH; ring.
- intros HH; apply PCond_cons_inv_l with (1:=Hcond).
- rewrite (split_correct_r l (num (Fnorm e1)) (num (Fnorm e2))).
- rewrite NPEmul_correct; simpl; rewrite HH; ring.
- simpl;intros e1 Hrec1 n Hcond.
- rewrite NPEpow_correct.
- simpl;rewrite pow_th.(rpow_pow_N).
- destruct n;simpl;intros.
- apply AFth.(AF_1_neq_0). apply pow_pos_not_0;auto.
-Qed.
-Hint Resolve Pcond_Fnorm.
+induction e; simpl condition; rewrite ?PCond_cons, ?PCond_app;
+ simpl denum; intros (Hc1,Hc2) || intros Hc; rewrite ?NPEmul_ok.
+- simpl. rewrite phi_1; exact rI_neq_rO.
+- simpl. rewrite phi_1; exact rI_neq_rO.
+- simpl; intros. rewrite phi_1; exact rI_neq_rO.
+- simpl; intros. rewrite phi_1; exact rI_neq_rO.
+- rewrite <- split_ok_r. simpl. apply field_is_integral_domain.
+ + apply split_nz_l, IHe1, Hc1.
+ + apply IHe2, Hc2.
+- rewrite <- split_ok_r. simpl. apply field_is_integral_domain.
+ + apply split_nz_l, IHe1, Hc1.
+ + apply IHe2, Hc2.
+- simpl. apply field_is_integral_domain.
+ + apply split_nz_r, IHe1, Hc1.
+ + apply split_nz_r, IHe2, Hc2.
+- now apply IHe.
+- trivial.
+- destruct Hc2 as (Hc2,_). simpl. apply field_is_integral_domain.
+ + apply split_nz_l, IHe1, Hc2.
+ + apply split_nz_r, Hc1.
+- rewrite NPEpow_ok. apply PEpow_nz, IHe, Hc.
+Qed.
(***************************************************************************
@@ -1091,154 +1121,106 @@ Hint Resolve Pcond_Fnorm.
***************************************************************************)
-Theorem Fnorm_FEeval_PEeval:
- forall l fe,
+Ltac uneval :=
+ repeat match goal with
+ | |- context [ ?x @ ?l * ?y @ ?l ] => change (x@l * y@l) with ((x*y)@l)
+ | |- context [ ?x @ ?l + ?y @ ?l ] => change (x@l + y@l) with ((x+y)@l)
+ end.
+
+Theorem Fnorm_FEeval_PEeval l fe:
PCond l (condition (Fnorm fe)) ->
- FEeval l fe == NPEeval l (num (Fnorm fe)) / NPEeval l (denum (Fnorm fe)).
-Proof.
-intros l fe; elim fe; simpl.
-intros c H; rewrite CRmorph.(morph1); apply rdiv1.
-intros p H; rewrite CRmorph.(morph1); apply rdiv1.
-intros e1 He1 e2 He2 HH.
-assert (HH1: PCond l (condition (Fnorm e1))).
-apply PCond_app_inv_l with ( 1 := HH ).
-assert (HH2: PCond l (condition (Fnorm e2))).
-apply PCond_app_inv_r with ( 1 := HH ).
-rewrite (He1 HH1); rewrite (He2 HH2).
-rewrite NPEadd_correct; simpl.
-repeat rewrite NPEmul_correct; simpl.
-generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
- (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
-repeat rewrite NPEmul_correct; simpl.
-intros U1 U2; rewrite U1; rewrite U2.
-apply rdiv2b; auto.
- rewrite <- U1; auto.
- rewrite <- U2; auto.
-
-intros e1 He1 e2 He2 HH.
-assert (HH1: PCond l (condition (Fnorm e1))).
-apply PCond_app_inv_l with ( 1 := HH ).
-assert (HH2: PCond l (condition (Fnorm e2))).
-apply PCond_app_inv_r with ( 1 := HH ).
-rewrite (He1 HH1); rewrite (He2 HH2).
-rewrite NPEsub_correct; simpl.
-repeat rewrite NPEmul_correct; simpl.
-generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
- (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
-repeat rewrite NPEmul_correct; simpl.
-intros U1 U2; rewrite U1; rewrite U2.
-apply rdiv3b; auto.
- rewrite <- U1; auto.
- rewrite <- U2; auto.
-
-intros e1 He1 e2 He2 HH.
-assert (HH1: PCond l (condition (Fnorm e1))).
-apply PCond_app_inv_l with ( 1 := HH ).
-assert (HH2: PCond l (condition (Fnorm e2))).
-apply PCond_app_inv_r with ( 1 := HH ).
-rewrite (He1 HH1); rewrite (He2 HH2).
-repeat rewrite NPEmul_correct; simpl.
-generalize (split_correct_l l (num (Fnorm e1)) (denum (Fnorm e2)))
- (split_correct_r l (num (Fnorm e1)) (denum (Fnorm e2)))
- (split_correct_l l (num (Fnorm e2)) (denum (Fnorm e1)))
- (split_correct_r l (num (Fnorm e2)) (denum (Fnorm e1))).
-repeat rewrite NPEmul_correct; simpl.
-intros U1 U2 U3 U4; rewrite U1; rewrite U2; rewrite U3;
- rewrite U4; simpl.
