summaryrefslogtreecommitdiff
path: root/plugins/nsatz/Nsatz.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/nsatz/Nsatz.v')
-rw-r--r--plugins/nsatz/Nsatz.v599
1 files changed, 223 insertions, 376 deletions
diff --git a/plugins/nsatz/Nsatz.v b/plugins/nsatz/Nsatz.v
index ac321ba2..9a0c9090 100644
--- a/plugins/nsatz/Nsatz.v
+++ b/plugins/nsatz/Nsatz.v
@@ -1,20 +1,19 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*
- Tactic nsatz: proofs of polynomials equalities in a domain (ring without zero divisor).
- Reification is done by type classes, following a technique shown by Mathieu
-Sozeau. Verification of certificate is done by a code written by Benjamin
-Gregoire, following an idea of Laurent Théry.
-
+ Tactic nsatz: proofs of polynomials equalities in an integral domain
+(commutative ring without zero divisor).
+
Examples: see test-suite/success/Nsatz.v
-Loïc Pottier, july 2010
+Reification is done using type classes, defined in Ncring_tac.v
+
*)
Require Import List.
@@ -22,74 +21,27 @@ Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
-Require Import Ring_polynom Ring_tac InitialRing.
Require Export Morphisms Setoid Bool.
+Require Export Algebra_syntax.
+Require Export Ncring.
+Require Export Ncring_initial.
+Require Export Ncring_tac.
+Require Export Integral_domain.
+Require Import DiscrR.
Declare ML Module "nsatz_plugin".
-Class Zero (A : Type) := {zero : A}.
-Notation "0" := zero.
-Class One (A : Type) := {one : A}.
-Notation "1" := one.
-Class Addition (A : Type) := {addition : A -> A -> A}.
-Notation "x + y" := (addition x y).
-Class Multiplication (A : Type) := {multiplication : A -> A -> A}.
-Notation "x * y" := (multiplication x y).
-Class Subtraction (A : Type) := {subtraction : A -> A -> A}.
-Notation "x - y" := (subtraction x y).
-Class Opposite (A : Type) := {opposite : A -> A}.
-Notation "- x" := (opposite x).
-
-Class Ring (R:Type) := {
- ring0: R; ring1: R;
- ring_plus: R->R->R; ring_mult: R->R->R;
- ring_sub: R->R->R; ring_opp: R->R;
- ring_eq : R -> R -> Prop;
- ring_ring:
- ring_theory ring0 ring1 ring_plus ring_mult ring_sub
- ring_opp ring_eq;
- ring_setoid: Equivalence ring_eq;
- ring_plus_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_plus;
- ring_mult_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_mult;
- ring_sub_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_sub;
- ring_opp_comp: Proper (ring_eq==>ring_eq) ring_opp
-}.
-
-Class Domain (R : Type) := {
- domain_ring:> Ring R;
- domain_axiom_product:
- forall x y, ring_eq (ring_mult x y) ring0 -> (ring_eq x ring0) \/ (ring_eq y ring0);
- domain_axiom_one_zero: not (ring_eq ring1 ring0)}.
-
-Section domain.
-
-Variable R: Type.
-Variable Rd: Domain R.
-
-Existing Instance ring_setoid.
-Existing Instance ring_plus_comp.
-Existing Instance ring_mult_comp.
-Existing Instance ring_sub_comp.
-Existing Instance ring_opp_comp.
-
-Add Ring Rr: (@ring_ring R (@domain_ring R Rd)).
-
-Instance zero_ring : Zero R := {zero := ring0}.
-Instance one_ring : One R := {one := ring1}.
-Instance addition_ring : Addition R := {addition x y := ring_plus x y}.
-Instance multiplication_ring : Multiplication R := {multiplication x y := ring_mult x y}.
-Instance subtraction_ring : Subtraction R := {subtraction x y := ring_sub x y}.
-Instance opposite_ring : Opposite R := {opposite x := ring_opp x}.
-
-Infix "==" := ring_eq (at level 70, no associativity).
+Section nsatz1.
+
+Context {R:Type}`{Rid:Integral_domain R}.
Lemma psos_r1b: forall x y:R, x - y == 0 -> x == y.
intros x y H; setoid_replace x with ((x - y) + y); simpl;
- [setoid_rewrite H | idtac]; simpl; ring.
