summaryrefslogtreecommitdiff
path: root/plugins/micromega/RingMicromega.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/RingMicromega.v')
-rw-r--r--plugins/micromega/RingMicromega.v884
1 files changed, 884 insertions, 0 deletions
diff --git a/plugins/micromega/RingMicromega.v b/plugins/micromega/RingMicromega.v
new file mode 100644
index 00000000..d556cd03
--- /dev/null
+++ b/plugins/micromega/RingMicromega.v
@@ -0,0 +1,884 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+Require Import NArith.
+Require Import Relation_Definitions.
+Require Import Setoid.
+(*****)
+Require Import Env.
+Require Import EnvRing.
+(*****)
+Require Import List.
+Require Import Bool.
+Require Import OrderedRing.
+Require Import Refl.
+
+Set Implicit Arguments.
+
+Import OrderedRingSyntax.
+
+Section Micromega.
+
+(* Assume we have a strict(ly?) ordered ring *)
+
+Variable R : Type.
+Variables rO rI : R.
+Variables rplus rtimes rminus: R -> R -> R.
+Variable ropp : R -> R.
+Variables req rle rlt : R -> R -> Prop.
+
+Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
+
+Notation "0" := rO.
+Notation "1" := rI.
+Notation "x + y" := (rplus x y).
+Notation "x * y " := (rtimes x y).
+Notation "x - y " := (rminus x y).
+Notation "- x" := (ropp x).
+Notation "x == y" := (req x y).
+Notation "x ~= y" := (~ req x y).
+Notation "x <= y" := (rle x y).
+Notation "x < y" := (rlt x y).
+
+(* Assume we have a type of coefficients C and a morphism from C to R *)
+
+Variable C : Type.
+Variables cO cI : C.
+Variables cplus ctimes cminus: C -> C -> C.
+Variable copp : C -> C.
+Variables ceqb cleb : C -> C -> bool.
+Variable phi : C -> R.
+
+(* Power coefficients *)
+Variable E : Set. (* the type of exponents *)
+Variable pow_phi : N -> E.
+Variable rpow : R -> E -> R.
+
+Notation "[ x ]" := (phi x).
+Notation "x [=] y" := (ceqb x y).
+Notation "x [<=] y" := (cleb x y).
+
+(* Let's collect all hypotheses in addition to the ordered ring axioms into
+one structure *)
+
+Record SORaddon := mk_SOR_addon {
+ SORrm : ring_morph 0 1 rplus rtimes rminus ropp req cO cI cplus ctimes cminus copp ceqb phi;
+ SORpower : power_theory rI rtimes req pow_phi rpow;
+ SORcneqb_morph : forall x y : C, x [=] y = false -> [x] ~= [y];
+ SORcleb_morph : forall x y : C, x [<=] y = true -> [x] <= [y]
+}.
+
+Variable addon : SORaddon.
+
+Add Relation R req
+ reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _ )
+ symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _ )
+ transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _ )
+as micomega_sor_setoid.
+
+Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
+Proof.
+exact sor.(SORplus_wd).
+Qed.
+Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
+Proof.
+exact sor.(SORtimes_wd).
+Qed.
+Add Morphism ropp with signature req ==> req as ropp_morph.
+Proof.
+exact sor.(SORopp_wd).
+Qed.
+Add Morphism rle with signature req ==> req ==> iff as rle_morph.
+Proof.
+ exact sor.(SORle_wd).
+Qed.
+Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
+Proof.
+ exact sor.(SORlt_wd).
+Qed.
+
+Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
+Proof.
+ exact (rminus_morph sor). (* We already proved that minus is a morphism in OrderedRing.v *)
+Qed.
+
+Definition cneqb (x y : C) := negb (ceqb x y).
+Definition cltb (x y : C) := (cleb x y) && (cneqb x y).
+
+Notation "x [~=] y" := (cneqb x y).
+Notation "x [<] y" := (cltb x y).
+
+Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption.
+Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption.
+Ltac le_elim H := rewrite (Rle_lt_eq sor) in H; destruct H as [H | H].
+
+Lemma cleb_sound : forall x y : C, x [<=] y = true -> [x] <= [y].
