summaryrefslogtreecommitdiff
path: root/plugins/micromega/certificate.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/certificate.ml')
-rw-r--r--plugins/micromega/certificate.ml1244
1 files changed, 829 insertions, 415 deletions
diff --git a/plugins/micromega/certificate.ml b/plugins/micromega/certificate.ml
index bcab73ec..540d1b9c 100644
--- a/plugins/micromega/certificate.ml
+++ b/plugins/micromega/certificate.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -15,153 +15,18 @@
(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
certificate polynomial. *)
-(*open Micromega.Polynomial*)
+type var = int
+
+
+
open Big_int
open Num
-open Sos_lib
+open Polynomial
module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
-let (<+>) = add_num
-let (<->) = minus_num
-let (<*>) = mult_num
-
-type var = Mc.positive
-
-module Monomial :
-sig
- type t
- val const : t
- val var : var -> t
- val find : var -> t -> int
- val mult : var -> t -> t
- val prod : t -> t -> t
- val compare : t -> t -> int
- val pp : out_channel -> t -> unit
- val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
-end
- =
-struct
- (* A monomial is represented by a multiset of variables *)
- module Map = Map.Make(struct type t = var let compare = Pervasives.compare end)
- open Map
-
- type t = int Map.t
-
- (* The monomial that corresponds to a constant *)
- let const = Map.empty
-
- (* The monomial 'x' *)
- let var x = Map.add x 1 Map.empty
-
- (* Get the degre of a variable in a monomial *)
- let find x m = try find x m with Not_found -> 0
-
- (* Multiply a monomial by a variable *)
- let mult x m = add x ( (find x m) + 1) m
-
- (* Product of monomials *)
- let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
-
- (* Total ordering of monomials *)
- let compare m1 m2 = Map.compare Pervasives.compare m1 m2
-
- let pp o m = Map.iter (fun k v ->
- if v = 1 then Printf.fprintf o "x%i." (C2Ml.index k)
- else Printf.fprintf o "x%i^%i." (C2Ml.index k) v) m
-
- let fold = fold
-
-end
-
-
-module Poly :
- (* A polynomial is a map of monomials *)
- (*
- This is probably a naive implementation
- (expected to be fast enough - Coq is probably the bottleneck)
- *The new ring contribution is using a sparse Horner representation.
- *)
-sig
- type t
- val get : Monomial.t -> t -> num
- val variable : var -> t
- val add : Monomial.t -> num -> t -> t
- val constant : num -> t
- val mult : Monomial.t -> num -> t -> t
- val product : t -> t -> t
- val addition : t -> t -> t
- val uminus : t -> t
- val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
- val pp : out_channel -> t -> unit
- val compare : t -> t -> int
- val is_null : t -> bool
-end =
-struct
- (*normalisation bug : 0*x ... *)
- module P = Map.Make(Monomial)
- open P
-
- type t = num P.t
-
- let pp o p = P.iter (fun k v ->
- if compare_num v (Int 0) <> 0
- then
- if Monomial.compare Monomial.const k = 0
- then Printf.fprintf o "%s " (string_of_num v)
- else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
-
- (* Get the coefficient of monomial mn *)
- let get : Monomial.t -> t -> num =
- fun mn p -> try find mn p with Not_found -> (Int 0)
-
-
- (* The polynomial 1.x *)
- let variable : var -> t =
- fun x -> add (Monomial.var x) (Int 1) empty
-
- (*The constant polynomial *)
- let constant : num -> t =
- fun c -> add (Monomial.const) c empty
-
- (* The addition of a monomial *)
-
- let add : Monomial.t -> num -> t -> t =
- fun mn v p ->
- let vl = (get mn p) <+> v in
- add mn vl p
-
-
- (** Design choice: empty is not a polynomial
- I do not remember why ....
- **)
-
- (* The product by a monomial *)
- let mult : Monomial.t -> num -> t -> t =
- fun mn v p ->
- fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
-
-
- let addition : t -> t -> t =
- fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
-
-
- let product : t -> t -> t =
- fun p1 p2 ->
- fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
-
-
- let uminus : t -> t =
- fun p -> map (fun v -> minus_num v) p
-
- let fold = P.fold
-
- let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true
-
- let compare = compare compare_num
-end
open Mutils
type 'a number_spec = {
@@ -178,10 +43,10 @@ let z_spec = {
number_to_num = (fun x -> Big_int (C2Ml.z_big_int x));
zero = Mc.Z0;
unit = Mc.Zpos Mc.XH;
- mult = Mc.zmult;
+ mult = Mc.Z.mul;
eqb = Mc.zeq_bool
}
-
+
let q_spec = {
bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH});
@@ -195,56 +60,58 @@ let q_spec = {
let r_spec = z_spec
-
-
let dev_form n_spec p =
- let rec dev_form p =
+ let rec dev_form p =
match p with
| Mc.PEc z -> Poly.constant (n_spec.number_to_num z)
- | Mc.PEX v -> Poly.variable v
- | Mc.PEmul(p1,p2) ->
+ | Mc.PEX v -> Poly.variable (C2Ml.positive v)
+ | Mc.PEmul(p1,p2) ->
let p1 = dev_form p1 in
let p2 = dev_form p2 in
- Poly.product p1 p2
+ Poly.product p1 p2
| Mc.PEadd(p1,p2) -> Poly.addition (dev_form p1) (dev_form p2)
| Mc.PEopp p -> Poly.uminus (dev_form p)
| Mc.PEsub(p1,p2) -> Poly.addition (dev_form p1) (Poly.uminus (dev_form p2))
- | Mc.PEpow(p,n) ->
+ | Mc.PEpow(p,n) ->
let p = dev_form p in
let n = C2Ml.n n in
- let rec pow n =
- if n = 0
+ let rec pow n =
+ if n = 0
then Poly.constant (n_spec.number_to_num n_spec.unit)
else Poly.product p (pow (n-1)) in
pow n in
dev_form p
-let monomial_to_polynomial mn =
- Monomial.fold
- (fun v i acc ->
- let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
- if acc = Mc.PEc (Mc.Zpos Mc.XH)
- then mn
- else Mc.PEmul(mn,acc))
- mn
- (Mc.PEc (Mc.Zpos Mc.XH))
+let monomial_to_polynomial mn =
+ Monomial.fold
+ (fun v i acc ->
+ let v = Ml2C.positive v in
+ let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