-apply rdiv4b; auto.
- rewrite <- U4; auto.
- rewrite <- U2; auto.
-
-intros e1 He1 HH.
-rewrite NPEopp_correct; simpl; rewrite (He1 HH); apply rdiv5; auto.
-
-intros e1 He1 HH.
-assert (HH1: PCond l (condition (Fnorm e1))).
-apply PCond_cons_inv_r with ( 1 := HH ).
-rewrite (He1 HH1); apply rdiv6; auto.
-apply PCond_cons_inv_l with ( 1 := HH ).
-
-intros e1 He1 e2 He2 HH.
-assert (HH1: PCond l (condition (Fnorm e1))).
-apply PCond_app_inv_l with (condition (Fnorm e2)).
-apply PCond_cons_inv_r with ( 1 := HH ).
-assert (HH2: PCond l (condition (Fnorm e2))).
-apply PCond_app_inv_r with (condition (Fnorm e1)).
-apply PCond_cons_inv_r with ( 1 := HH ).
-rewrite (He1 HH1); rewrite (He2 HH2).
-repeat rewrite NPEmul_correct;simpl.
-generalize (split_correct_l l (num (Fnorm e1)) (num (Fnorm e2)))
- (split_correct_r l (num (Fnorm e1)) (num (Fnorm e2)))
- (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
- (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
-repeat rewrite NPEmul_correct; simpl.
-intros U1 U2 U3 U4; rewrite U1; rewrite U2; rewrite U3;
- rewrite U4; simpl.
-apply rdiv7b; auto.
- rewrite <- U3; auto.
- rewrite <- U2; auto.
-apply PCond_cons_inv_l with ( 1 := HH ).
- rewrite <- U4; auto.
-
-intros e1 He1 n Hcond;assert (He1' := He1 Hcond);clear He1.
-repeat rewrite NPEpow_correct;simpl;repeat rewrite pow_th.(rpow_pow_N).
-rewrite He1';clear He1'.
-destruct n;simpl. apply rdiv1.
-generalize (NPEeval l (num (Fnorm e1))) (NPEeval l (denum (Fnorm e1)))
- (Pcond_Fnorm _ _ Hcond).
-intros r r0 Hdiff;induction p;simpl.
-repeat (rewrite <- rdiv4;trivial).
-rewrite IHp. reflexivity.
-apply pow_pos_not_0;trivial.
-apply pow_pos_not_0;trivial.
-intro Hp. apply (pow_pos_not_0 Hdiff p).
-rewrite (@rmul_reg_l (pow_pos rmul r0 p) (pow_pos rmul r0 p) 0).
- reflexivity. apply pow_pos_not_0;trivial. ring [Hp].
-rewrite <- rdiv4;trivial.
-rewrite IHp;reflexivity.
-apply pow_pos_not_0;trivial. apply pow_pos_not_0;trivial.
-reflexivity.
-Qed.
-
-Theorem Fnorm_crossproduct:
- forall l fe1 fe2,
+ FEeval l fe == (num (Fnorm fe)) @ l / (denum (Fnorm fe)) @ l.
+Proof.
+induction fe; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl;
+ intros (Hc1,Hc2) || intros Hc;
+ try (specialize (IHfe1 Hc1);apply Pcond_Fnorm in Hc1);
+ try (specialize (IHfe2 Hc2);apply Pcond_Fnorm in Hc2);
+ try set (F1 := Fnorm fe1) in *; try set (F2 := Fnorm fe2) in *.
+
+- now rewrite phi_1, phi_0, rdiv_def.
+- now rewrite phi_1; apply rdiv1.
+- rewrite phi_1; apply rdiv1.
+- rewrite phi_1; apply rdiv1.
+- rewrite NPEadd_ok, !NPEmul_ok. simpl.
+ rewrite <- rdiv2b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial.
+ now f_equiv.
+
+- rewrite NPEsub_ok, !NPEmul_ok. simpl.
+ rewrite <- rdiv3b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial.
+ now f_equiv.
+
+- rewrite !NPEmul_ok. simpl.
+ rewrite IHfe1, IHfe2.
+ rewrite (split_ok_l (num F1) (denum F2) l),
+ (split_ok_r (num F1) (denum F2) l),
+ (split_ok_l (num F2) (denum F1) l),
+ (split_ok_r (num F2) (denum F1) l) in *.
+ apply rdiv4b; trivial.
+
+- rewrite NPEopp_ok; simpl; rewrite (IHfe Hc); apply rdiv5.
+
+- rewrite (IHfe Hc2); apply rdiv6; trivial;
+ apply Pcond_Fnorm; trivial.
+
+- destruct Hc2 as (Hc2,Hc3).
+ rewrite !NPEmul_ok. simpl.
+ assert (U1 := split_ok_l (num F1) (num F2) l).
+ assert (U2 := split_ok_r (num F1) (num F2) l).
+ assert (U3 := split_ok_l (denum F1) (denum F2) l).
+ assert (U4 := split_ok_r (denum F1) (denum F2) l).
+ rewrite (IHfe1 Hc2), (IHfe2 Hc3), U1, U2, U3, U4.
+ simpl in U2, U3, U4. apply rdiv7b;
+ rewrite <- ?U2, <- ?U3, <- ?U4; try apply Pcond_Fnorm; trivial.