+Proof.
+ exact addon.(SORcleb_morph).
+Qed.
+
+Lemma cneqb_sound : forall x y : C, x [~=] y = true -> [x] ~= [y].
+Proof.
+intros x y H1. apply addon.(SORcneqb_morph). unfold cneqb, negb in H1.
+destruct (ceqb x y); now try discriminate.
+Qed.
+
+
+Lemma cltb_sound : forall x y : C, x [<] y = true -> [x] < [y].
+Proof.
+intros x y H. unfold cltb in H. apply andb_prop in H. destruct H as [H1 H2].
+apply cleb_sound in H1. apply cneqb_sound in H2. apply <- (Rlt_le_neq sor). now split.
+Qed.
+
+(* Begin Micromega *)
+
+Definition PolC := Pol C. (* polynomials in generalized Horner form, defined in Ring_polynom or EnvRing *)
+Definition PolEnv := Env R. (* For interpreting PolC *)
+Definition eval_pol (env : PolEnv) (p:PolC) : R :=
+ Pphi 0 rplus rtimes phi env p.
+
+Inductive Op1 : Set := (* relations with 0 *)
+| Equal (* == 0 *)
+| NonEqual (* ~= 0 *)
+| Strict (* > 0 *)
+| NonStrict (* >= 0 *).
+
+Definition NFormula := (PolC * Op1)%type. (* normalized formula *)
+
+Definition eval_op1 (o : Op1) : R -> Prop :=
+match o with
+| Equal => fun x => x == 0
+| NonEqual => fun x : R => x ~= 0
+| Strict => fun x : R => 0 < x
+| NonStrict => fun x : R => 0 <= x
+end.
+
+Definition eval_nformula (env : PolEnv) (f : NFormula) : Prop :=
+let (p, op) := f in eval_op1 op (eval_pol env p).
+
+
+(** Rule of "signs" for addition and multiplication.
+ An arbitrary result is coded buy None. *)
+
+Definition OpMult (o o' : Op1) : option Op1 :=
+match o with
+| Equal => Some Equal
+| NonStrict =>
+ match o' with
+ | Equal => Some Equal
+ | NonEqual => None
+ | Strict => Some NonStrict
+ | NonStrict => Some NonStrict
+ end
+| Strict => match o' with
+ | NonEqual => None
+ | _ => Some o'
+ end
+| NonEqual => match o' with
+ | Equal => Some Equal
+ | NonEqual => Some NonEqual
+ | _ => None
+ end
+end.
+
+Definition OpAdd (o o': Op1) : option Op1 :=
+ match o with
+ | Equal => Some o'
+ | NonStrict =>
+ match o' with
+ | Strict => Some Strict
+ | NonEqual => None
+ | _ => Some NonStrict
+ end
+ | Strict => match o' with
+ | NonEqual => None
+ | _ => Some Strict
+ end
+ | NonEqual => match o' with
+ | Equal => Some NonEqual
+ | _ => None
+ end
+ end.
+
+
+Lemma OpMult_sound :
+ forall (o o' om: Op1) (x y : R),
+ eval_op1 o x -> eval_op1 o' y -> OpMult o o' = Some om -> eval_op1 om (x * y).
+Proof.
+unfold eval_op1; destruct o; simpl; intros o' om x y H1 H2 H3.
+(* x == 0 *)
+inversion H3. rewrite H1. now rewrite (Rtimes_0_l sor).
+(* x ~= 0 *)
+destruct o' ; inversion H3.
+ (* y == 0 *)
+ rewrite H2. now rewrite (Rtimes_0_r sor).
+ (* y ~= 0 *)
+ apply (Rtimes_neq_0 sor) ; auto.
+(* 0 < x *)
+destruct o' ; inversion H3.
+ (* y == 0 *)
+ rewrite H2; now rewrite (Rtimes_0_r sor).
+ (* 0 < y *)
+ now apply (Rtimes_pos_pos sor).
+ (* 0 <= y *)
+ apply (Rtimes_nonneg_nonneg sor); [le_less | assumption].
+(* 0 <= x *)
+destruct o' ; inversion H3.