+ if acc = Mc.PEc (Mc.Zpos Mc.XH)
+ then mn
+ else Mc.PEmul(mn,acc))
+ mn
+ (Mc.PEc (Mc.Zpos Mc.XH))
+
-let list_to_polynomial vars l =
+
+let list_to_polynomial vars l =
assert (List.for_all (fun x -> ceiling_num x =/ x) l);
let var x = monomial_to_polynomial (List.nth vars x) in
+
let rec xtopoly p i = function
| [] -> p
- | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
+ | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
- let mn =
+ let mn =
if c = Mc.PEc (Mc.Zpos Mc.XH)
then var i
else Mc.PEmul (c,var i) in
let p' = if p = Mc.PEc Mc.Z0 then mn else
Mc.PEadd (mn, p) in
xtopoly p' (i+1) l in
-
+
xtopoly (Mc.PEc Mc.Z0) 0 l
let rec fixpoint f x =
@@ -252,61 +119,54 @@ let rec fixpoint f x =
if y' = x then y'
else fixpoint f y'
-
-
-
-
-
-
-
-let rec_simpl_cone n_spec e =
- let simpl_cone =
+let rec_simpl_cone n_spec e =
+ let simpl_cone =
Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in
let rec rec_simpl_cone = function
- | Mc.PsatzMulE(t1, t2) ->
+ | Mc.PsatzMulE(t1, t2) ->
simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2))
- | Mc.PsatzAdd(t1,t2) ->
+ | Mc.PsatzAdd(t1,t2) ->
simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2))
| x -> simpl_cone x in
rec_simpl_cone e
-
-
+
+
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
-
-type cone_prod =
- Const of cone
- | Ideal of cone *cone
- | Mult of cone * cone
+
+type cone_prod =
+ Const of cone
+ | Ideal of cone *cone
+ | Mult of cone * cone
| Other of cone
and cone = Mc.zWitness
let factorise_linear_cone c =
-
- let rec cone_list c l =
+
+ let rec cone_list c l =
match c with
| Mc.PsatzAdd (x,r) -> cone_list r (x::l)
| _ -> c :: l in
-
+
let factorise c1 c2 =
match c1 , c2 with
- | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
+ | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
if x = x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None
- | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
+ | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
if x = x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None
| _ -> None in
-
+
let rec rebuild_cone l pending =
match l with
| [] -> (match pending with
| None -> Mc.PsatzZ
| Some p -> p
)
- | e::l ->
+ | e::l ->
(match pending with
- | None -> rebuild_cone l (Some e)
+ | None -> rebuild_cone l (Some e)
| Some p -> (match factorise p e with
| None -> Mc.PsatzAdd(p, rebuild_cone l (Some e))
| Some f -> rebuild_cone l (Some f) )
@@ -316,15 +176,15 @@ let factorise_linear_cone c =
-(* The binding with Fourier might be a bit obsolete
+(* The binding with Fourier might be a bit obsolete
-- how does it handle equalities ? *)
(* Certificates are elements of the cone such that P = 0 *)
(* To begin with, we search for certificates of the form:
- a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
+ a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
where pi >= 0 qi > 0
- ai >= 0
+ ai >= 0
bi >= 0
Sum bi + c >= 1
This is a linear problem: each monomial is considered as a variable.
@@ -334,216 +194,209 @@ let factorise_linear_cone c =
*)
open Mfourier
- (*module Fourier = Fourier(Vector.VList)(SysSet(Vector.VList))*)
- (*module Fourier = Fourier(Vector.VSparse)(SysSetAlt(Vector.VSparse))*)
-(*module Fourier = Mfourier.Fourier(Vector.VSparse)(*(SysSetAlt(Vector.VMap))*)*)
-
-(*module Vect = Fourier.Vect*)
-(*open Fourier.Cstr*)
(* fold_left followed by a rev ! *)
-let constrain_monomial mn l =
+let constrain_monomial mn l =
let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in
if mn = Monomial.const
- then
- { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
- op = Eq ;
+ then
+ { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
+ op = Eq ;
cst = Big_int zero_big_int }
else
- { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
- op = Eq ;
+ { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
+ op = Eq ;
cst = Big_int zero_big_int }
-
-let positivity l =
- let rec xpositivity i l =
+
+let positivity l =
+ let rec xpositivity i l =
match l with
| [] -> []
| (_,Mc.Equal)::l -> xpositivity (i+1) l
- | (_,_)::l ->
- {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
- op = Ge ;
+ | (_,_)::l ->
+ {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
+ op = Ge ;
cst = Int 0 } :: (xpositivity (i+1) l)
in
xpositivity 0 l
let string_of_op = function
- | Mc.Strict -> "> 0"
- | Mc.NonStrict -> ">= 0"
+ | Mc.Strict -> "> 0"
+ | Mc.NonStrict -> ">= 0"
| Mc.Equal -> "= 0"
| Mc.NonEqual -> "<> 0"
-(* If the certificate includes at least one strict inequality,
+(* If the certificate includes at least one strict inequality,
the obtained polynomial can also be 0 *)
let build_linear_system l =
- (* Gather the monomials: HINT add up of the polynomials *)
+ (* Gather the monomials: HINT add up of the polynomials ==> This does not work anymore *)
let l' = List.map fst l in
- let monomials =
- List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l'
+
+ let module MonSet = Set.Make(Monomial) in
+
+ let monomials =
+ List.fold_left (fun acc p ->
+ Poly.fold (fun m _ acc -> MonSet.add m acc) p acc)
+ (MonSet.singleton Monomial.const) l'
in (* For each monomial, compute a constraint *)
- let s0 =
- Poly.fold (fun mn _ res -> (constrain_monomial mn l')::res) monomials [] in
+ let s0 =
+ MonSet.fold (fun mn res -> (constrain_monomial mn l')::res) monomials [] in
(* I need at least something strictly positive *)
let strict = {
coeffs = Vect.from_list ((Big_int unit_big_int)::
- (List.map (fun (x,y) ->
- match y with Mc.Strict ->
- Big_int unit_big_int
+ (List.map (fun (x,y) ->
+ match y with Mc.Strict ->
+ Big_int unit_big_int
| _ -> Big_int zero_big_int) l));
