summaryrefslogtreecommitdiff
path: root/plugins/romega/const_omega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/romega/const_omega.ml')
-rw-r--r--plugins/romega/const_omega.ml352
1 files changed, 352 insertions, 0 deletions
diff --git a/plugins/romega/const_omega.ml b/plugins/romega/const_omega.ml
new file mode 100644
index 00000000..f4368a1b
--- /dev/null
+++ b/plugins/romega/const_omega.ml
@@ -0,0 +1,352 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+let module_refl_name = "ReflOmegaCore"
+let module_refl_path = ["Coq"; "romega"; module_refl_name]
+
+type result =
+ Kvar of string
+ | Kapp of string * Term.constr list
+ | Kimp of Term.constr * Term.constr
+ | Kufo;;
+
+let destructurate t =
+ let c, args = Term.decompose_app t in
+ match Term.kind_of_term c, args with
+ | Term.Const sp, args ->
+ Kapp (Names.string_of_id
+ (Nametab.basename_of_global (Libnames.ConstRef sp)),
+ args)
+ | Term.Construct csp , args ->
+ Kapp (Names.string_of_id
+ (Nametab.basename_of_global (Libnames.ConstructRef csp)),
+ args)
+ | Term.Ind isp, args ->
+ Kapp (Names.string_of_id
+ (Nametab.basename_of_global (Libnames.IndRef isp)),
+ args)
+ | Term.Var id,[] -> Kvar(Names.string_of_id id)
+ | Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body)
+ | Term.Prod (Names.Name _,_,_),[] ->
+ Util.error "Omega: Not a quantifier-free goal"
+ | _ -> Kufo
+
+exception Destruct
+
+let dest_const_apply t =
+ let f,args = Term.decompose_app t in
+ let ref =
+ match Term.kind_of_term f with
+ | Term.Const sp -> Libnames.ConstRef sp
+ | Term.Construct csp -> Libnames.ConstructRef csp
+ | Term.Ind isp -> Libnames.IndRef isp
+ | _ -> raise Destruct
+ in Nametab.basename_of_global ref, args
+
+let logic_dir = ["Coq";"Logic";"Decidable"]
+
+let coq_modules =
+ Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules
+ @ [["Coq"; "Lists"; "List"]]
+ @ [module_refl_path]
+ @ [module_refl_path@["ZOmega"]]
+
+
+let init_constant = Coqlib.gen_constant_in_modules "Omega" Coqlib.init_modules
+let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules
+
+(* Logic *)
+let coq_eq = lazy(init_constant "eq")
+let coq_refl_equal = lazy(init_constant "eq_refl")
+let coq_and = lazy(init_constant "and")
+let coq_not = lazy(init_constant "not")
+let coq_or = lazy(init_constant "or")
+let coq_True = lazy(init_constant "True")
+let coq_False = lazy(init_constant "False")
+let coq_I = lazy(init_constant "I")
+
+(* ReflOmegaCore/ZOmega *)
+
+let coq_h_step = lazy (constant "h_step")
+let coq_pair_step = lazy (constant "pair_step")
+let coq_p_left = lazy (constant "P_LEFT")
+let coq_p_right = lazy (constant "P_RIGHT")
+let coq_p_invert = lazy (constant "P_INVERT")
+let coq_p_step = lazy (constant "P_STEP")
+
+let coq_t_int = lazy (constant "Tint")
+let coq_t_plus = lazy (constant "Tplus")
+let coq_t_mult = lazy (constant "Tmult")
+let coq_t_opp = lazy (constant "Topp")
+let coq_t_minus = lazy (constant "Tminus")
+let coq_t_var = lazy (constant "Tvar")
+
+let coq_proposition = lazy (constant "proposition")