+ (* y == 0 *)
+ rewrite H2; now rewrite (Rtimes_0_r sor).
+ (* 0 < y *)
+ apply (Rtimes_nonneg_nonneg sor); [assumption | le_less ].
+ (* 0 <= y *)
+ now apply (Rtimes_nonneg_nonneg sor).
+Qed.
+
+Lemma OpAdd_sound :
+ forall (o o' oa : Op1) (e e' : R),
+ eval_op1 o e -> eval_op1 o' e' -> OpAdd o o' = Some oa -> eval_op1 oa (e + e').
+Proof.
+unfold eval_op1; destruct o; simpl; intros o' oa e e' H1 H2 Hoa.
+(* e == 0 *)
+inversion Hoa. rewrite <- H0.
+destruct o' ; rewrite H1 ; now rewrite (Rplus_0_l sor).
+(* e ~= 0 *)
+ destruct o'.
+ (* e' == 0 *)
+ inversion Hoa.
+ rewrite H2. now rewrite (Rplus_0_r sor).
+ (* e' ~= 0 *)
+ discriminate.
+ (* 0 < e' *)
+ discriminate.
+ (* 0 <= e' *)
+ discriminate.
+(* 0 < e *)
+ destruct o'.
+ (* e' == 0 *)
+ inversion Hoa.
+ rewrite H2. now rewrite (Rplus_0_r sor).
+ (* e' ~= 0 *)
+ discriminate.
+ (* 0 < e' *)
+ inversion Hoa.
+ now apply (Rplus_pos_pos sor).
+ (* 0 <= e' *)
+ inversion Hoa.
+ now apply (Rplus_pos_nonneg sor).
+(* 0 <= e *)
+ destruct o'.
+ (* e' == 0 *)
+ inversion Hoa.
+ now rewrite H2, (Rplus_0_r sor).
+ (* e' ~= 0 *)
+ discriminate.
+ (* 0 < e' *)
+ inversion Hoa.
+ now apply (Rplus_nonneg_pos sor).
+ (* 0 <= e' *)
+ inversion Hoa.
+ now apply (Rplus_nonneg_nonneg sor).
+Qed.
+
+Inductive Psatz : Type :=
+| PsatzIn : nat -> Psatz
+| PsatzSquare : PolC -> Psatz
+| PsatzMulC : PolC -> Psatz -> Psatz
+| PsatzMulE : Psatz -> Psatz -> Psatz
+| PsatzAdd : Psatz -> Psatz -> Psatz
+| PsatzC : C -> Psatz
+| PsatzZ : Psatz.
+
+(** Given a list [l] of NFormula and an extended polynomial expression
+ [e], if [eval_Psatz l e] succeeds (= Some f) then [f] is a
+ logic consequence of the conjunction of the formulae in l.
+ Moreover, the polynomial expression is obtained by replacing the (PsatzIn n)
+ by the nth polynomial expression in [l] and the sign is computed by the "rule of sign" *)
+
+(* Might be defined elsewhere *)
+Definition map_option (A B:Type) (f : A -> option B) (o : option A) : option B :=
+ match o with
+ | None => None
+ | Some x => f x
+ end.
+
+Implicit Arguments map_option [A B].
+
+Definition map_option2 (A B C : Type) (f : A -> B -> option C)
+ (o: option A) (o': option B) : option C :=
+ match o , o' with
+ | None , _ => None
+ | _ , None => None
+ | Some x , Some x' => f x x'
+ end.
+
+Implicit Arguments map_option2 [A B C].
+
+Definition Rops_wd := mk_reqe rplus rtimes ropp req
+ sor.(SORplus_wd)
+ sor.(SORtimes_wd)
+ sor.(SORopp_wd).
+
+Definition pexpr_times_nformula (e: PolC) (f : NFormula) : option NFormula :=
+ let (ef,o) := f in
+ match o with
+ | Equal => Some (Pmul cO cI cplus ctimes ceqb e ef , Equal)
+ | _ => None
+ end.