op = Ge ; cst = Big_int unit_big_int } in
(* Add the positivity constraint *)
- {coeffs = Vect.from_list ([Big_int unit_big_int]) ;
- op = Ge ;
+ {coeffs = Vect.from_list ([Big_int unit_big_int]) ;
+ op = Ge ;
cst = Big_int zero_big_int}::(strict::(positivity l)@s0)
let big_int_to_z = Ml2C.bigint
-
-(* For Q, this is a pity that the certificate has been scaled
+
+(* For Q, this is a pity that the certificate has been scaled
-- at a lower layer, certificates are using nums... *)
-let make_certificate n_spec (cert,li) =
+let make_certificate n_spec (cert,li) =
let bint_to_cst = n_spec.bigint_to_number in
match cert with
| [] -> failwith "empty_certificate"
- | e::cert' ->
- let cst = match compare_big_int e zero_big_int with
+ | e::cert' ->
+(* let cst = match compare_big_int e zero_big_int with
| 0 -> Mc.PsatzZ
- | 1 -> Mc.PsatzC (bint_to_cst e)
- | _ -> failwith "positivity error"
- in
+ | 1 -> Mc.PsatzC (bint_to_cst e)
+ | _ -> failwith "positivity error"
+ in *)
let rec scalar_product cert l =
match cert with
| [] -> Mc.PsatzZ
- | c::cert -> match l with
- | [] -> failwith "make_certificate(1)"
- | i::l ->
- let r = scalar_product cert l in
- match compare_big_int c zero_big_int with
- | -1 -> Mc.PsatzAdd (
- Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
- r)
- | 0 -> r
- | _ -> Mc.PsatzAdd (
- Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
- r) in
-
- ((factorise_linear_cone
- (simplify_cone n_spec (Mc.PsatzAdd (cst, scalar_product cert' li)))))
+ | c::cert ->
+ match l with
+ | [] -> failwith "make_certificate(1)"
+ | i::l ->
+ let r = scalar_product cert l in
+ match compare_big_int c zero_big_int with
+ | -1 -> Mc.PsatzAdd (
+ Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
+ r)
+ | 0 -> r
+ | _ -> Mc.PsatzAdd (
+ Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
+ r) in
+ (factorise_linear_cone
+ (simplify_cone n_spec (scalar_product cert' li)))
exception Found of Monomial.t
exception Strict
-let primal l =
+let primal l =
let vr = ref 0 in
let module Mmn = Map.Make(Monomial) in
let vect_of_poly map p =
- Poly.fold (fun mn vl (map,vect) ->
- if mn = Monomial.const
+ Poly.fold (fun mn vl (map,vect) ->
+ if mn = Monomial.const
then (map,vect)
- else
+ else
let (mn,m) = try (Mmn.find mn map,map) with Not_found -> let res = (!vr, Mmn.add mn !vr map) in incr vr ; res in
(m,if sign_num vl = 0 then vect else (mn,vl)::vect)) p (map,[]) in
-
+
let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in
let cmp x y = Pervasives.compare (fst x) (fst y) in
snd (List.fold_right (fun (p,op) (map,l) ->
- let (mp,vect) = vect_of_poly map p in
+ let (mp,vect) = vect_of_poly map p in
let cstr = {coeffs = List.sort cmp vect; op = op_op op ; cst = minus_num (Poly.get Monomial.const p)} in
(mp,cstr::l)) l (Mmn.empty,[]))
-let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
+let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
(* List.iter (fun (p,op) -> Printf.fprintf stdout "%a %s 0\n" Poly.pp p (string_of_op op) ) l ; *)
-
-
+
let sys = build_linear_system l in
- try
+ try
match Fourier.find_point sys with
| Inr _ -> None
- | Inl cert -> Some (rats_to_ints (Vect.to_list cert))
+ | Inl cert -> Some (rats_to_ints (Vect.to_list cert))
(* should not use rats_to_ints *)
- with x ->
- if debug
- then (Printf.printf "raw certificate %s" (Printexc.to_string x);
+ with x ->
+ if debug
+ then (Printf.printf "raw certificate %s" (Printexc.to_string x);
flush stdout) ;
None
-let raw_certificate l =
- try
+let raw_certificate l =
+ try
let p = primal l in
match Fourier.find_point p with
- | Inr prf ->
- if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
+ | Inr prf ->
+ if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
let cert = List.map (fun (x,n) -> x+1,n) (fst (List.hd (Proof.mk_proof p prf))) in
- if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
+ if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
Some (rats_to_ints (Vect.to_list cert))
| Inl _ -> None
- with Strict ->
+ with Strict ->
(* Fourier elimination should handle > *)
- dual_raw_certificate l
+ dual_raw_certificate l
-let simple_linear_prover (*to_constant*) l =
+let simple_linear_prover l =
let (lc,li) = List.split l in
match raw_certificate lc with
| None -> None (* No certificate *)
- | Some cert -> (* make_certificate to_constant*)Some (cert,li)
+ | Some cert -> Some (cert,li)
+
-let linear_prover n_spec l =
- let li = List.combine l (interval 0 (List.length l -1)) in
- let (l1,l') = List.partition
- (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
- let l' = List.map
- (fun ((x,y),i) -> match y with
- Mc.NonEqual -> failwith "cannot happen"
- | y -> ((dev_form n_spec x, y),i)) l' in
- simple_linear_prover (*n_spec*) l'
+let linear_prover n_spec l =
+ let build_system n_spec l =
+ let li = List.combine l (interval 0 (List.length l -1)) in
+ let (l1,l') = List.partition
+ (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
+ List.map
+ (fun ((x,y),i) -> match y with
+ Mc.NonEqual -> failwith "cannot happen"
+ | y -> ((dev_form n_spec x, y),i)) l' in
+ let l' = build_system n_spec l in
+ simple_linear_prover (*n_spec*) l'
let linear_prover n_spec l =
try linear_prover n_spec l with
x -> (print_string (Printexc.to_string x); None)
-let linear_prover_with_cert spec l =
+let linear_prover_with_cert spec l =
match linear_prover spec l with
| None -> None
| Some cert -> Some (make_certificate spec cert)
-(* zprover.... *)
-
-(* I need to gather the set of variables --->
- Then go for fold
- Once I have an interval, I need a certificate : 2 other fourier elims.
- (I could probably get the certificate directly
- as it is done in the fourier contrib.)