+
+- rewrite !NPEpow_ok. simpl. rewrite !rpow_pow, (IHfe Hc).
+ destruct n; simpl.
+ + apply rdiv1.
+ + apply pow_pos_div. apply Pcond_Fnorm; trivial.
+Qed.
+
+Theorem Fnorm_crossproduct l fe1 fe2 :
let nfe1 := Fnorm fe1 in
let nfe2 := Fnorm fe2 in
- NPEeval l (PEmul (num nfe1) (denum nfe2)) ==
- NPEeval l (PEmul (num nfe2) (denum nfe1)) ->
+ (num nfe1 * denum nfe2) @ l == (num nfe2 * denum nfe1) @ l ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
-intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2.
-rewrite Fnorm_FEeval_PEeval by
- apply PCond_app_inv_l with (1 := Hcond).
- rewrite Fnorm_FEeval_PEeval by
- apply PCond_app_inv_r with (1 := Hcond).
- apply cross_product_eq; trivial.
- apply Pcond_Fnorm.
- apply PCond_app_inv_l with (1 := Hcond).
- apply Pcond_Fnorm.
- apply PCond_app_inv_r with (1 := Hcond).
+Proof.
+simpl. rewrite PCond_app. intros Hcrossprod (Hc1,Hc2).
+rewrite !Fnorm_FEeval_PEeval; trivial.
+apply cross_product_eq; trivial;
+ apply Pcond_Fnorm; trivial.
Qed.
(* Correctness lemmas of reflexive tactics *)
-Notation Ninterp_PElist := (interp_PElist rO radd rmul rsub ropp req phi Cp_phi rpow).
-Notation Nmk_monpol_list := (mk_monpol_list cO cI cadd cmul csub copp ceqb cdiv).
+Notation Ninterp_PElist :=
+ (interp_PElist rO rI radd rmul rsub ropp req phi Cp_phi rpow).
+Notation Nmk_monpol_list :=
+ (mk_monpol_list cO cI cadd cmul csub copp ceqb cdiv).
-Theorem Fnorm_correct:
+Theorem Fnorm_ok:
forall n l lpe fe,
Ninterp_PElist l lpe ->
Peq ceqb (Nnorm n (Nmk_monpol_list lpe) (num (Fnorm fe))) (Pc cO) = true ->
PCond l (condition (Fnorm fe)) -> FEeval l fe == 0.
-intros n l lpe fe Hlpe H H1;
- apply eq_trans with (1 := Fnorm_FEeval_PEeval l fe H1).
-apply rdiv8; auto.
-transitivity (NPEeval l (PEc cO)); auto.
-rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe);auto.
-change (NPEeval l (PEc cO)) with (Pphi 0 radd rmul phi l (Pc cO)).
-apply (Peq_ok Rsth Reqe CRmorph);auto.
-simpl. apply (morph0 CRmorph); auto.
+Proof.
+intros n l lpe fe Hlpe H H1.
+rewrite (Fnorm_FEeval_PEeval l fe H1).
+apply rdiv8. apply Pcond_Fnorm; trivial.
+transitivity (0@l); trivial.
+rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe); trivial.
+change (0 @ l) with (Pphi 0 radd rmul phi l (Pc cO)).
+apply (Peq_ok Rsth Reqe CRmorph); trivial.
Qed.
+Notation ring_rw_correct :=
+ (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec).
+
+Notation ring_rw_pow_correct :=
+ (ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec).
+
+Notation ring_correct :=
+ (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th).
+
(* simplify a field expression into a fraction *)
(* TODO: simplify when den is constant... *)
Definition display_linear l num den :=
@@ -1247,71 +1229,54 @@ Definition display_linear l num den :=
Definition display_pow_linear l num den :=
NPphi_pow l num / NPphi_pow l den.
-Theorem Field_rw_correct :
- forall n lpe l,
+Theorem Field_rw_correct n lpe l :
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall fe nfe, Fnorm fe = nfe ->
PCond l (condition nfe) ->
- FEeval l fe == display_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
+ FEeval l fe ==
+ display_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
- intros n lpe l Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
- apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H).
- unfold display_linear; apply SRdiv_ext;
- eapply (ring_rw_correct Rsth Reqe ARth CRmorph);eauto.
+ intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
+ rewrite (Fnorm_FEeval_PEeval _ _ H).
+ unfold display_linear; apply rdiv_ext;
+ eapply ring_rw_correct; eauto.
Qed.
-Theorem Field_rw_pow_correct :
- forall n lpe l,
+Theorem Field_rw_pow_correct n lpe l :
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall fe nfe, Fnorm fe = nfe ->
PCond l (condition nfe) ->
- FEeval l fe == display_pow_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
+ FEeval l fe ==
+ display_pow_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
- intros n lpe l Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
- apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H).
- unfold display_pow_linear; apply SRdiv_ext;
- eapply (ring_rw_pow_correct Rsth Reqe ARth CRmorph);eauto.
+ intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
+ rewrite (Fnorm_FEeval_PEeval _ _ H).
+ unfold display_pow_linear; apply rdiv_ext;
+ eapply ring_rw_pow_correct;eauto.
Qed.