+ [setoid_rewrite H | idtac]; simpl. cring. cring.
Qed.
Lemma psos_r1: forall x y, x == y -> x - y == 0.
-intros x y H; simpl; setoid_rewrite H; simpl; ring.
+intros x y H; simpl; setoid_rewrite H; simpl; cring.
Qed.
Lemma nsatzR_diff: forall x y:R, not (x == y) -> not (x - y == 0).
@@ -97,23 +49,25 @@ intros.
intro; apply H.
simpl; setoid_replace x with ((x - y) + y). simpl.
setoid_rewrite H0.
-simpl; ring.
-simpl. simpl; ring.
+simpl; cring.
+simpl. simpl; cring.
Qed.
(* adpatation du code de Benjamin aux setoides *)
Require Import ZArith.
+Require Export Ring_polynom.
+Require Export InitialRing.
Definition PolZ := Pol Z.
Definition PEZ := PExpr Z.
-Definition P0Z : PolZ := @P0 Z 0%Z.
+Definition P0Z : PolZ := P0 (C:=Z) 0%Z.
Definition PolZadd : PolZ -> PolZ -> PolZ :=
- @Padd Z 0%Z Zplus Zeq_bool.
+ @Padd Z 0%Z Zplus Zeq_bool.
Definition PolZmul : PolZ -> PolZ -> PolZ :=
- @Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool.
+ @Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool.
Definition PolZeq := @Peq Z Zeq_bool.
@@ -140,51 +94,65 @@ Definition check (lpe:list PEZ) (qe:PEZ) (certif: list (list PEZ) * list PEZ) :=
(* Correction *)
Definition PhiR : list R -> PolZ -> R :=
- (Pphi 0 ring_plus ring_mult (gen_phiZ 0 1 ring_plus ring_mult ring_opp)).
-
-Definition pow (r : R) (n : nat) := pow_N 1 ring_mult r (Nnat.N_of_nat n).
+ (Pphi ring0 add mul
+ (InitialRing.gen_phiZ ring0 ring1 add mul opp)).
Definition PEevalR : list R -> PEZ -> R :=
- PEeval 0 ring_plus ring_mult ring_sub ring_opp
- (gen_phiZ 0 1 ring_plus ring_mult ring_opp)
- Nnat.nat_of_N pow.
+ PEeval ring0 add mul sub opp
+ (gen_phiZ ring0 ring1 add mul opp)
+ nat_of_N pow.
Lemma P0Z_correct : forall l, PhiR l P0Z = 0.
Proof. trivial. Qed.
-Lemma Rext: ring_eq_ext ring_plus ring_mult ring_opp ring_eq.
-apply mk_reqe. intros. setoid_rewrite H; rewrite H0; ring.
- intros. setoid_rewrite H; setoid_rewrite H0; ring.
-intros. setoid_rewrite H; ring. Qed.
+Lemma Rext: ring_eq_ext add mul opp _==_.
+apply mk_reqe. intros. rewrite H ; rewrite H0; cring.
+ intros. rewrite H; rewrite H0; cring.
+intros. rewrite H; cring. Qed.
-Lemma Rset : Setoid_Theory R ring_eq.
+Lemma Rset : Setoid_Theory R _==_.
apply ring_setoid.
Qed.
+Definition Rtheory:ring_theory ring0 ring1 add mul sub opp _==_.
+apply mk_rt.
+apply ring_add_0_l.
+apply ring_add_comm.
+apply ring_add_assoc.
+apply ring_mul_1_l.
+apply cring_mul_comm.
+apply ring_mul_assoc.
+apply ring_distr_l.
+apply ring_sub_def.
+apply ring_opp_def.
+Defined.
+
Lemma PolZadd_correct : forall P' P l,
PhiR l (PolZadd P P') == ((PhiR l P) + (PhiR l P')).
Proof.
-simpl.
- refine (Padd_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
- (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
+unfold PolZadd, PhiR. intros. simpl.
+ refine (Padd_ok Rset Rext (Rth_ARth Rset Rext Rtheory)
+ (gen_phiZ_morph Rset Rext Rtheory) _ _ _).
Qed.