-*)
let make_linear_system l =
let l' = List.map fst l in
- let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
+ let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
(Poly.constant (Int 0)) l' in
- let monomials = Poly.fold
+ let monomials = Poly.fold
(fun mn _ l -> if mn = Monomial.const then l else mn::l) monomials [] in
- (List.map (fun (c,op) ->
- {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
- op = op ;
+ (List.map (fun (c,op) ->
+ {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
+ op = op ;
cst = minus_num ( (Poly.get Monomial.const c))}) l
,monomials)
@@ -552,130 +405,66 @@ let pplus x y = Mc.PEadd(x,y)
let pmult x y = Mc.PEmul(x,y)
let pconst x = Mc.PEc x
let popp x = Mc.PEopp x
-
+
let debug = false
-
+
(* keep track of enumerated vectors *)
-let rec mem p x l =
+let rec mem p x l =
match l with [] -> false | e::l -> if p x e then true else mem p x l
-let rec remove_assoc p x l =
+let rec remove_assoc p x l =
match l with [] -> [] | e::l -> if p x (fst e) then
- remove_assoc p x l else e::(remove_assoc p x l)
+ remove_assoc p x l else e::(remove_assoc p x l)
let eq x y = Vect.compare x y = 0
let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
-(* The prover is (probably) incomplete --
+(* The prover is (probably) incomplete --
only searching for naive cutting planes *)
-let candidates sys =
- let ll = List.fold_right (
- fun (e,k) r ->
- match k with
- | Mc.NonStrict -> (dev_form z_spec e , Ge)::r
- | Mc.Equal -> (dev_form z_spec e , Eq)::r
- (* we already know the bound -- don't compute it again *)
- | _ -> failwith "Cannot happen candidates") sys [] in
-
- let (sys,var_mn) = make_linear_system ll in
- let vars = mapi (fun _ i -> Vect.set i (Int 1) Vect.null) var_mn in
- (List.fold_left (fun l cstr ->
- let gcd = Big_int (Vect.gcd cstr.coeffs) in
- if gcd =/ (Int 1) && cstr.op = Eq
- then l
- else (Vect.mul (Int 1 // gcd) cstr.coeffs)::l) [] sys) @ vars
-
-
-
-
-let rec xzlinear_prover planes sys =
- match linear_prover z_spec sys with
- | Some prf -> Some (Mc.RatProof (make_certificate z_spec prf,Mc.DoneProof))
- | None -> (* find the candidate with the smallest range *)
- (* Grrr - linear_prover is also calling 'make_linear_system' *)
- let ll = List.fold_right (fun (e,k) r -> match k with
- Mc.NonEqual -> r
- | k -> (dev_form z_spec e ,
- match k with
- Mc.NonStrict -> Ge
- | Mc.Equal -> Eq
- | Mc.Strict | Mc.NonEqual -> failwith "Cannot happen") :: r) sys [] in
- let (ll,var) = make_linear_system ll in
- let candidates = List.fold_left (fun acc vect ->
- match Fourier.optimise vect ll with
- | None -> acc
- | Some i ->
-(* Printf.printf "%s in %s\n" (Vect.string vect) (string_of_intrvl i) ; *)
- flush stdout ;
- (vect,i) ::acc) [] planes in
-
- let smallest_interval =
- match List.fold_left (fun (x1,i1) (x2,i2) ->
- if Itv.smaller_itv i1 i2
- then (x1,i1) else (x2,i2)) (Vect.null,(None,None)) candidates
- with
- | (x,(Some i, Some j)) -> Some(i,x,j)
- | x -> None (* This might be a cutting plane *)
- in
- match smallest_interval with
- | Some (lb,e,ub) ->
- let (lbn,lbd) =
- (Ml2C.bigint (sub_big_int (numerator lb) unit_big_int),
- Ml2C.bigint (denominator lb)) in
- let (ubn,ubd) =
- (Ml2C.bigint (add_big_int unit_big_int (numerator ub)) ,
- Ml2C.bigint (denominator ub)) in
- let expr = list_to_polynomial var (Vect.to_list e) in
- (match
- (*x <= ub -> x > ub *)
- linear_prover z_spec
- ((pplus (pmult (pconst ubd) expr) (popp (pconst ubn)),
- Mc.NonStrict) :: sys),
- (* lb <= x -> lb > x *)
- linear_prover z_spec
- ((pplus (popp (pmult (pconst lbd) expr)) (pconst lbn),
- Mc.NonStrict)::sys)
- with
- | Some cub , Some clb ->
- (match zlinear_enum (remove e planes) expr
- (ceiling_num lb) (floor_num ub) sys
- with
- | None -> None
- | Some prf ->
- let bound_proof (c,l) = make_certificate z_spec (List.tl c , List.tl (List.map (fun x -> x -1) l)) in
-
- Some (Mc.EnumProof((*Ml2C.q lb,expr,Ml2C.q ub,*) bound_proof clb, bound_proof cub,prf)))
- | _ -> None
- )
- | _ -> None
-and zlinear_enum planes expr clb cub l =
- if clb >/ cub
- then Some []
- else
- let pexpr = pplus (popp (pconst (Ml2C.bigint (numerator clb)))) expr in
- let sys' = (pexpr, Mc.Equal)::l in
- (*let enum = *)
- match xzlinear_prover planes sys' with
- | None -> if debug then print_string "zlp?"; None
- | Some prf -> if debug then print_string "zlp!";
- match zlinear_enum planes expr (clb +/ (Int 1)) cub l with
- | None -> None
- | Some prfl -> Some (prf :: prfl)
+let develop_constraint z_spec (e,k) =
+ match k with
+ | Mc.NonStrict -> (dev_form z_spec e , Ge)
+ | Mc.Equal -> (dev_form z_spec e , Eq)
+ | _ -> assert false
+
+
+let op_of_op_compat = function
+ | Ge -> Mc.NonStrict
+ | Eq -> Mc.Equal
+
+
+let integer_vector coeffs =
+ let vars , coeffs = List.split coeffs in
+ List.combine vars (List.map (fun x -> Big_int x) (rats_to_ints coeffs))
+
+let integer_cstr {coeffs = coeffs ; op = op ; cst = cst } =
+ let vars , coeffs = List.split coeffs in
+ match rats_to_ints (cst::coeffs) with
+ | cst :: coeffs ->
+ {
+ coeffs = List.combine vars (List.map (fun x -> Big_int x) coeffs) ;
+ op = op ; cst = Big_int cst}
+ | _ -> assert false
+
+
+let pexpr_of_cstr_compat var cstr =