-Theorem Field_correct :
- forall n l lpe fe1 fe2, Ninterp_PElist l lpe ->
+Theorem Field_correct n l lpe fe1 fe2 :
+ Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
- Peq ceqb (Nnorm n lmp (PEmul (num nfe1) (denum nfe2)))
- (Nnorm n lmp (PEmul (num nfe2) (denum nfe1))) = true ->
+ Peq ceqb (Nnorm n lmp (num nfe1 * denum nfe2))
+ (Nnorm n lmp (num nfe2 * denum nfe1)) = true ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
Proof.
-intros n l lpe fe1 fe2 Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp.
+intros Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp.
apply Fnorm_crossproduct; trivial.
-eapply (ring_correct Rsth Reqe ARth CRmorph); eauto.
+eapply ring_correct; eauto.
Qed.
(* simplify a field equation : generate the crossproduct and simplify
polynomials *)
-Theorem Field_simplify_eq_old_correct :
- forall l fe1 fe2 nfe1 nfe2,
- Fnorm fe1 = nfe1 ->
- Fnorm fe2 = nfe2 ->
- NPphi_dev l (Nnorm O nil (PEmul (num nfe1) (denum nfe2))) ==
- NPphi_dev l (Nnorm O nil (PEmul (num nfe2) (denum nfe1))) ->
- PCond l (condition nfe1 ++ condition nfe2) ->
- FEeval l fe1 == FEeval l fe2.
-Proof.
-intros l fe1 fe2 nfe1 nfe2 eq1 eq2 Hcrossprod Hcond; subst nfe1 nfe2.
-apply Fnorm_crossproduct; trivial.
-match goal with
- [ |- NPEeval l ?x == NPEeval l ?y] =>
- rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec
- O nil l I Logic.eq_refl x Logic.eq_refl);
- rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec
- O nil l I Logic.eq_refl y Logic.eq_refl)
- end.
-trivial.
-Qed.
+
+(** This allows rewriting modulo the simplification of PEeval on PMul *)
+Declare Equivalent Keys PEeval rmul.
Theorem Field_simplify_eq_correct :
forall n l lpe fe1 fe2,
@@ -1320,37 +1285,23 @@ Theorem Field_simplify_eq_correct :
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
- NPphi_dev l (Nnorm n lmp (PEmul (num nfe1) (right den))) ==
- NPphi_dev l (Nnorm n lmp (PEmul (num nfe2) (left den))) ->
+ NPphi_dev l (Nnorm n lmp (num nfe1 * right den)) ==
+ NPphi_dev l (Nnorm n lmp (num nfe2 * left den)) ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
Proof.
-intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
- subst nfe1 nfe2 den lmp.
-apply Fnorm_crossproduct; trivial.
+intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond.
+apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial.
simpl.
-rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
-rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
-rewrite NPEmul_correct.
-rewrite NPEmul_correct.
+rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3.
+rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3.
simpl.
-repeat rewrite (ARmul_assoc ARth).
-rewrite <-(
- let x := PEmul (num (Fnorm fe1))
- (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
-ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe Logic.eq_refl
- x Logic.eq_refl) in Hcrossprod.
-rewrite <-(
- let x := (PEmul (num (Fnorm fe2))
- (rsplit_left
- (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in
- ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe Logic.eq_refl
- x Logic.eq_refl) in Hcrossprod.
-simpl in Hcrossprod.
-rewrite Hcrossprod.
-reflexivity.
+rewrite !rmul_assoc.
+apply rmul_ext; trivial.
+rewrite (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl),
+ (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl).
+rewrite Hlmp.
+apply Hcrossprod.
Qed.
Theorem Field_simplify_eq_pow_correct :
@@ -1360,37 +1311,55 @@ Theorem Field_simplify_eq_pow_correct :
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
- NPphi_pow l (Nnorm n lmp (PEmul (num nfe1) (right den))) ==
- NPphi_pow l (Nnorm n lmp (PEmul (num nfe2) (left den))) ->
+ NPphi_pow l (Nnorm n lmp (num nfe1 * right den)) ==
+ NPphi_pow l (Nnorm n lmp (num nfe2 * left den)) ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
Proof.
-intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
- subst nfe1 nfe2 den lmp.
-apply Fnorm_crossproduct; trivial.
+intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond.
+apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial.
simpl.
-rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
-rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
-rewrite NPEmul_correct.
-rewrite NPEmul_correct.
+rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3.
+rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3.
simpl.
-repeat rewrite (ARmul_assoc ARth).
-rewrite <-(
- let x := PEmul (num (Fnorm fe1))
- (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
-ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe Logic.eq_refl
- x Logic.eq_refl) in Hcrossprod.
-rewrite <-(
- let x := (PEmul (num (Fnorm fe2))
- (rsplit_left
- (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in
- ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe Logic.eq_refl
- x Logic.eq_refl) in Hcrossprod.
-simpl in Hcrossprod.
-rewrite Hcrossprod.
-reflexivity.
+rewrite !rmul_assoc.
+apply rmul_ext; trivial.
+rewrite
+ (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl),
+ (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl).
+rewrite Hlmp.
+apply Hcrossprod.
+Qed.
+
+Theorem Field_simplify_aux_ok l fe1 fe2 den :
+ FEeval l fe1 == FEeval l fe2 ->
+ split (denum (Fnorm fe1)) (denum (Fnorm fe2)) = den ->
+ PCond l (condition (Fnorm fe1) ++ condition (Fnorm fe2)) ->
+ (num (Fnorm fe1) * right den) @ l == (num (Fnorm fe2) * left den) @ l.