Lemma PolZmul_correct : forall P P' l,
PhiR l (PolZmul P P') == ((PhiR l P) * (PhiR l P')).
Proof.
- refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
- (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
+unfold PolZmul, PhiR. intros.
+ refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext Rtheory)
+ (gen_phiZ_morph Rset Rext Rtheory) _ _ _).
Qed.
Lemma R_power_theory
- : power_theory 1 ring_mult ring_eq Nnat.nat_of_N pow.
-apply mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. ring. Qed.
+ : Ring_theory.power_theory ring1 mul _==_ nat_of_N pow.
+apply Ring_theory.mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N.
+reflexivity. Qed.
Lemma norm_correct :
forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe).
Proof.
- intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
- (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))) R_power_theory)
+ intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext Rtheory)
+ (gen_phiZ_morph Rset Rext Rtheory) R_power_theory)
with (lmp:= List.nil).
compute;trivial.
Qed.
@@ -194,7 +162,7 @@ Lemma PolZeq_correct : forall P P' l,
PhiR l P == PhiR l P'.
Proof.
intros;apply
- (Peq_ok Rset Rext (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))));trivial.
+ (Peq_ok Rset Rext (gen_phiZ_morph Rset Rext Rtheory));trivial.
Qed.
Fixpoint Cond0 (A:Type) (Interp:A->R) (l:list A) : Prop :=
@@ -207,12 +175,12 @@ Lemma mult_l_correct : forall l la lp,
Cond0 PolZ (PhiR l) lp ->
PhiR l (mult_l la lp) == 0.
Proof.
- induction la;simpl;intros. ring.
- destruct lp;trivial. simpl. ring.
+ induction la;simpl;intros. cring.
+ destruct lp;trivial. simpl. cring.
simpl in H;destruct H.
- setoid_rewrite PolZadd_correct.
- simpl. setoid_rewrite PolZmul_correct. simpl. setoid_rewrite H.
- setoid_rewrite IHla. unfold zero. simpl. ring. trivial.
+ rewrite PolZadd_correct.
+ simpl. rewrite PolZmul_correct. simpl. rewrite H.
+ rewrite IHla. cring. trivial.
Qed.
Lemma compute_list_correct : forall l lla lp,
@@ -242,86 +210,63 @@ Qed.
(* fin *)
-Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0.
-induction n. unfold pow; simpl. intros. absurd (1 == 0).
-simpl. apply domain_axiom_one_zero.
- trivial. setoid_replace (pow p (S n)) with (p * (pow p n)). intros.
-case (@domain_axiom_product _ _ _ _ H). trivial. trivial.
-unfold pow; simpl.
-clear IHn. induction n; simpl; try ring.
- rewrite pow_pos_Psucc. ring. exact Rset.
- intros. setoid_rewrite H; setoid_rewrite H0; ring.
- intros. simpl; ring. intros. simpl; ring. Qed.
-
-Lemma Rdomain_pow: forall c p r, ~c == ring0 -> ring_mult c (pow p r) == ring0 -> p == ring0.
-intros. case (@domain_axiom_product _ _ _ _ H0). intros; absurd (c == ring0); auto.
-intros. apply pow_not_zero with r. trivial. Qed.
-
-Definition R2:= ring_plus ring1 ring1.
+Definition R2:= 1 + 1.
Fixpoint IPR p {struct p}: R :=
match p with
xH => ring1
- | xO xH => ring_plus ring1 ring1
- | xO p1 => ring_mult R2 (IPR p1)
- | xI xH => ring_plus ring1 (ring_plus ring1 ring1)
- | xI p1 => ring_plus ring1 (ring_mult R2 (IPR p1))
+ | xO xH => 1+1
+ | xO p1 => R2*(IPR p1)
+ | xI xH => 1+(1+1)
+ | xI p1 => 1+(R2*(IPR p1))
end.
Definition IZR1 z :=
- match z with Z0 => ring0
+ match z with Z0 => 0
| Zpos p => IPR p
- | Zneg p => ring_opp(IPR p)
+ | Zneg p => -(IPR p)
end.