+
+Definition nformula_times_nformula (f1 f2 : NFormula) : option NFormula :=
+ let (e1,o1) := f1 in
+ let (e2,o2) := f2 in
+ map_option (fun x => (Some (Pmul cO cI cplus ctimes ceqb e1 e2,x))) (OpMult o1 o2).
+
+ Definition nformula_plus_nformula (f1 f2 : NFormula) : option NFormula :=
+ let (e1,o1) := f1 in
+ let (e2,o2) := f2 in
+ map_option (fun x => (Some (Padd cO cplus ceqb e1 e2,x))) (OpAdd o1 o2).
+
+
+Fixpoint eval_Psatz (l : list NFormula) (e : Psatz) {struct e} : option NFormula :=
+ match e with
+ | PsatzIn n => Some (nth n l (Pc cO, Equal))
+ | PsatzSquare e => Some (Psquare cO cI cplus ctimes ceqb e , NonStrict)
+ | PsatzMulC re e => map_option (pexpr_times_nformula re) (eval_Psatz l e)
+ | PsatzMulE f1 f2 => map_option2 nformula_times_nformula (eval_Psatz l f1) (eval_Psatz l f2)
+ | PsatzAdd f1 f2 => map_option2 nformula_plus_nformula (eval_Psatz l f1) (eval_Psatz l f2)
+ | PsatzC c => if cltb cO c then Some (Pc c, Strict) else None
+(* This could be 0, or <> 0 -- but these cases are useless *)
+ | PsatzZ => Some (Pc cO, Equal) (* Just to make life easier *)
+ end.
+
+Lemma pexpr_times_nformula_correct : forall (env: PolEnv) (e: PolC) (f f' : NFormula),
+ eval_nformula env f -> pexpr_times_nformula e f = Some f' ->
+ eval_nformula env f'.
+Proof.
+ unfold pexpr_times_nformula.
+ destruct f.
+ intros. destruct o ; inversion H0 ; try discriminate.
+ simpl in *. unfold eval_pol in *.
+ rewrite (Pmul_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
+ rewrite H. apply (Rtimes_0_r sor).
+Qed.
+
+Lemma nformula_times_nformula_correct : forall (env:PolEnv)
+ (f1 f2 f : NFormula),
+ eval_nformula env f1 -> eval_nformula env f2 ->
+ nformula_times_nformula f1 f2 = Some f ->
+ eval_nformula env f.
+Proof.
+ unfold nformula_times_nformula.
+ destruct f1 ; destruct f2.
+ case_eq (OpMult o o0) ; simpl ; try discriminate.
+ intros. inversion H2 ; simpl.
+ unfold eval_pol.
+ destruct o1; simpl;
+ rewrite (Pmul_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
+ apply OpMult_sound with (3:= H);assumption.
+Qed.
+
+Lemma nformula_plus_nformula_correct : forall (env:PolEnv)
+ (f1 f2 f : NFormula),
+ eval_nformula env f1 -> eval_nformula env f2 ->
+ nformula_plus_nformula f1 f2 = Some f ->
+ eval_nformula env f.
+Proof.
+ unfold nformula_plus_nformula.
+ destruct f1 ; destruct f2.
+ case_eq (OpAdd o o0) ; simpl ; try discriminate.
+ intros. inversion H2 ; simpl.
+ unfold eval_pol.
+ destruct o1; simpl;
+ rewrite (Padd_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
+ apply OpAdd_sound with (3:= H);assumption.
+Qed.
+
+Lemma eval_Psatz_Sound :
+ forall (l : list NFormula) (env : PolEnv),
+ (forall (f : NFormula), In f l -> eval_nformula env f) ->
+ forall (e : Psatz) (f : NFormula), eval_Psatz l e = Some f ->
+ eval_nformula env f.
+Proof.
+ induction e.
+ (* PsatzIn *)
+ simpl ; intros.
+ destruct (nth_in_or_default n l (Pc cO, Equal)).
+ (* index is in bounds *)
+ apply H ; congruence.
+ (* index is out-of-bounds *)
+ inversion H0.
+ rewrite e. simpl.
+ now apply addon.(SORrm).(morph0).
+ (* PsatzSquare *)
+ simpl. intros. inversion H0.
+ simpl. unfold eval_pol.