+Proof.
+ rewrite PCond_app; intros Hfe Hden (Hc1,Hc2); simpl.
+ assert (Hc1' := Pcond_Fnorm _ _ Hc1).
+ assert (Hc2' := Pcond_Fnorm _ _ Hc2).
+ set (N1 := num (Fnorm fe1)) in *. set (N2 := num (Fnorm fe2)) in *.
+ set (D1 := denum (Fnorm fe1)) in *. set (D2 := denum (Fnorm fe2)) in *.
+ assert (~ (common den) @ l == 0).
+ { intro H. apply Hc1'.
+ rewrite (split_ok_l D1 D2 l).
+ rewrite Hden. simpl. ring [H]. }
+ apply (@rmul_reg_l ((common den) @ l)); trivial.
+ rewrite !(rmul_comm ((common den) @ l)), <- !rmul_assoc.
+ change
+ (N1@l * (right den * common den) @ l ==
+ N2@l * (left den * common den) @ l).
+ rewrite <- Hden, <- split_ok_l, <- split_ok_r.
+ apply (@rmul_reg_l (/ D2@l)). { apply rinv_nz; trivial. }
+ rewrite (rmul_comm (/ D2 @ l)), <- !rmul_assoc.
+ rewrite <- rdiv_def, rdiv_r_r, rmul_1_r by trivial.
+ apply (@rmul_reg_l (/ (D1@l))). { apply rinv_nz; trivial. }
+ rewrite !(rmul_comm (/ D1@l)), <- !rmul_assoc.
+ rewrite <- !rdiv_def, rdiv_r_r, rmul_1_r by trivial.
+ rewrite (rmul_comm (/ D2@l)), <- rdiv_def.
+ unfold N1,N2,D1,D2; rewrite <- !Fnorm_FEeval_PEeval; trivial.
Qed.
Theorem Field_simplify_eq_pow_in_correct :
@@ -1400,47 +1369,17 @@ Theorem Field_simplify_eq_pow_in_correct :
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
- forall np1, Nnorm n lmp (PEmul (num nfe1) (right den)) = np1 ->
- forall np2, Nnorm n lmp (PEmul (num nfe2) (left den)) = np2 ->
+ forall np1, Nnorm n lmp (num nfe1 * right den) = np1 ->
+ forall np2, Nnorm n lmp (num nfe2 * left den) = np2 ->
FEeval l fe1 == FEeval l fe2 ->
- PCond l (condition nfe1 ++ condition nfe2) ->
+ PCond l (condition nfe1 ++ condition nfe2) ->
NPphi_pow l np1 ==
NPphi_pow l np2.
Proof.
intros. subst nfe1 nfe2 lmp np1 np2.
- repeat rewrite (Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec).
- repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). simpl.
- assert (N1 := Pcond_Fnorm _ _ (PCond_app_inv_l _ _ _ H7)).
- assert (N2 := Pcond_Fnorm _ _ (PCond_app_inv_r _ _ _ H7)).
- apply (@rmul_reg_l (NPEeval l (rsplit_common den))).
- intro Heq;apply N1.
- rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
- rewrite H3. rewrite NPEmul_correct. simpl. ring [Heq].
- repeat rewrite (ARth.(ARmul_comm) (NPEeval l (rsplit_common den))).
- repeat rewrite <- ARth.(ARmul_assoc).
- change (NPEeval l (rsplit_right den) * NPEeval l (rsplit_common den)) with
- (NPEeval l (PEmul (rsplit_right den) (rsplit_common den))).
- change (NPEeval l (rsplit_left den) * NPEeval l (rsplit_common den)) with
- (NPEeval l (PEmul (rsplit_left den) (rsplit_common den))).
- repeat rewrite <- NPEmul_correct. rewrite <- H3. rewrite <- split_correct_l.
- rewrite <- split_correct_r.
- apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe2)))).
- intro Heq; apply AFth.(AF_1_neq_0).
- rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe2))));trivial.
- ring [Heq]. rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
- repeat rewrite <- (ARth.(ARmul_assoc)).
- rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
- apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe1)))).
- intro Heq; apply AFth.(AF_1_neq_0).
- rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe1))));trivial.
- ring [Heq]. repeat rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe1)))).
- repeat rewrite <- (ARth.(ARmul_assoc)).
- repeat rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
- rewrite (AFth.(AFdiv_def)). ring_simplify. unfold SRopp.
- rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
- repeat rewrite <- (AFth.(AFdiv_def)).
- repeat rewrite <- Fnorm_FEeval_PEeval ; trivial.
- apply (PCond_app_inv_r _ _ _ H7). apply (PCond_app_inv_l _ _ _ H7).
+ rewrite !(Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec).
+ repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
+ simpl. apply Field_simplify_aux_ok; trivial.
Qed.
Theorem Field_simplify_eq_in_correct :
@@ -1450,47 +1389,16 @@ forall n l lpe fe1 fe2,
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
- forall np1, Nnorm n lmp (PEmul (num nfe1) (right den)) = np1 ->
- forall np2, Nnorm n lmp (PEmul (num nfe2) (left den)) = np2 ->
+ forall np1, Nnorm n lmp (num nfe1 * right den) = np1 ->
+ forall np2, Nnorm n lmp (num nfe2 * left den) = np2 ->
FEeval l fe1 == FEeval l fe2 ->
- PCond l (condition nfe1 ++ condition nfe2) ->
- NPphi_dev l np1 ==
- NPphi_dev l np2.