+let coq_p_eq = lazy (constant "EqTerm")
+let coq_p_leq = lazy (constant "LeqTerm")
+let coq_p_geq = lazy (constant "GeqTerm")
+let coq_p_lt = lazy (constant "LtTerm")
+let coq_p_gt = lazy (constant "GtTerm")
+let coq_p_neq = lazy (constant "NeqTerm")
+let coq_p_true = lazy (constant "TrueTerm")
+let coq_p_false = lazy (constant "FalseTerm")
+let coq_p_not = lazy (constant "Tnot")
+let coq_p_or = lazy (constant "Tor")
+let coq_p_and = lazy (constant "Tand")
+let coq_p_imp = lazy (constant "Timp")
+let coq_p_prop = lazy (constant "Tprop")
+
+(* Constructors for shuffle tactic *)
+let coq_t_fusion = lazy (constant "t_fusion")
+let coq_f_equal = lazy (constant "F_equal")
+let coq_f_cancel = lazy (constant "F_cancel")
+let coq_f_left = lazy (constant "F_left")
+let coq_f_right = lazy (constant "F_right")
+
+(* Constructors for reordering tactics *)
+let coq_c_do_both = lazy (constant "C_DO_BOTH")
+let coq_c_do_left = lazy (constant "C_LEFT")
+let coq_c_do_right = lazy (constant "C_RIGHT")
+let coq_c_do_seq = lazy (constant "C_SEQ")
+let coq_c_nop = lazy (constant "C_NOP")
+let coq_c_opp_plus = lazy (constant "C_OPP_PLUS")
+let coq_c_opp_opp = lazy (constant "C_OPP_OPP")
+let coq_c_opp_mult_r = lazy (constant "C_OPP_MULT_R")
+let coq_c_opp_one = lazy (constant "C_OPP_ONE")
+let coq_c_reduce = lazy (constant "C_REDUCE")
+let coq_c_mult_plus_distr = lazy (constant "C_MULT_PLUS_DISTR")
+let coq_c_opp_left = lazy (constant "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_r = lazy (constant "C_MULT_ASSOC_R")
+let coq_c_plus_assoc_r = lazy (constant "C_PLUS_ASSOC_R")
+let coq_c_plus_assoc_l = lazy (constant "C_PLUS_ASSOC_L")
+let coq_c_plus_permute = lazy (constant "C_PLUS_PERMUTE")
+let coq_c_plus_comm = lazy (constant "C_PLUS_COMM")
+let coq_c_red0 = lazy (constant "C_RED0")
+let coq_c_red1 = lazy (constant "C_RED1")
+let coq_c_red2 = lazy (constant "C_RED2")
+let coq_c_red3 = lazy (constant "C_RED3")
+let coq_c_red4 = lazy (constant "C_RED4")
+let coq_c_red5 = lazy (constant "C_RED5")
+let coq_c_red6 = lazy (constant "C_RED6")
+let coq_c_mult_opp_left = lazy (constant "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_reduced = lazy (constant "C_MULT_ASSOC_REDUCED")
+let coq_c_minus = lazy (constant "C_MINUS")
+let coq_c_mult_comm = lazy (constant "C_MULT_COMM")
+
+let coq_s_constant_not_nul = lazy (constant "O_CONSTANT_NOT_NUL")
+let coq_s_constant_neg = lazy (constant "O_CONSTANT_NEG")
+let coq_s_div_approx = lazy (constant "O_DIV_APPROX")
+let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE")
+let coq_s_exact_divide = lazy (constant "O_EXACT_DIVIDE")
+let coq_s_sum = lazy (constant "O_SUM")
+let coq_s_state = lazy (constant "O_STATE")
+let coq_s_contradiction = lazy (constant "O_CONTRADICTION")
+let coq_s_merge_eq = lazy (constant "O_MERGE_EQ")
+let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ")
+let coq_s_constant_nul =lazy (constant "O_CONSTANT_NUL")
+let coq_s_negate_contradict =lazy (constant "O_NEGATE_CONTRADICT")