+ rewrite (Psquare_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
+ now apply (Rtimes_square_nonneg sor).
+ (* PsatzMulC *)
+ simpl.
+ intro.
+ case_eq (eval_Psatz l e) ; simpl ; intros.
+ apply IHe in H0.
+ apply pexpr_times_nformula_correct with (1:=H0) (2:= H1).
+ discriminate.
+ (* PsatzMulC *)
+ simpl ; intro.
+ case_eq (eval_Psatz l e1) ; simpl ; try discriminate.
+ case_eq (eval_Psatz l e2) ; simpl ; try discriminate.
+ intros.
+ apply IHe1 in H1. apply IHe2 in H0.
+ apply (nformula_times_nformula_correct env n0 n) ; assumption.
+ (* PsatzAdd *)
+ simpl ; intro.
+ case_eq (eval_Psatz l e1) ; simpl ; try discriminate.
+ case_eq (eval_Psatz l e2) ; simpl ; try discriminate.
+ intros.
+ apply IHe1 in H1. apply IHe2 in H0.
+ apply (nformula_plus_nformula_correct env n0 n) ; assumption.
+ (* PsatzC *)
+ simpl.
+ intro. case_eq (cO [<] c).
+ intros. inversion H1. simpl.
+ rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
+ discriminate.
+ (* PsatzZ *)
+ simpl. intros. inversion H0.
+ simpl. apply addon.(SORrm).(morph0).
+Qed.
+
+Fixpoint ge_bool (n m : nat) : bool :=
+ match n with
+ | O => match m with
+ | O => true
+ | S _ => false
+ end
+ | S n => match m with
+ | O => true
+ | S m => ge_bool n m
+ end
+ end.
+
+Lemma ge_bool_cases : forall n m, (if ge_bool n m then n >= m else n < m)%nat.
+Proof.
+ induction n ; simpl.
+ destruct m ; simpl.
+ constructor.
+ omega.
+ destruct m.
+ constructor.
+ omega.
+ generalize (IHn m).
+ destruct (ge_bool n m) ; omega.
+Qed.
+
+
+Fixpoint xhyps_of_psatz (base:nat) (acc : list nat) (prf : Psatz) : list nat :=
+ match prf with
+ | PsatzC _ | PsatzZ | PsatzSquare _ => acc
+ | PsatzMulC _ prf => xhyps_of_psatz base acc prf
+ | PsatzAdd e1 e2 | PsatzMulE e1 e2 => xhyps_of_psatz base (xhyps_of_psatz base acc e2) e1
+ | PsatzIn n => if ge_bool n base then (n::acc) else acc
+ end.
+
+
+(* roughly speaking, normalise_pexpr_correct is a proof of
+ forall env p, eval_pexpr env p == eval_pol env (normalise_pexpr p) *)
+
+(*****)
+Definition paddC := PaddC cplus.
+Definition psubC := PsubC cminus.
+
+Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env P - [c] :=
+ let Rops_wd := mk_reqe rplus rtimes ropp req
+ sor.(SORplus_wd)
+ sor.(SORtimes_wd)
+ sor.(SORopp_wd) in
+ PsubC_ok sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt))
+ addon.(SORrm).
+
+Definition PaddC_ok : forall c P env, eval_pol env (paddC P c) == eval_pol env P + [c] :=
+ let Rops_wd := mk_reqe rplus rtimes ropp req
+ sor.(SORplus_wd)
+ sor.(SORtimes_wd)
+ sor.(SORopp_wd) in
+ PaddC_ok sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt))
+ addon.(SORrm).
+
+
+(* Check that a formula f is inconsistent by normalizing and comparing the
+resulting constant with 0 *)
+
+Definition check_inconsistent (f : NFormula) : bool :=
+let (e, op) := f in
+ match e with
+ | Pc c =>
+ match op with
+ | Equal => cneqb c cO
+ | NonStrict => c [<] cO
+ | Strict => c [<=] cO
+ | NonEqual => c [=] cO
+ end
+ | _ => false (* not a constant *)
+ end.