+ PCond l (condition nfe1 ++ condition nfe2) ->
+ NPphi_dev l np1 == NPphi_dev l np2.
Proof.
intros. subst nfe1 nfe2 lmp np1 np2.
- repeat rewrite (Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec).
- repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). simpl.
- assert (N1 := Pcond_Fnorm _ _ (PCond_app_inv_l _ _ _ H7)).
- assert (N2 := Pcond_Fnorm _ _ (PCond_app_inv_r _ _ _ H7)).
- apply (@rmul_reg_l (NPEeval l (rsplit_common den))).
- intro Heq;apply N1.
- rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
- rewrite H3. rewrite NPEmul_correct. simpl. ring [Heq].
- repeat rewrite (ARth.(ARmul_comm) (NPEeval l (rsplit_common den))).
- repeat rewrite <- ARth.(ARmul_assoc).
- change (NPEeval l (rsplit_right den) * NPEeval l (rsplit_common den)) with
- (NPEeval l (PEmul (rsplit_right den) (rsplit_common den))).
- change (NPEeval l (rsplit_left den) * NPEeval l (rsplit_common den)) with
- (NPEeval l (PEmul (rsplit_left den) (rsplit_common den))).
- repeat rewrite <- NPEmul_correct;rewrite <- H3. rewrite <- split_correct_l.
- rewrite <- split_correct_r.
- apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe2)))).
- intro Heq; apply AFth.(AF_1_neq_0).
- rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe2))));trivial.
- ring [Heq]. rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
- repeat rewrite <- (ARth.(ARmul_assoc)).
- rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
- apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe1)))).
- intro Heq; apply AFth.(AF_1_neq_0).
- rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe1))));trivial.
- ring [Heq]. repeat rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe1)))).
- repeat rewrite <- (ARth.(ARmul_assoc)).
- repeat rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
- rewrite (AFth.(AFdiv_def)). ring_simplify. unfold SRopp.
- rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
- repeat rewrite <- (AFth.(AFdiv_def)).
- repeat rewrite <- Fnorm_FEeval_PEeval;trivial.
- apply (PCond_app_inv_r _ _ _ H7). apply (PCond_app_inv_l _ _ _ H7).
+ rewrite !(Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec).
+ repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
+ apply Field_simplify_aux_ok; trivial.
Qed.
@@ -1499,7 +1407,7 @@ Section Fcons_impl.
Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C).
Hypothesis PCond_fcons_inv : forall l a l1,
- PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+ PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1.
Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) :=
match l with
@@ -1507,15 +1415,15 @@ Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) :=
| cons a l1 => Fcons a (Fapp l1 m)
end.
- Lemma fcons_correct : forall l l1,
+Lemma fcons_ok : forall l l1,
(forall lock, lock = PCond l -> lock (Fapp l1 nil)) -> PCond l l1.
- Proof.
- intros l l1 h1; assert (H := h1 (PCond l) (refl_equal _));clear h1.
- induction l1; simpl; intros.
- trivial.
- elim PCond_fcons_inv with (1 := H); intros.
- destruct l1; trivial. split; trivial. apply IHl1; trivial.
- Qed.
+Proof.
+intros l l1 h1; assert (H := h1 (PCond l) (refl_equal _));clear h1.
+induction l1; simpl; intros.
+ trivial.
+ elim PCond_fcons_inv with (1 := H); intros.
+ destruct l1; trivial. split; trivial. apply IHl1; trivial.
+Qed.
End Fcons_impl.
@@ -1531,21 +1439,15 @@ Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
end.
Theorem PFcons_fcons_inv:
- forall l a l1, PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
-intros l a l1; elim l1; simpl Fcons; auto.
-simpl; auto.
-intros a0 l0.
-generalize (PExpr_eq_semi_correct l a a0); case (PExpr_eq a a0).
-intros H H0 H1; split; auto.
-rewrite H; auto.
-generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
-intros H H0 H1;
- assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)).
-split.
-generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
-apply H0.
-generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto.
-generalize Hp; case l0; simpl; intuition.
+ forall l a l1, PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1.
+Proof.
+induction l1 as [|e l1]; simpl Fcons.
+- simpl; now split.
+- case PExpr_eq_spec; intros H; rewrite !PCond_cons; intros (H1,H2);
+ repeat split; trivial.
+ + now rewrite H.
+ + now apply IHl1.
+ + now apply IHl1.
Qed.
(* equality of normal forms rather than syntactic equality *)
@@ -1558,23 +1460,16 @@ Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
end.
Theorem PFcons0_fcons_inv:
- forall l a l1, PCond l (Fcons0 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
-intros l a l1; elim l1; simpl Fcons0; auto.
-simpl; auto.
-intros a0 l0.
-generalize (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th O l nil a a0). simpl.
- case (Peq ceqb (Nnorm O nil a) (Nnorm O nil a0)).
-intros H H0 H1; split; auto.
-rewrite H; auto.
-generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
-intros H H0 H1;
- assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)).
-split.
-generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
-apply H0.
-generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto.
-clear get_sign get_sign_spec.
-generalize Hp; case l0; simpl; intuition.
+ forall l a l1, PCond l (Fcons0 a l1) -> ~ a @ l == 0 /\ PCond l l1.
+Proof.
+induction l1 as [|e l1]; simpl Fcons0.
+- simpl; now split.
+- generalize (ring_correct O l nil a e). lazy zeta; simpl Peq.
+ case Peq; intros H; rewrite !PCond_cons; intros (H1,H2);
+ repeat split; trivial.
+ + now rewrite H.
+ + now apply IHl1.
+ + now apply IHl1.
Qed.
(* split factorized denominators *)
@@ -1586,95 +1481,83 @@ Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
end.
Theorem PFcons00_fcons_inv:
- forall l a l1, PCond l (Fcons00 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
-intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
- intros p H p0 H0 l1 H1.
- simpl in H1.
- case (H _ H1); intros H2 H3.
- case (H0 _ H3); intros H4 H5; split; auto.
- simpl.
- apply field_is_integral_domain; trivial.
- simpl;intros. rewrite pow_th.(rpow_pow_N).
- destruct (H _ H0);split;auto.
- destruct n;simpl. apply AFth.(AF_1_neq_0).
- apply pow_pos_not_0;trivial.
+ forall l a l1, PCond l (Fcons00 a l1) -> ~ a @ l == 0 /\ PCond l l1.
+Proof.
+intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
+- intros p H p0 H0 l1 H1.
+ simpl in H1.
+ destruct (H _ H1) as (H2,H3).
+ destruct (H0 _ H3) as (H4,H5). split; trivial.
+ simpl.
+ apply field_is_integral_domain; trivial.
+- intros. destruct (H _ H0). split; trivial.
+ apply PEpow_nz; trivial.
Qed.
Definition Pcond_simpl_gen :=
- fcons_correct _ PFcons00_fcons_inv.
+ fcons_ok _ PFcons00_fcons_inv.
(* Specific case when the equality test of coefs is complete w.r.t. the
field equality: non-zero coefs can be eliminated, and opposite can
be simplified (if -1 <> 0) *)
-Hypothesis ceqb_complete : forall c1 c2, phi c1 == phi c2 -> ceqb c1 c2 = true.
+Hypothesis ceqb_complete : forall c1 c2, [c1] == [c2] -> ceqb c1 c2 = true.
-Lemma ceqb_rect_complete : forall c1 c2 (A:Type) (x y:A) (P:A->Type),
- (phi c1 == phi c2 -> P x) ->
- (~ phi c1 == phi c2 -> P y) ->
- P (if ceqb c1 c2 then x else y).
+Lemma ceqb_spec' c1 c2 : Bool.reflect ([c1] == [c2]) (ceqb c1 c2).
Proof.
-intros.
-generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
-generalize (@ceqb_complete c1 c2).
-case (c1 ?=! c2); auto; intros.
-apply X0.
-red; intro.
-absurd (false = true); auto; discriminate.
+assert (H := morph_eq CRmorph c1 c2).
+assert (H' := @ceqb_complete c1 c2).
+destruct (ceqb c1 c2); constructor.
+- now apply H.
+- intro E. specialize (H' E). discriminate.
Qed.
Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
match e with
- PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l)
+ | PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l)
| PEpow e _ => Fcons1 e l
- | PEopp e => if ceqb (copp cI) cO then absurd_PCond else Fcons1 e l
- | PEc c => if ceqb c cO then absurd_PCond else l
+ | PEopp e => if (-(1) =? 0)%coef then absurd_PCond else Fcons1 e l
+ | PEc c => if (c =? 0)%coef then absurd_PCond else l
| _ => Fcons0 e l
end.
Theorem PFcons1_fcons_inv:
- forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
-intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
- simpl; intros c l1.
- apply ceqb_rect_complete; intros.
- elim (@absurd_PCond_bottom l H0).
- split; trivial.
- rewrite <- (morph0 CRmorph); trivial.
- intros p H p0 H0 l1 H1.
- simpl in H1.
- case (H _ H1); intros H2 H3.
- case (H0 _ H3); intros H4 H5; split; auto.
- simpl.
- apply field_is_integral_domain; trivial.
- simpl; intros p H l1.
- apply ceqb_rect_complete; intros.
- elim (@absurd_PCond_bottom l H1).
- destruct (H _ H1).
+ forall l a l1, PCond l (Fcons1 a l1) -> ~ a @ l == 0 /\ PCond l l1.
+Proof.
+intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
+- simpl; intros c l1.
+ case ceqb_spec'; intros H H0.
+ + elim (@absurd_PCond_bottom l H0).
+ + split; trivial. rewrite <- phi_0; trivial.
+- intros p H p0 H0 l1 H1. simpl in H1.
+ destruct (H _ H1) as (H2,H3).
+ destruct (H0 _ H3) as (H4,H5).
+ split; trivial. simpl. apply field_is_integral_domain; trivial.
+- simpl; intros p H l1.
+ case ceqb_spec'; intros H0 H1.
+ + elim (@absurd_PCond_bottom l H1).
+ + destruct (H _ H1).
split; trivial.
apply ropp_neq_0; trivial.
- rewrite (morph_opp CRmorph) in H0.
- rewrite (morph1 CRmorph) in H0.