Fixpoint interpret3 t fv {struct t}: R :=
match t with
| (PEadd t1 t2) =>
let v1 := interpret3 t1 fv in
- let v2 := interpret3 t2 fv in (ring_plus v1 v2)
+ let v2 := interpret3 t2 fv in (v1 + v2)
| (PEmul t1 t2) =>
let v1 := interpret3 t1 fv in
- let v2 := interpret3 t2 fv in (ring_mult v1 v2)
+ let v2 := interpret3 t2 fv in (v1 * v2)
| (PEsub t1 t2) =>
let v1 := interpret3 t1 fv in
- let v2 := interpret3 t2 fv in (ring_sub v1 v2)
+ let v2 := interpret3 t2 fv in (v1 - v2)
| (PEopp t1) =>
- let v1 := interpret3 t1 fv in (ring_opp v1)
+ let v1 := interpret3 t1 fv in (-v1)
| (PEpow t1 t2) =>
- let v1 := interpret3 t1 fv in pow v1 (Nnat.nat_of_N t2)
+ let v1 := interpret3 t1 fv in pow v1 (nat_of_N t2)
| (PEc t1) => (IZR1 t1)
| (PEX n) => List.nth (pred (nat_of_P n)) fv 0
end.
-End domain.
+End nsatz1.
+
+Ltac equality_to_goal H x y:=
+ let h := fresh "nH" in
+ (* eliminate trivial hypotheses, but it takes time!:
+ (assert (h:equality x y);
+ [solve [cring] | clear H; clear h])
+ || *) (try generalize (@psos_r1 _ _ _ _ _ _ _ _ _ _ _ x y H); clear H)
+.
Ltac equalities_to_goal :=
lazymatch goal with
- | H: (@ring_eq _ _ ?x ?y) |- _ =>
- try generalize (@psos_r1 _ _ _ _ H); clear H
+ | H: (_ ?x ?y) |- _ => equality_to_goal H x y
+ | H: (_ _ ?x ?y) |- _ => equality_to_goal H x y
+ | H: (_ _ _ ?x ?y) |- _ => equality_to_goal H x y
+ | H: (_ _ _ _ ?x ?y) |- _ => equality_to_goal H x y
+(* extension possible :-) *)
+ | H: (?x == ?y) |- _ => equality_to_goal H x y
end.
-Ltac nsatz_domain_begin tacsimpl :=
- intros;
- try apply (@psos_r1b _ _);
- repeat equalities_to_goal;
- tacsimpl.
-
-Ltac generalise_eq_hyps:=
- repeat
- (match goal with
- |h : (@ring_eq _ _ ?p ?q)|- _ => revert h
- end).
-
-Ltac lpol_goal t :=
- match t with
- | ?a = ring0 -> ?b =>
- let r:= lpol_goal b in
- constr:(a::r)
- | ?a = ring0 => constr:(a::nil)
- end.
-
(* lp est incluse dans fv. La met en tete. *)
Ltac parametres_en_tete fv lp :=
@@ -344,13 +289,12 @@ Ltac rev l :=
| (cons ?x ?l) => let l' := rev l in append1 x l'
end.
-
-
Ltac nsatz_call_n info nparam p rr lp kont :=
- (*idtac "Trying power: " rr;*)
+(* idtac "Trying power: " rr;*)
let ll := constr:(PEc info :: PEc nparam :: PEpow p rr :: lp) in
+(* idtac "calcul...";*)
nsatz_compute ll;
- (*idtac "done";*)
+(* idtac "done";*)
match goal with
| |- (?c::PEpow _ ?r::?lq0)::?lci0 = _ -> _ =>
intros _;
@@ -371,51 +315,13 @@ Ltac nsatz_call radicalmax info nparam p lp kont :=
try_n radicalmax.
-Set Implicit Arguments.
-Class Cclosed_seq T (l:list T) := {}.
-Instance Iclosed_nil T : Cclosed_seq (T:=T) nil.
-Instance Iclosed_cons T t l `{Cclosed_seq (T:=T) l} : Cclosed_seq (T:=T) (t::l).
-
-Class Cfind_at (R:Type) (b:R) (l:list R) (i:nat) := {}.
-Instance Ifind0 (R:Type) (b:R) l: Cfind_at b (b::l) 0.
-Instance IfindS (R:Type) (b2 b1:R) l i `{Cfind_at R b1 l i} : Cfind_at b1 (b2::l) (S i) | 1.