+ let {coeffs = coeffs ; op = op ; cst = cst } = integer_cstr cstr in
+ try
+ let expr = list_to_polynomial var (Vect.to_list coeffs) in
+ let d = Ml2C.bigint (denominator cst) in
+ let n = Ml2C.bigint (numerator cst) in
+ (pplus (pmult (pconst d) expr) (popp (pconst n)), op_of_op_compat op)
+ with Failure _ -> failwith "pexpr_of_cstr_compat"
+
+
-let zlinear_prover sys =
- let candidates = candidates sys in
- (* Printf.printf "candidates %d" (List.length candidates) ; *)
- (*let t0 = Sys.time () in*)
- let res = xzlinear_prover candidates sys in
- (*Printf.printf "Time prover : %f" (Sys.time () -. t0) ;*) res
open Sos_types
-open Mutils
-let rec scale_term t =
+let rec scale_term t =
match t with
| Zero -> unit_big_int , Zero
| Const n -> (denominator n) , Const (Big_int (numerator n))
@@ -708,7 +497,7 @@ let get_index_of_ith_match f i l =
match l with
| [] -> failwith "bad index"
| e::l -> if f e
- then
+ then
(if j = i then res else get (j+1) (res+1) l )
else get j (res+1) l in
get 0 0 l
@@ -722,19 +511,19 @@ let rec scale_certificate pos = match pos with
| Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n))
| Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n))
| Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n))
- | Square t -> let s,t' = scale_term t in
+ | Square t -> let s,t' = scale_term t in
mult_big_int s s , Square t'
| Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
mult_big_int s1 s2 , Eqmul (y1,y2)
- | Sum (y, z) -> let s1,y1 = scale_certificate y
+ | Sum (y, z) -> let s1,y1 = scale_certificate y
and s2,y2 = scale_certificate z in
let g = gcd_big_int s1 s2 in
let s1' = div_big_int s1 g in
let s2' = div_big_int s2 g in
- mult_big_int g (mult_big_int s1' s2'),
+ mult_big_int g (mult_big_int s1' s2'),
Sum (Product(Rational_le (Big_int s2'), y1),
Product (Rational_le (Big_int s1'), y2))
- | Product (y, z) ->
+ | Product (y, z) ->
let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
mult_big_int s1 s2 , Product (y1,y2)
@@ -743,7 +532,7 @@ open Micromega
let rec term_to_q_expr = function
| Const n -> PEc (Ml2C.q n)
| Zero -> PEc ( Ml2C.q (Int 0))
- | Var s -> PEX (Ml2C.index
+ | Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_q_expr p1, term_to_q_expr p2)
| Add(p1,p2) -> PEadd(term_to_q_expr p1, term_to_q_expr p2)
@@ -755,20 +544,20 @@ open Micromega
let term_to_q_pol e = Mc.norm_aux (Ml2C.q (Int 0)) (Ml2C.q (Int 1)) Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e)
- let rec product l =
+ let rec product l =
match l with
| [] -> Mc.PsatzZ
| [i] -> Mc.PsatzIn (Ml2C.nat i)
| i ::l -> Mc.PsatzMulE(Mc.PsatzIn (Ml2C.nat i), product l)
-let q_cert_of_pos pos =
+let q_cert_of_pos pos =
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
- | Rational_eq n | Rational_le n | Rational_lt n ->
+ | Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.q n)
| Square t -> Mc.PsatzSquare (term_to_q_pol t)
@@ -781,7 +570,7 @@ let q_cert_of_pos pos =
let rec term_to_z_expr = function
| Const n -> PEc (Ml2C.bigint (big_int_of_num n))
| Zero -> PEc ( Z0)
- | Var s -> PEX (Ml2C.index
+ | Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_z_expr p1, term_to_z_expr p2)
| Add(p1,p2) -> PEadd(term_to_z_expr p1, term_to_z_expr p2)
@@ -790,24 +579,649 @@ let q_cert_of_pos pos =
| Sub(t1,t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2)
| _ -> failwith "term_to_z_expr: not implemented"
- let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.zplus Mc.zmult Mc.zminus Mc.zopp Mc.zeq_bool (term_to_z_expr e)
+ let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.Z.add Mc.Z.mul Mc.Z.sub Mc.Z.opp Mc.zeq_bool (term_to_z_expr e)
-let z_cert_of_pos pos =
+let z_cert_of_pos pos =
let s,pos = (scale_certificate pos) in
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
- | Rational_eq n | Rational_le n | Rational_lt n ->
+ | Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.bigint (big_int_of_num n))
| Square t -> Mc.PsatzSquare (term_to_z_pol t)
- | Eqmul (t, y) -> Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
+ | Eqmul (t, y) ->
+ let is_unit =
+ match t with
+ | Const n -> n =/ Int 1
+ | _ -> false in
+ if is_unit
+ then _cert_of_pos y
+ else Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
| Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
| Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
simplify_cone z_spec (_cert_of_pos pos)
+(** All constraints (initial or derived) have an index and have a justification i.e., proof.
+ Given a constraint, all the coefficients are always integers.
+*)
+open Mutils
+open Mfourier
+open Num
+open Big_int
+open Polynomial
+
+(*module Mc = Micromega*)
+(*module Ml2C = Mutils.CamlToCoq
+module C2Ml = Mutils.CoqToCaml
+*)
+let debug = false
+
+
+
+module Env =
+struct
+
+ type t = int list
+
+ let id_of_hyp hyp l =
+ let rec xid_of_hyp i l =
+ match l with
+ | [] -> failwith "id_of_hyp"
+ | hyp'::l -> if hyp = hyp' then i else xid_of_hyp (i+1) l in
+ xid_of_hyp 0 l
+
+end
+
+
+let coq_poly_of_linpol (p,c) =
+
+ let pol_of_mon m =
+ Monomial.fold (fun x v p -> Mc.PEmul(Mc.PEpow(Mc.PEX(Ml2C.positive x),Ml2C.n v),p)) m (Mc.PEc (Mc.Zpos Mc.XH)) in
+
+ List.fold_left (fun acc (x,v) ->
+ let mn = LinPoly.MonT.retrieve x in