- rewrite (morph0 CRmorph) in H0.
- trivial.
- intros;simpl. destruct (H _ H0);split;trivial.
- rewrite pow_th.(rpow_pow_N). destruct n;simpl.
- apply AFth.(AF_1_neq_0). apply pow_pos_not_0;trivial.
+ rewrite (morph_opp CRmorph), phi_0, phi_1 in H0. trivial.
+- intros. destruct (H _ H0);split;trivial. apply PEpow_nz; trivial.
Qed.
-Definition Fcons2 e l := Fcons1 (PExpr_simp e) l.
+Definition Fcons2 e l := Fcons1 (PEsimp e) l.
Theorem PFcons2_fcons_inv:
- forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+ forall l a l1, PCond l (Fcons2 a l1) -> ~ a @ l == 0 /\ PCond l l1.
+Proof.
unfold Fcons2; intros l a l1 H; split;
- case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto.
+ case (PFcons1_fcons_inv l (PEsimp a) l1); trivial.
intros H1 H2 H3; case H1.
-transitivity (NPEeval l a); trivial.
-apply PExpr_simp_correct.
+transitivity (a@l); trivial.
+apply PEsimp_ok.
Qed.
Definition Pcond_simpl_complete :=
- fcons_correct _ PFcons2_fcons_inv.
+ fcons_ok _ PFcons2_fcons_inv.
End Fcons_simpl.
@@ -1742,22 +1625,22 @@ Hypothesis S_inj : forall x y, 1+x==1+y -> x==y.
Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
-Lemma add_inj_r : forall p x y,
+Lemma add_inj_r p x y :
gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y.
-intros p x y.
+Proof.
elim p using Pos.peano_ind; simpl; intros.
apply S_inj; trivial.
apply H.
apply S_inj.
- repeat rewrite (ARadd_assoc ARth).
+ rewrite !(ARadd_assoc ARth).
rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial.
Qed.
-Lemma gen_phiPOS_inj : forall x y,
+Lemma gen_phiPOS_inj x y :
gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y ->
x = y.
-intros x y.
-repeat rewrite <- (same_gen Rsth Reqe ARth).
+Proof.
+rewrite <- !(same_gen Rsth Reqe ARth).
case (Pos.compare_spec x y).
intros.
trivial.
@@ -1777,9 +1660,10 @@ case (Pos.compare_spec x y).
Qed.
-Lemma gen_phiN_inj : forall x y,
+Lemma gen_phiN_inj x y :
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
x = y.
+Proof.
destruct x; destruct y; simpl; intros; trivial.
elim gen_phiPOS_not_0 with p.
symmetry .
@@ -1789,7 +1673,7 @@ destruct x; destruct y; simpl; intros; trivial.
rewrite gen_phiPOS_inj with (1 := H); trivial.
Qed.
-Lemma gen_phiN_complete : forall x y,
+Lemma gen_phiN_complete x y :
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
N.eqb x y = true.
Proof.
@@ -1808,31 +1692,22 @@ Section Field.
Let AFth := F2AF Rsth Reqe Fth.
Let ARth := Rth_ARth Rsth Reqe Rth.
-Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y.
+Lemma ring_S_inj x y : 1+x==1+y -> x==y.
+Proof.
intros.
-transitivity (x + (1 + - (1))).
- rewrite (Ropp_def Rth).
- symmetry .
- apply (ARadd_0_r Rsth ARth).
- transitivity (y + (1 + - (1))).
- repeat rewrite <- (ARplus_assoc ARth).
- repeat rewrite (ARadd_assoc ARth).
- apply (Radd_ext Reqe).
- repeat rewrite <- (ARadd_comm ARth 1).
- trivial.
- reflexivity.
- rewrite (Ropp_def Rth).
- apply (ARadd_0_r Rsth ARth).
+rewrite <- (ARadd_0_l ARth x), <- (ARadd_0_l ARth y).
+rewrite <- (Ropp_def Rth 1), (ARadd_comm ARth 1).
+rewrite <- !(ARadd_assoc ARth). now apply (Radd_ext Reqe).
Qed.
-
- Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
+Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
Let gen_phiPOS_inject :=
gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0.
-Lemma gen_phiPOS_discr_sgn : forall x y,
+Lemma gen_phiPOS_discr_sgn x y :
~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y.
+Proof.
red; intros.
apply gen_phiPOS_not_0 with (y + x)%positive.
rewrite (ARgen_phiPOS_add Rsth Reqe ARth).
@@ -1845,9 +1720,10 @@ transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y).
apply (Ropp_def Rth).
Qed.
-Lemma gen_phiZ_inj : forall x y,
+Lemma gen_phiZ_inj x y :
gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
x = y.
+Proof.
destruct x; destruct y; simpl; intros.
trivial.
elim gen_phiPOS_not_0 with p.
@@ -1878,9 +1754,10 @@ destruct x; destruct y; simpl; intros.
reflexivity.
Qed.
-Lemma gen_phiZ_complete : forall x y,
+Lemma gen_phiZ_complete x y :
gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
Zeq_bool x y = true.
+Proof.
intros.
replace y with x.
unfold Zeq_bool.
@@ -1891,3 +1768,6 @@ Qed.
End Field.
End Complete.
+
+Arguments FEO [C].
+Arguments FEI [C].