-Definition Ifind0' := Ifind0.
-Definition IfindS' := IfindS.
-
-Definition li_find_at (R:Type) (b:R) l i `{Cfind_at R b l i} {H:Cclosed_seq (T:=R) l} := (l,i).
-
-Class Creify (R:Type) (e:PExpr Z) (l:list R) (b:R) := {}.
-Instance Ireify_zero (R:Type) (Rd:Domain R) l : Creify (PEc 0%Z) l ring0.
-Instance Ireify_one (R:Type) (Rd:Domain R) l : Creify (PEc 1%Z) l ring1.
-Instance Ireify_plus (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
- : Creify (PEadd e1 e2) l (ring_plus b1 b2).
-Instance Ireify_mult (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
- : Creify (PEmul e1 e2) l (ring_mult b1 b2).
-Instance Ireify_sub (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
- : Creify (PEsub e1 e2) l (ring_sub b1 b2).
-Instance Ireify_opp (R:Type) (Rd:Domain R) e1 l b1 `{Creify R e1 l b1}
- : Creify (PEopp e1) l (ring_opp b1).
-Instance Ireify_var (R:Type) b l i `{Cfind_at R b l i}
- : Creify (PEX _ (P_of_succ_nat i)) l b | 100.
-
-
-Class Creifylist (R:Type) (le:list (PExpr Z)) (l:list R) (lb:list R) := {}.
-Instance Creify_nil (R:Type) l : Creifylist nil l (@nil R).
-Instance Creify_cons (R:Type) e1 l b1 le2 lb2 `{Creify R e1 l b1} `{Creifylist R le2 l lb2}
- : Creifylist (e1::le2) l (b1::lb2).
-
-Definition li_reifyl (R:Type) le l lb `{Creifylist R le l lb}
- {H:Cclosed_seq (T:=R) l} := (l,le).
-
-Unset Implicit Arguments.
-
Ltac lterm_goal g :=
match g with
- ring_eq ?b1 ?b2 => constr:(b1::b2::nil)
- | ring_eq ?b1 ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l)
+ ?b1 == ?b2 => constr:(b1::b2::nil)
+ | ?b1 == ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l)
end.
-Ltac reify_goal l le lb Rd:=
+Ltac reify_goal l le lb:=
match le with
nil => idtac
| ?e::?le1 =>
@@ -423,241 +329,182 @@ Ltac reify_goal l le lb Rd:=
?b::?lb1 => (* idtac "b="; idtac b;*)
let x := fresh "B" in
set (x:= b) at 1;
- change x with (@interpret3 _ Rd e l);
+ change x with (interpret3 e l);
clear x;
- reify_goal l le1 lb1 Rd
+ reify_goal l le1 lb1
end
end.
Ltac get_lpol g :=
match g with
- ring_eq (interpret3 _ _ ?p _) _ => constr:(p::nil)
- | ring_eq (interpret3 _ _ ?p _) _ -> ?g =>
+ (interpret3 ?p _) == _ => constr:(p::nil)
+ | (interpret3 ?p _) == _ -> ?g =>
let l := get_lpol g in constr:(p::l)
end.