+ Mc.PEadd(Mc.PEmul(Mc.PEc (Ml2C.bigint (numerator v)), pol_of_mon mn),acc)) (Mc.PEc (Ml2C.bigint (numerator c))) p
+
+
+
+
+let rec cmpl_prf_rule env = function
+ | Hyp i | Def i -> Mc.PsatzIn (Ml2C.nat (Env.id_of_hyp i env))
+ | Cst i -> Mc.PsatzC (Ml2C.bigint i)
+ | Zero -> Mc.PsatzZ
+ | MulPrf(p1,p2) -> Mc.PsatzMulE(cmpl_prf_rule env p1, cmpl_prf_rule env p2)
+ | AddPrf(p1,p2) -> Mc.PsatzAdd(cmpl_prf_rule env p1 , cmpl_prf_rule env p2)
+ | MulC(lp,p) -> let lp = Mc.norm0 (coq_poly_of_linpol lp) in
+ Mc.PsatzMulC(lp,cmpl_prf_rule env p)
+ | Square lp -> Mc.PsatzSquare (Mc.norm0 (coq_poly_of_linpol lp))
+ | _ -> failwith "Cuts should already be compiled"
+
+
+let rec cmpl_proof env = function
+ | Done -> Mc.DoneProof
+ | Step(i,p,prf) ->
+ begin
+ match p with
+ | CutPrf p' ->
+ Mc.CutProof(cmpl_prf_rule env p', cmpl_proof (i::env) prf)
+ | _ -> Mc.RatProof(cmpl_prf_rule env p,cmpl_proof (i::env) prf)
+ end
+ | Enum(i,p1,_,p2,l) ->
+ Mc.EnumProof(cmpl_prf_rule env p1,cmpl_prf_rule env p2,List.map (cmpl_proof (i::env)) l)
+
+
+let compile_proof env prf =
+ let id = 1 + proof_max_id prf in
+ let _,prf = normalise_proof id prf in
+ if debug then Printf.fprintf stdout "compiled proof %a\n" output_proof prf;
+ cmpl_proof env prf
+
+type prf_sys = (cstr_compat * prf_rule) list
+
+
+let xlinear_prover sys =
+ match Fourier.find_point sys with
+ | Inr prf ->
+ if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
+ let cert = (*List.map (fun (x,n) -> x+1,n)*) (fst (List.hd (Proof.mk_proof sys prf))) in
+ if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
+ Some (rats_to_ints (Vect.to_list cert))
+ | Inl _ -> None
+
+
+let output_num o n = output_string o (string_of_num n)
+let output_bigint o n = output_string o (string_of_big_int n)
+
+let proof_of_farkas prf cert =
+(* Printf.printf "\nproof_of_farkas %a , %a \n" (pp_list output_prf_rule) prf (pp_list output_bigint) cert ; *)
+ let rec mk_farkas acc prf cert =
+ match prf, cert with
+ | _ , [] -> acc
+ | [] , _ -> failwith "proof_of_farkas : not enough hyps"
+ | p::prf,c::cert ->
+ mk_farkas (add_proof (mul_proof c p) acc) prf cert in
+ let res = mk_farkas Zero prf cert in
+ (*Printf.printf "==> %a" output_prf_rule res ; *)
+ res
+
+
+let linear_prover sys =
+ let (sysi,prfi) = List.split sys in
+ match xlinear_prover sysi with
+ | None -> None
+ | Some cert -> Some (proof_of_farkas prfi cert)
+
+let linear_prover =
+ if debug
+ then
+ fun sys ->
+ Printf.printf "<linear_prover"; flush stdout ;
+ let res = linear_prover sys in
+ Printf.printf ">"; flush stdout ;
+ res
+ else linear_prover
+
+
+
+
+(** A single constraint can be unsat for the following reasons:
+ - 0 >= c for c a negative constant
+ - 0 = c for c a non-zero constant
+ - e = c when the coeffs of e are all integers and c is rational
+*)
+
+type checksat =
+ | Tauto (* Tautology *)
+ | Unsat of prf_rule (* Unsatisfiable *)
+ | Cut of cstr_compat * prf_rule (* Cutting plane *)
+ | Normalise of cstr_compat * prf_rule (* coefficients are relatively prime *)
+
+
+(** [check_sat]
+ - detects constraints that are not satisfiable;
+ - normalises constraints and generate cuts.
+*)
+
+let check_sat (cstr,prf) =
+ let {coeffs=coeffs ; op=op ; cst=cst} = cstr in
+ match coeffs with
+ | [] ->
+ if eval_op op (Int 0) cst then Tauto else Unsat prf
+ | _ ->
+ let gcdi = (gcd_list (List.map snd coeffs)) in
+ let gcd = Big_int gcdi in
+ if eq_num gcd (Int 1)
+ then Normalise(cstr,prf)
+ else
+ if sign_num (mod_num cst gcd) = 0
+ then (* We can really normalise *)
+ begin
+ assert (sign_num gcd >=1 ) ;
+ let cstr = {
+ coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs;
+ op = op ; cst = cst // gcd
+ } in
+ Normalise(cstr,Gcd(gcdi,prf))
+ (* Normalise(cstr,CutPrf prf)*)
+ end
+ else
+ match op with
+ | Eq -> Unsat (CutPrf prf)
+ | Ge ->
+ let cstr = {
+ coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs;
+ op = op ; cst = ceiling_num (cst // gcd)
+ } in Cut(cstr,CutPrf prf)
+
+
+(** Proof generating pivoting over variable v *)
+let pivot v (c1,p1) (c2,p2) =
+ let {coeffs = v1 ; op = op1 ; cst = n1} = c1
+ and {coeffs = v2 ; op = op2 ; cst = n2} = c2 in
+
+
+
+ (* Could factorise gcd... *)
+ let xpivot cv1 cv2 =
+ (
+ {coeffs = Vect.add (Vect.mul cv1 v1) (Vect.mul cv2 v2) ;
+ op = Proof.add_op op1 op2 ;
+ cst = n1 */ cv1 +/ n2 */ cv2 },
+
+ AddPrf(mul_proof (numerator cv1) p1,mul_proof (numerator cv2) p2)) in
+
+ match Vect.get v v1 , Vect.get v v2 with
+ | None , _ | _ , None -> None
+ | Some a , Some b ->
+ if (sign_num a) * (sign_num b) = -1
+ then
+ let cv1 = abs_num b
+ and cv2 = abs_num a in
+ Some (xpivot cv1 cv2)
+ else
+ if op1 = Eq
+ then
+ let cv1 = minus_num (b */ (Int (sign_num a)))
+ and cv2 = abs_num a in
+ Some (xpivot cv1 cv2)
+ else if op2 = Eq
+ then
+ let cv1 = abs_num b
+ and cv2 = minus_num (a */ (Int (sign_num b))) in
+ Some (xpivot cv1 cv2)
+ else None (* op2 could be Eq ... this might happen *)
+
+exception FoundProof of prf_rule
+
+let rec simpl_sys sys =
+ List.fold_left (fun acc (c,p) ->
+ match check_sat (c,p) with
+ | Tauto -> acc
+ | Unsat prf -> raise (FoundProof prf)
+ | Cut(c,p) -> (c,p)::acc
+ | Normalise (c,p) -> (c,p)::acc) [] sys
+
+
+(** [ext_gcd a b] is the extended Euclid algorithm.