+
+Lemma check_inconsistent_sound :
+ forall (p : PolC) (op : Op1),
+ check_inconsistent (p, op) = true -> forall env, ~ eval_op1 op (eval_pol env p).
+Proof.
+intros p op H1 env. unfold check_inconsistent in H1.
+destruct op; simpl ;
+(*****)
+destruct p ; simpl; try discriminate H1;
+try rewrite <- addon.(SORrm).(morph0); trivial.
+now apply cneqb_sound.
+apply addon.(SORrm).(morph_eq) in H1. congruence.
+apply cleb_sound in H1. now apply -> (Rle_ngt sor).
+apply cltb_sound in H1. now apply -> (Rlt_nge sor).
+Qed.
+
+Definition check_normalised_formulas : list NFormula -> Psatz -> bool :=
+ fun l cm =>
+ match eval_Psatz l cm with
+ | None => false
+ | Some f => check_inconsistent f
+ end.
+
+Lemma checker_nf_sound :
+ forall (l : list NFormula) (cm : Psatz),
+ check_normalised_formulas l cm = true ->
+ forall env : PolEnv, make_impl (eval_nformula env) l False.
+Proof.
+intros l cm H env.
+unfold check_normalised_formulas in H.
+revert H.
+case_eq (eval_Psatz l cm) ; [|discriminate].
+intros nf. intros.
+rewrite <- make_conj_impl. intro.
+assert (H1' := make_conj_in _ _ H1).
+assert (Hnf := @eval_Psatz_Sound _ _ H1' _ _ H).
+destruct nf.
+apply (@check_inconsistent_sound _ _ H0 env Hnf).
+Qed.
+
+(** Normalisation of formulae **)
+
+Inductive Op2 : Set := (* binary relations *)
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt.
+
+Definition eval_op2 (o : Op2) : R -> R -> Prop :=
+match o with
+| OpEq => req
+| OpNEq => fun x y : R => x ~= y
+| OpLe => rle
+| OpGe => fun x y : R => y <= x
+| OpLt => fun x y : R => x < y
+| OpGt => fun x y : R => y < x
+end.
+
+Definition eval_pexpr (l : PolEnv) (pe : PExpr C) : R := PEeval rplus rtimes rminus ropp phi pow_phi rpow l pe.
+
+Record Formula : Type := {
+ Flhs : PExpr C;
+ Fop : Op2;
+ Frhs : PExpr C
+}.
+
+Definition eval_formula (env : PolEnv) (f : Formula) : Prop :=
+ let (lhs, op, rhs) := f in
+ (eval_op2 op) (eval_pexpr env lhs) (eval_pexpr env rhs).
+
+(* We normalize Formulas by moving terms to one side *)
+
+Definition norm := norm_aux cO cI cplus ctimes cminus copp ceqb.
+
+Definition psub := Psub cO cplus cminus copp ceqb.
+
+Definition padd := Padd cO cplus ceqb.
+
+Definition normalise (f : Formula) : NFormula :=
+let (lhs, op, rhs) := f in
+ let lhs := norm lhs in
+ let rhs := norm rhs in
+ match op with
+ | OpEq => (psub lhs rhs, Equal)
+ | OpNEq => (psub lhs rhs, NonEqual)
+ | OpLe => (psub rhs lhs, NonStrict)
+ | OpGe => (psub lhs rhs, NonStrict)
+ | OpGt => (psub lhs rhs, Strict)
+ | OpLt => (psub rhs lhs, Strict)
+ end.
+
+Definition negate (f : Formula) : NFormula :=
+let (lhs, op, rhs) := f in
+ let lhs := norm lhs in
+ let rhs := norm rhs in
+ match op with
+ | OpEq => (psub rhs lhs, NonEqual)
+ | OpNEq => (psub rhs lhs, Equal)
+ | OpLe => (psub lhs rhs, Strict) (* e <= e' == ~ e > e' *)
+ | OpGe => (psub rhs lhs, Strict)
+ | OpGt => (psub rhs lhs, NonStrict)
+ | OpLt => (psub lhs rhs, NonStrict)
+ end.
+
+
+Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) == eval_pol env lhs - eval_pol env rhs.
+Proof.
+ intros.