+let coq_s_negate_contradict_inv =lazy (constant "O_NEGATE_CONTRADICT_INV")
+
+(* construction for the [extract_hyp] tactic *)
+let coq_direction = lazy (constant "direction")
+let coq_d_left = lazy (constant "D_left")
+let coq_d_right = lazy (constant "D_right")
+let coq_d_mono = lazy (constant "D_mono")
+
+let coq_e_split = lazy (constant "E_SPLIT")
+let coq_e_extract = lazy (constant "E_EXTRACT")
+let coq_e_solve = lazy (constant "E_SOLVE")
+
+let coq_interp_sequent = lazy (constant "interp_goal_concl")
+let coq_do_omega = lazy (constant "do_omega")
+
+(* \subsection{Construction d'expressions} *)
+
+let do_left t =
+ if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ else Term.mkApp (Lazy.force coq_c_do_left, [|t |] )
+
+let do_right t =
+ if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ else Term.mkApp (Lazy.force coq_c_do_right, [|t |])
+
+let do_both t1 t2 =
+ if t1 = Lazy.force coq_c_nop then do_right t2
+ else if t2 = Lazy.force coq_c_nop then do_left t1
+ else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |])
+
+let do_seq t1 t2 =
+ if t1 = Lazy.force coq_c_nop then t2
+ else if t2 = Lazy.force coq_c_nop then t1
+ else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |])
+
+let rec do_list = function
+ | [] -> Lazy.force coq_c_nop
+ | [x] -> x
+ | (x::l) -> do_seq x (do_list l)
+
+(* Nat *)
+
+let coq_S = lazy(init_constant "S")
+let coq_O = lazy(init_constant "O")
+
+let rec mk_nat = function
+ | 0 -> Lazy.force coq_O
+ | n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
+
+(* Lists *)
+
+let coq_cons = lazy (constant "cons")
+let coq_nil = lazy (constant "nil")
+
+let mk_list typ l =
+ let rec loop = function
+ | [] ->
+ Term.mkApp (Lazy.force coq_nil, [|typ|])
+ | (step :: l) ->
+ Term.mkApp (Lazy.force coq_cons, [|typ; step; loop l |]) in
+ loop l
+
+let mk_plist l = mk_list Term.mkProp l
+
+let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l
+
+
+type parse_term =
+ | Tplus of Term.constr * Term.constr
+ | Tmult of Term.constr * Term.constr
+ | Tminus of Term.constr * Term.constr
+ | Topp of Term.constr
+ | Tsucc of Term.constr
+ | Tnum of Bigint.bigint
+ | Tother
+
+type parse_rel =
+ | Req of Term.constr * Term.constr
+ | Rne of Term.constr * Term.constr
+ | Rlt of Term.constr * Term.constr
+ | Rle of Term.constr * Term.constr
+ | Rgt of Term.constr * Term.constr
+ | Rge of Term.constr * Term.constr
+ | Rtrue
+ | Rfalse
+ | Rnot of Term.constr
+ | Ror of Term.constr * Term.constr
+ | Rand of Term.constr * Term.constr
+ | Rimp of Term.constr * Term.constr
+ | Riff of Term.constr * Term.constr
+ | Rother
+
+let parse_logic_rel c =
+ try match destructurate c with
+ | Kapp("True",[]) -> Rtrue
+ | Kapp("False",[]) -> Rfalse
+ | Kapp("not",[t]) -> Rnot t
+ | Kapp("or",[t1;t2]) -> Ror (t1,t2)
+ | Kapp("and",[t1;t2]) -> Rand (t1,t2)
+ | Kimp(t1,t2) -> Rimp (t1,t2)
+ | Kapp("iff",[t1;t2]) -> Riff (t1,t2)
+ | _ -> Rother
+ with e when Logic.catchable_exception e -> Rother
+
+
+module type Int = sig