-Ltac nsatz_domain_generic radicalmax info lparam lvar tacsimpl Rd :=
- match goal with
- |- ?g => let lb := lterm_goal g in
- (*idtac "lb"; idtac lb;*)
- match eval red in (li_reifyl (lb:=lb)) with
- | (?fv, ?le) =>
- let fv := match lvar with
- (@nil _) => fv
- | _ => lvar
- end in
- (* idtac "variables:";idtac fv;*)
- let nparam := eval compute in (Z_of_nat (List.length lparam)) in
- let fv := parametres_en_tete fv lparam in
- (*idtac "variables:"; idtac fv;
- idtac "nparam:"; idtac nparam; *)
- match eval red in (li_reifyl (l:=fv) (lb:=lb)) with
- | (?fv, ?le) =>
- (*idtac "variables:";idtac fv; idtac le; idtac lb;*)
- reify_goal fv le lb Rd;
- match goal with
+Ltac nsatz_generic radicalmax info lparam lvar :=
+ let nparam := eval compute in (Z_of_nat (List.length lparam)) in
+ match goal with
+ |- ?g => let lb := lterm_goal g in
+ match (match lvar with
+ |(@nil _) =>
+ match lparam with
+ |(@nil _) =>
+ let r := eval red in (list_reifyl (lterm:=lb)) in r
+ |_ =>
+ match eval red in (list_reifyl (lterm:=lb)) with
+ |(?fv, ?le) =>
+ let fv := parametres_en_tete fv lparam in
+ (* we reify a second time, with the good order
+ for variables *)
+ let r := eval red in
+ (list_reifyl (lterm:=lb) (lvar:=fv)) in r
+ end
+ end
+ |_ =>
+ let fv := parametres_en_tete lvar lparam in
+ let r := eval red in (list_reifyl (lterm:=lb) (lvar:=fv)) in r
+ end) with
+ |(?fv, ?le) =>
+ reify_goal fv le lb ;
+ match goal with
|- ?g =>
let lp := get_lpol g in
let lpol := eval compute in (List.rev lp) in
- (*idtac "polynomes:"; idtac lpol;*)
- tacsimpl; intros;
-
+ intros;
+
let SplitPolyList kont :=
match lpol with
| ?p2::?lp2 => kont p2 lp2
| _ => idtac "polynomial not in the ideal"
end in
- tacsimpl;
+
SplitPolyList ltac:(fun p lp =>
set (p21:=p) ;
set (lp21:=lp);
- (*idtac "lp:"; idtac lp; *)
+(* idtac "nparam:"; idtac nparam; idtac "p:"; idtac p; idtac "lp:"; idtac lp; *)
nsatz_call radicalmax info nparam p lp ltac:(fun c r lq lci =>
set (q := PEmul c (PEpow p21 r));
let Hg := fresh "Hg" in
assert (Hg:check lp21 q (lci,lq) = true);
[ (vm_compute;reflexivity) || idtac "invalid nsatz certificate"
| let Hg2 := fresh "Hg" in
- assert (Hg2: ring_eq (interpret3 _ Rd q fv) ring0);
- [ tacsimpl;
- apply (@check_correct _ Rd fv lp21 q (lci,lq) Hg);
- tacsimpl;
+ assert (Hg2: (interpret3 q fv) == 0);
+ [ (*simpl*) idtac;
+ generalize (@check_correct _ _ _ _ _ _ _ _ _ _ _ fv lp21 q (lci,lq) Hg);
+ let cc := fresh "H" in
+ (*simpl*) idtac; intro cc; apply cc; clear cc;
+ (*simpl*) idtac;
repeat (split;[assumption|idtac]); exact I
- | simpl in Hg2; tacsimpl;
- apply Rdomain_pow with (interpret3 _ Rd c fv) (Nnat.nat_of_N r); auto with domain;
- tacsimpl; apply domain_axiom_one_zero
- || (simpl) || idtac "could not prove discrimination result"
+ | (*simpl in Hg2;*) (*simpl*) idtac;
+ apply Rintegral_domain_pow with (interpret3 c fv) (nat_of_N r);
+ (*simpl*) idtac;
+ try apply integral_domain_one_zero;
+ try apply integral_domain_minus_one_zero;
+ try trivial;
+ try exact integral_domain_one_zero;
+ try exact integral_domain_minus_one_zero
+ || (solve [simpl; unfold R2, equality, eq_notation, addition, add_notation,
+ one, one_notation, multiplication, mul_notation, zero, zero_notation;
+ discrR || omega])
+ || ((*simpl*) idtac) || idtac "could not prove discrimination result"
]
]
)
)
-end end end end .
+end end end .
+
+Ltac nsatz_default:=
+ intros;
+ try apply (@psos_r1b _ _ _ _ _ _ _ _ _ _ _);
+ match goal with |- (@equality ?r _ _ _) =>
+ repeat equalities_to_goal;
+ nsatz_generic 6%N 1%Z (@nil r) (@nil r)
+ end.
-Ltac nsatz_domainpv pretac radicalmax info lparam lvar tacsimpl rd :=
- pretac;
- nsatz_domain_begin tacsimpl; auto with domain;
- nsatz_domain_generic radicalmax info lparam lvar tacsimpl rd.
+Tactic Notation "nsatz" := nsatz_default.