+ [ext_gcd a b = (x,y,g)] iff [ax+by=g]
+ Source: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
+*)
+let rec ext_gcd a b =
+ if sign_big_int b = 0
+ then (unit_big_int,zero_big_int)
+ else
+ let (q,r) = quomod_big_int a b in
+ let (s,t) = ext_gcd b r in
+ (t, sub_big_int s (mult_big_int q t))
+
+
+let pp_ext_gcd a b =
+ let a' = big_int_of_int a in
+ let b' = big_int_of_int b in
+
+ let (x,y) = ext_gcd a' b' in
+ Printf.fprintf stdout "%s * %s + %s * %s = %s\n"
+ (string_of_big_int x) (string_of_big_int a')
+ (string_of_big_int y) (string_of_big_int b')
+ (string_of_big_int (add_big_int (mult_big_int x a') (mult_big_int y b')))
+
+exception Result of (int * (proof * cstr_compat))
+
+let split_equations psys =
+ List.partition (fun (c,p) -> c.op = Eq)
+
+
+let extract_coprime (c1,p1) (c2,p2) =
+ let rec exist2 vect1 vect2 =
+ match vect1 , vect2 with
+ | _ , [] | [], _ -> None
+ | (v1,n1)::vect1' , (v2, n2) :: vect2' ->
+ if v1 = v2
+ then
+ if compare_big_int (gcd_big_int (numerator n1) (numerator n2)) unit_big_int = 0
+ then Some (v1,n1,n2)
+ else
+ exist2 vect1' vect2'
+ else
+ if v1 < v2
+ then exist2 vect1' vect2
+ else exist2 vect1 vect2' in
+
+ if c1.op = Eq && c2.op = Eq
+ then exist2 c1.coeffs c2.coeffs
+ else None
+
+let extract2 pred l =
+ let rec xextract2 rl l =
+ match l with
+ | [] -> (None,rl) (* Did not find *)
+ | e::l ->
+ match extract (pred e) l with
+ | None,_ -> xextract2 (e::rl) l
+ | Some (r,e'),l' -> Some (r,e,e'), List.rev_append rl l' in
+
+ xextract2 [] l
+
+
+let extract_coprime_equation psys =
+ extract2 extract_coprime psys
+
+
+let apply_and_normalise f psys =
+ List.fold_left (fun acc pc' ->
+ match f pc' with
+ | None -> pc'::acc
+ | Some pc' ->
+ match check_sat pc' with
+ | Tauto -> acc
+ | Unsat prf -> raise (FoundProof prf)
+ | Cut(c,p) -> (c,p)::acc
+ | Normalise (c,p) -> (c,p)::acc
+ ) [] psys
+
+
+
+
+let pivot_sys v pc psys = apply_and_normalise (pivot v pc) psys
+
+
+let reduce_coprime psys =
+ let oeq,sys = extract_coprime_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some((v,n1,n2),(c1,p1),(c2,p2) ) ->
+ let (l1,l2) = ext_gcd (numerator n1) (numerator n2) in
+ let l1' = Big_int l1 and l2' = Big_int l2 in
+ let cstr =
+ {coeffs = Vect.add (Vect.mul l1' c1.coeffs) (Vect.mul l2' c2.coeffs);
+ op = Eq ;
+ cst = (l1' */ c1.cst) +/ (l2' */ c2.cst)
+ } in
+ let prf = add_proof (mul_proof (numerator l1') p1) (mul_proof (numerator l2') p2) in
+
+ Some (pivot_sys v (cstr,prf) ((c1,p1)::sys))
+
+(** If there is an equation [eq] of the form 1.x + e = c, do a pivot over x with equation [eq] *)
+let reduce_unary psys =
+ let is_unary_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ Some (fst (List.find (fun (_,n) -> n =/ (Int 1) || n=/ (Int (-1))) cstr.coeffs))
+ with Not_found -> None
+ else None in
+
+ let (oeq,sys) = extract is_unary_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ Some(pivot_sys v pc sys)
+
+let reduce_non_lin_unary psys =
+
+ let is_unary_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ let x = fst (List.find (fun (x,n) -> (n =/ (Int 1) || n=/ (Int (-1))) && Monomial.is_var (LinPoly.MonT.retrieve x) ) cstr.coeffs) in
+ let x' = LinPoly.MonT.retrieve x in
+ if List.for_all (fun (y,_) -> y = x || snd (Monomial.div (LinPoly.MonT.retrieve y) x') = 0) cstr.coeffs
+ then Some x
+ else None
+ with Not_found -> None
+ else None in
+
+
+ let (oeq,sys) = extract is_unary_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ Some(apply_and_normalise (LinPoly.pivot_eq v pc) sys)
+
+let reduce_var_change psys =
+
+ let rec rel_prime vect =
+ match vect with
+ | [] -> None
+ | (x,v)::vect ->
+ let v = numerator v in
+ try
+ let (x',v') = List.find (fun (_,v') ->
+ let v' = numerator v' in
+ eq_big_int (gcd_big_int v v') unit_big_int) vect in
+ Some ((x,v),(x',numerator v'))
+ with Not_found -> rel_prime vect in
+
+ let rel_prime (cstr,prf) = if cstr.op = Eq then rel_prime cstr.coeffs else None in
+
+ let (oeq,sys) = extract rel_prime psys in
+
+ match oeq with
+ | None -> None
+ | Some(((x,v),(x',v')),(c,p)) ->
+ let (l1,l2) = ext_gcd v v' in
+ let l1,l2 = Big_int l1 , Big_int l2 in
+
+ let get v vect =
+ match Vect.get v vect with
+ | None -> Int 0
+ | Some n -> n in
+
+ let pivot_eq (c',p') =
+ let {coeffs = coeffs ; op = op ; cst = cst} = c' in
+ let vx = get x coeffs in
+ let vx' = get x' coeffs in
+ let m = minus_num (vx */ l1 +/ vx' */ l2) in
+ Some ({coeffs =
+ Vect.add (Vect.mul m c.coeffs) coeffs ; op = op ; cst = m */ c.cst +/ cst} ,
+ AddPrf(MulC(([], m),p),p')) in
+
+ Some (apply_and_normalise pivot_eq sys)
+
+
+
+
+ let reduce_pivot psys =
+ let is_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ Some (fst (List.hd cstr.coeffs))
+ with Not_found -> None
+ else None in
+ let (oeq,sys) = extract is_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ if debug then
+ Printf.printf "Bad news : loss of completeness %a=%s" Vect.pp_vect (fst pc).coeffs (string_of_num (fst pc).cst);
+ Some(pivot_sys v pc sys)
+
+
+
+
+
+ let iterate_until_stable f x =
+ let rec iter x =
+ match f x with
+ | None -> x
+ | Some x' -> iter x' in
+ iter x
+
+ let rec app_funs l x =
+ match l with
+ | [] -> None
+ | f::fl ->
+ match f x with
+ | None -> app_funs fl x
+ | Some x' -> Some x'
+
+ let reduction_equations psys =
+ iterate_until_stable (app_funs
+ [reduce_unary ; reduce_coprime ;
+ reduce_var_change (*; reduce_pivot*)]) psys
+
+ let reduction_non_lin_equations psys =
+ iterate_until_stable (app_funs
+ [reduce_non_lin_unary (*; reduce_coprime ;
+ reduce_var_change ; reduce_pivot *)]) psys