+ val typ : Term.constr Lazy.t
+ val plus : Term.constr Lazy.t
+ val mult : Term.constr Lazy.t
+ val opp : Term.constr Lazy.t
+ val minus : Term.constr Lazy.t
+
+ val mk : Bigint.bigint -> Term.constr
+ val parse_term : Term.constr -> parse_term
+ val parse_rel : Proof_type.goal Tacmach.sigma -> Term.constr -> parse_rel
+ (* check whether t is built only with numbers and + * - *)
+ val is_scalar : Term.constr -> bool
+end
+
+module Z : Int = struct
+
+let typ = lazy (constant "Z")
+let plus = lazy (constant "Zplus")
+let mult = lazy (constant "Zmult")
+let opp = lazy (constant "Zopp")
+let minus = lazy (constant "Zminus")
+
+let coq_xH = lazy (constant "xH")
+let coq_xO = lazy (constant "xO")
+let coq_xI = lazy (constant "xI")
+let coq_Z0 = lazy (constant "Z0")
+let coq_Zpos = lazy (constant "Zpos")
+let coq_Zneg = lazy (constant "Zneg")
+
+let recognize t =
+ let rec loop t =
+ let f,l = dest_const_apply t in
+ match Names.string_of_id f,l with
+ "xI",[t] -> Bigint.add Bigint.one (Bigint.mult Bigint.two (loop t))
+ | "xO",[t] -> Bigint.mult Bigint.two (loop t)
+ | "xH",[] -> Bigint.one
+ | _ -> failwith "not a number" in
+ let f,l = dest_const_apply t in
+ match Names.string_of_id f,l with
+ "Zpos",[t] -> loop t
+ | "Zneg",[t] -> Bigint.neg (loop t)
+ | "Z0",[] -> Bigint.zero
+ | _ -> failwith "not a number";;
+
+let rec mk_positive n =
+ if n=Bigint.one then Lazy.force coq_xH
+ else
+ let (q,r) = Bigint.euclid n Bigint.two in
+ Term.mkApp
+ ((if r = Bigint.zero then Lazy.force coq_xO else Lazy.force coq_xI),
+ [| mk_positive q |])
+
+let mk_Z n =
+ if n = Bigint.zero then Lazy.force coq_Z0
+ else if Bigint.is_strictly_pos n then
+ Term.mkApp (Lazy.force coq_Zpos, [| mk_positive n |])
+ else
+ Term.mkApp (Lazy.force coq_Zneg, [| mk_positive (Bigint.neg n) |])
+
+let mk = mk_Z
+
+let parse_term t =
+ try match destructurate t with
+ | Kapp("Zplus",[t1;t2]) -> Tplus (t1,t2)
+ | Kapp("Zminus",[t1;t2]) -> Tminus (t1,t2)
+ | Kapp("Zmult",[t1;t2]) -> Tmult (t1,t2)
+ | Kapp("Zopp",[t]) -> Topp t
+ | Kapp("Zsucc",[t]) -> Tsucc t
+ | Kapp("Zpred",[t]) -> Tplus(t, mk_Z (Bigint.neg Bigint.one))
+ | Kapp(("Zpos"|"Zneg"|"Z0"),_) ->
+ (try Tnum (recognize t) with _ -> Tother)
+ | _ -> Tother
+ with e when Logic.catchable_exception e -> Tother
+
+let parse_rel gl t =
+ try match destructurate t with
+ | Kapp("eq",[typ;t1;t2])
+ when destructurate (Tacmach.pf_nf gl typ) = Kapp("Z",[]) -> Req (t1,t2)
+ | Kapp("Zne",[t1;t2]) -> Rne (t1,t2)
+ | Kapp("Zle",[t1;t2]) -> Rle (t1,t2)
+ | Kapp("Zlt",[t1;t2]) -> Rlt (t1,t2)
+ | Kapp("Zge",[t1;t2]) -> Rge (t1,t2)
+ | Kapp("Zgt",[t1;t2]) -> Rgt (t1,t2)
+ | _ -> parse_logic_rel t
+ with e when Logic.catchable_exception e -> Rother
+
+let is_scalar t =
+ let rec aux t = match destructurate t with
+ | Kapp(("Zplus"|"Zminus"|"Zmult"),[t1;t2]) -> aux t1 & aux t2
+ | Kapp(("Zopp"|"Zsucc"|"Zpred"),[t]) -> aux t
+ | Kapp(("Zpos"|"Zneg"|"Z0"),_) -> let _ = recognize t in true
+ | _ -> false in
+ try aux t with _ -> false
+
+end