-Ltac nsatz_domain:=
+Tactic Notation "nsatz" "with"
+ "radicalmax" ":=" constr(radicalmax)
+ "strategy" ":=" constr(info)
+ "parameters" ":=" constr(lparam)
+ "variables" ":=" constr(lvar):=
intros;
- match goal with
- |- (@ring_eq _ (@domain_ring ?r ?rd) _ _ ) =>
- nsatz_domainpv ltac:idtac 6%N 1%Z (@nil r) (@nil r) ltac:(simpl) rd
+ try apply (@psos_r1b _ _ _ _ _ _ _ _ _ _ _);
+ match goal with |- (@equality ?r _ _ _) =>
+ repeat equalities_to_goal;
+ nsatz_generic radicalmax info lparam lvar
end.
-(* Dans R *)
+(* Real numbers *)
Require Import Reals.
Require Import RealField.
-Instance Rri : Ring R := {
- ring0 := 0%R;
- ring1 := 1%R;
- ring_plus := Rplus;
- ring_mult := Rmult;
- ring_sub := Rminus;
- ring_opp := Ropp;
- ring_eq := @eq R;
- ring_ring := RTheory}.
-
-Lemma Raxiom_one_zero: 1%R <> 0%R.
-discrR.
-Qed.
-
-Instance Rdi : Domain R := {
- domain_ring := Rri;
- domain_axiom_product := Rmult_integral;
- domain_axiom_one_zero := Raxiom_one_zero}.
-
-Hint Resolve ring_setoid ring_plus_comp ring_mult_comp ring_sub_comp ring_opp_comp: domain.
-
-Ltac replaceR:=
-replace 0%R with (@ring0 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace 1%R with (@ring1 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Rplus with (@ring_plus _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Rmult with (@ring_mult _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Rminus with (@ring_sub _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Ropp with (@ring_opp _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace (@eq R) with (@ring_eq _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity].
-
-Ltac simplR:=
- simpl; replaceR.
-
-Ltac pretacR:=
- replaceR;
- replace Rri with (@domain_ring _ Rdi) in *; [idtac | reflexivity].
-
-Ltac nsatz_domainR:=
- nsatz_domainpv ltac:pretacR 6%N 1%Z (@Datatypes.nil R) (@Datatypes.nil R)
- ltac:simplR Rdi;
- discrR.
-
-
-Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
-nsatz_domainR.
+Lemma Rsth : Setoid_Theory R (@eq R).
+constructor;red;intros;subst;trivial.
Qed.
+Instance Rops: (@Ring_ops R 0%R 1%R Rplus Rmult Rminus Ropp (@eq R)).
-(* Dans Z *)
-Instance Zri : Ring Z := {
- ring0 := 0%Z;
- ring1 := 1%Z;
- ring_plus := Zplus;
- ring_mult := Zmult;
- ring_sub := Zminus;
- ring_opp := Zopp;
- ring_eq := (@eq Z);
- ring_ring := Zth}.
+Instance Rri : (Ring (Ro:=Rops)).
+constructor;
+try (try apply Rsth;
+ try (unfold respectful, Proper; unfold equality; unfold eq_notation in *;
+ intros; try rewrite H; try rewrite H0; reflexivity)).
+ exact Rplus_0_l. exact Rplus_comm. symmetry. apply Rplus_assoc.
+ exact Rmult_1_l. exact Rmult_1_r. symmetry. apply Rmult_assoc.
+ exact Rmult_plus_distr_r. intros; apply Rmult_plus_distr_l.
+exact Rplus_opp_r.
+Defined.
-Lemma Zaxiom_one_zero: 1%Z <> 0%Z.
-discriminate.
+Lemma R_one_zero: 1%R <> 0%R.
+discrR.
Qed.
-Instance Zdi : Domain Z := {
- domain_ring := Zri;
- domain_axiom_product := Zmult_integral;
- domain_axiom_one_zero := Zaxiom_one_zero}.
-
-Ltac replaceZ :=
-replace 0%Z with (@ring0 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace 1%Z with (@ring1 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zplus with (@ring_plus _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zmult with (@ring_mult _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zminus with (@ring_sub _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zopp with (@ring_opp _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace (@eq Z) with (@ring_eq _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity].