+
+
+
+
+ (** [get_bound sys] returns upon success an interval (lb,e,ub) with proofs *)
+ let get_bound sys =
+ let is_small (v,i) =
+ match Itv.range i with
+ | None -> false
+ | Some i -> i <=/ (Int 1) in
+
+ let select_best (x1,i1) (x2,i2) =
+ if Itv.smaller_itv i1 i2
+ then (x1,i1) else (x2,i2) in
+
+ (* For lia, there are no equations => these precautions are not needed *)
+ (* For nlia, there are equations => do not enumerate over equations! *)
+ let all_planes sys =
+ let (eq,ineq) = List.partition (fun c -> c.op = Eq) sys in
+ match eq with
+ | [] -> List.rev_map (fun c -> c.coeffs) ineq
+ | _ ->
+ List.fold_left (fun acc c ->
+ if List.exists (fun c' -> Vect.equal c.coeffs c'.coeffs) eq
+ then acc else c.coeffs ::acc) [] ineq in
+
+ let smallest_interval =
+ List.fold_left
+ (fun acc vect ->
+ if is_small acc
+ then acc
+ else
+ match Fourier.optimise vect sys with
+ | None -> acc
+ | Some i ->
+ if debug then Printf.printf "Found a new bound %a" Vect.pp_vect vect ;
+ select_best (vect,i) acc) (Vect.null, (None,None)) (all_planes sys) in
+ let smallest_interval =
+ match smallest_interval
+ with
+ | (x,(Some i, Some j)) -> Some(i,x,j)
+ | x -> None (* This should not be possible *)
+ in
+ match smallest_interval with
+ | Some (lb,e,ub) ->
+ let (lbn,lbd) = (sub_big_int (numerator lb) unit_big_int, denominator lb) in
+ let (ubn,ubd) = (add_big_int unit_big_int (numerator ub) , denominator ub) in
+ (match
+ (* x <= ub -> x > ub *)
+ xlinear_prover ({coeffs = Vect.mul (Big_int ubd) e ; op = Ge ; cst = Big_int ubn} :: sys),
+ (* lb <= x -> lb > x *)
+ xlinear_prover
+ ({coeffs = Vect.mul (minus_num (Big_int lbd)) e ; op = Ge ; cst = minus_num (Big_int lbn)} :: sys)
+ with
+ | Some cub , Some clb -> Some(List.tl clb,(lb,e,ub), List.tl cub)
+ | _ -> failwith "Interval without proof"
+ )
+ | None -> None
+
+
+ let check_sys sys =
+ List.for_all (fun (c,p) -> List.for_all (fun (_,n) -> sign_num n <> 0) c.coeffs) sys
+
+
+ let xlia reduction_equations sys =
+
+ let rec enum_proof (id:int) (sys:prf_sys) : proof option =
+ if debug then (Printf.printf "enum_proof\n" ; flush stdout) ;
+ assert (check_sys sys) ;
+
+ let nsys,prf = List.split sys in
+ match get_bound nsys with
+ | None -> None (* Is the systeme really unbounded ? *)
+ | Some(prf1,(lb,e,ub),prf2) ->
+ if debug then Printf.printf "Found interval: %a in [%s;%s] -> " Vect.pp_vect e (string_of_num lb) (string_of_num ub) ;
+ (match start_enum id e (ceiling_num lb) (floor_num ub) sys
+ with
+ | Some prfl ->
+ Some(Enum(id,proof_of_farkas prf prf1,e, proof_of_farkas prf prf2,prfl))
+ | None -> None
+ )
+
+ and start_enum id e clb cub sys =
+ if clb >/ cub
+ then Some []
+ else
+ let eq = {coeffs = e ; op = Eq ; cst = clb} in
+ match aux_lia (id+1) ((eq, Def id) :: sys) with
+ | None -> None
+ | Some prf ->
+ match start_enum id e (clb +/ (Int 1)) cub sys with
+ | None -> None
+ | Some l -> Some (prf::l)
+
+ and aux_lia (id:int) (sys:prf_sys) : proof option =
+ assert (check_sys sys) ;
+ if debug then Printf.printf "xlia: %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ;
+ try
+ let sys = reduction_equations sys in
+ if debug then
+ Printf.printf "after reduction: %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ;
+ match linear_prover sys with
+ | Some prf -> Some (Step(id,prf,Done))
+ | None -> enum_proof id sys
+ with FoundProof prf ->
+ (* [reduction_equations] can find a proof *)
+ Some(Step(id,prf,Done)) in
+
+ (* let sys' = List.map (fun (p,o) -> Mc.norm0 p , o) sys in*)
+ let id = List.length sys in
+ let orpf =
+ try
+ let sys = simpl_sys sys in
+ aux_lia id sys
+ with FoundProof pr -> Some(Step(id,pr,Done)) in
+ match orpf with
+ | None -> None
+ | Some prf ->
+ (*Printf.printf "direct proof %a\n" output_proof prf ; *)
+ let env = mapi (fun _ i -> i) sys in
+ let prf = compile_proof env prf in
+ (*try
+ if Mc.zChecker sys' prf then Some prf else
+ raise Certificate.BadCertificate
+ with Failure s -> (Printf.printf "%s" s ; Some prf)
+ *) Some prf
+
+
+ let cstr_compat_of_poly (p,o) =
+ let (v,c) = LinPoly.linpol_of_pol p in
+ {coeffs = v ; op = o ; cst = minus_num c }
+
+
+ let lia sys =
+ LinPoly.MonT.clear ();
+ let sys = List.map (develop_constraint z_spec) sys in
+ let (sys:cstr_compat list) = List.map cstr_compat_of_poly sys in
+ let sys = mapi (fun c i -> (c,Hyp i)) sys in
+ xlia reduction_equations sys
+
+
+ let nlia sys =
+ LinPoly.MonT.clear ();
+ let sys = List.map (develop_constraint z_spec) sys in
+ let sys = mapi (fun c i -> (c,Hyp i)) sys in
+
+ let is_linear = List.for_all (fun ((p,_),_) -> Poly.is_linear p) sys in
+
+ let module MonMap = Map.Make(Monomial) in
+
+ let collect_square =
+ List.fold_left (fun acc ((p,_),_) -> Poly.fold
+ (fun m _ acc ->
+ match Monomial.sqrt m with
+ | None -> acc
+ | Some s -> MonMap.add s m acc) p acc) MonMap.empty sys in
+ let sys = MonMap.fold (fun s m acc ->
+ let s = LinPoly.linpol_of_pol (Poly.add s (Int 1) (Poly.constant (Int 0))) in
+ let m = Poly.add m (Int 1) (Poly.constant (Int 0)) in
+ ((m, Ge), (Square s))::acc) collect_square sys in
+
+(* List.iter (fun ((p,_),_) -> Printf.printf "square %a\n" Poly.pp p) gen_square*)
+
+ let sys =
+ if is_linear then sys
+ else sys @ (all_sym_pairs (fun ((c,o),p) ((c',o'),p') ->
+ ((Poly.product c c',opMult o o'), MulPrf(p,p'))) sys) in
+
+ let sys = List.map (fun (c,p) -> cstr_compat_of_poly c,p) sys in
+ assert (check_sys sys) ;
+ xlia (if is_linear then reduction_equations else reduction_non_lin_equations) sys
+
+
+
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)