-
-Ltac simplZ:=
- simpl; replaceZ.
-
-Ltac pretacZ :=
-replaceZ;
-replace Zri with (@domain_ring _ Zdi) in *; [idtac | reflexivity].
+Instance Rcri: (Cring (Rr:=Rri)).
+red. exact Rmult_comm. Defined.
-Ltac nsatz_domainZ:=
-nsatz_domainpv ltac:pretacZ 6%N 1%Z (@Datatypes.nil Z) (@Datatypes.nil Z) ltac:simplZ Zdi.
+Instance Rdi : (Integral_domain (Rcr:=Rcri)).
+constructor.
+exact Rmult_integral. exact R_one_zero. Defined.
-
-(* Dans Q *)
+(* Rational numbers *)
Require Import QArith.
-Instance Qri : Ring Q := {
- ring0 := 0%Q;
- ring1 := 1%Q;
- ring_plus := Qplus;
- ring_mult := Qmult;
- ring_sub := Qminus;
- ring_opp := Qopp;
- ring_eq := Qeq;
- ring_ring := Qsrt}.
-
-Lemma Qaxiom_one_zero: not (Qeq 1%Q 0%Q).
-discriminate.
+Instance Qops: (@Ring_ops Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq).
+
+Instance Qri : (Ring (Ro:=Qops)).
+constructor.
+try apply Q_Setoid.
+apply Qplus_comp.
+apply Qmult_comp.
+apply Qminus_comp.
+apply Qopp_comp.
+ exact Qplus_0_l. exact Qplus_comm. apply Qplus_assoc.
+ exact Qmult_1_l. exact Qmult_1_r. apply Qmult_assoc.
+ apply Qmult_plus_distr_l. intros. apply Qmult_plus_distr_r.
+reflexivity. exact Qplus_opp_r.
+Defined.
+
+Lemma Q_one_zero: not (Qeq 1%Q 0%Q).
+unfold Qeq. simpl. auto with *. Qed.
+
+Instance Qcri: (Cring (Rr:=Qri)).
+red. exact Qmult_comm. Defined.
+
+Instance Qdi : (Integral_domain (Rcr:=Qcri)).
+constructor.
+exact Qmult_integral. exact Q_one_zero. Defined.
+
+(* Integers *)
+Lemma Z_one_zero: 1%Z <> 0%Z.
+omega.
Qed.
-Instance Qdi : Domain Q := {
- domain_ring := Qri;
- domain_axiom_product := Qmult_integral;
- domain_axiom_one_zero := Qaxiom_one_zero}.
-
-Ltac replaceQ :=
-replace 0%Q with (@ring0 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace 1%Q with (@ring1 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qplus with (@ring_plus _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qmult with (@ring_mult _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qminus with (@ring_sub _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qopp with (@ring_opp _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qeq with (@ring_eq _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity].
-
-Ltac simplQ:=
- simpl; replaceQ.
-
-Ltac pretacQ :=
-replaceQ;
-replace Qri with (@domain_ring _ Qdi) in *; [idtac | reflexivity].
+Instance Zcri: (Cring (Rr:=Zr)).
+red. exact Zmult_comm. Defined.
-Ltac nsatz_domainQ:=
-nsatz_domainpv ltac:pretacQ 6%N 1%Z (@Datatypes.nil Q) (@Datatypes.nil Q) ltac:simplQ Qdi.
+Instance Zdi : (Integral_domain (Rcr:=Zcri)).
+constructor.
+exact Zmult_integral. exact Z_one_zero. Defined.
-(* tactique générique *)
-
-Ltac nsatz :=
- intros;
- match goal with
- | |- (@eq R _ _) => nsatz_domainR
- | |- (@eq Z _ _) => nsatz_domainZ
- | |- (@Qeq _ _) => nsatz_domainQ
- | |- _ => nsatz_domain
- end.
-(*
-Goal forall x y:Q, Qeq x y -> Qeq (x*x-x+1)%Q ((y*y-y)+1+0)%Q.
-nsatz.
-Qed.
-
-Goal forall x y:Z, x = y -> (x*x-x+1)%Z = ((y*y-y)+1+0)%Z.
-nsatz.
-Qed.
-
-Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
-nsatz.
-Qed.
-*)