+ apply (Psub_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
+Qed.
+
+Lemma eval_pol_add : forall env lhs rhs, eval_pol env (padd lhs rhs) == eval_pol env lhs + eval_pol env rhs.
+Proof.
+ intros.
+ apply (Padd_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
+Qed.
+
+Lemma eval_pol_norm : forall env lhs, eval_pexpr env lhs == eval_pol env (norm lhs).
+Proof.
+ intros.
+ apply (norm_aux_spec sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm) addon.(SORpower) ).
+Qed.
+
+
+Theorem normalise_sound :
+ forall (env : PolEnv) (f : Formula),
+ eval_formula env f -> eval_nformula env (normalise f).
+Proof.
+intros env f H; destruct f as [lhs op rhs]; simpl in *.
+destruct op; simpl in *; rewrite eval_pol_sub ; rewrite <- eval_pol_norm ; rewrite <- eval_pol_norm.
+now apply <- (Rminus_eq_0 sor).
+intros H1. apply -> (Rminus_eq_0 sor) in H1. now apply H.
+now apply -> (Rle_le_minus sor).
+now apply -> (Rle_le_minus sor).
+now apply -> (Rlt_lt_minus sor).
+now apply -> (Rlt_lt_minus sor).
+Qed.
+
+Theorem negate_correct :
+ forall (env : PolEnv) (f : Formula),
+ eval_formula env f <-> ~ (eval_nformula env (negate f)).
+Proof.
+intros env f; destruct f as [lhs op rhs]; simpl.
+destruct op; simpl in *; rewrite eval_pol_sub ; rewrite <- eval_pol_norm ; rewrite <- eval_pol_norm.
+symmetry. rewrite (Rminus_eq_0 sor).
+split; intro H; [symmetry; now apply -> (Req_dne sor) | symmetry in H; now apply <- (Req_dne sor)].
+rewrite (Rminus_eq_0 sor). split; intro; now apply (Rneq_symm sor).
+rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
+rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
+rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
+rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
+Qed.
+
+(** Another normalistion - this is used for cnf conversion **)
+
+Definition xnormalise (t:Formula) : list (NFormula) :=
+ let (lhs,o,rhs) := t in
+ let lhs := norm lhs in
+ let rhs := norm rhs in
+ match o with
+ | OpEq =>
+ (psub lhs rhs, Strict)::(psub rhs lhs , Strict)::nil
+ | OpNEq => (psub lhs rhs,Equal) :: nil
+ | OpGt => (psub rhs lhs,NonStrict) :: nil
+ | OpLt => (psub lhs rhs,NonStrict) :: nil
+ | OpGe => (psub rhs lhs , Strict) :: nil
+ | OpLe => (psub lhs rhs ,Strict) :: nil
+ end.
+
+Require Import Tauto.
+
+Definition cnf_normalise (t:Formula) : cnf (NFormula) :=
+ List.map (fun x => x::nil) (xnormalise t).
+
+
+Add Ring SORRing : sor.(SORrt).
+
+Lemma cnf_normalise_correct : forall env t, eval_cnf (eval_nformula env) (cnf_normalise t) -> eval_formula env t.
+Proof.
+ unfold cnf_normalise, xnormalise ; simpl ; intros env t.
+ unfold eval_cnf.
+ destruct t as [lhs o rhs]; case_eq o ; simpl;
+ repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
+ generalize (eval_pexpr env lhs);
+ generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros.
+ (**)
+ apply sor.(SORle_antisymm).
+ rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
+ rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
+ now rewrite <- (Rminus_eq_0 sor).
+ rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
+ rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
+ rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
+ rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
+Qed.
+
+Definition xnegate (t:Formula) : list (NFormula) :=
+ let (lhs,o,rhs) := t in
+ let lhs := norm lhs in
+ let rhs := norm rhs in
+ match o with
+ | OpEq => (psub lhs rhs,Equal) :: nil
+ | OpNEq => (psub lhs rhs ,Strict)::(psub rhs lhs,Strict)::nil
+ | OpGt => (psub lhs rhs,Strict) :: nil
+ | OpLt => (psub rhs lhs,Strict) :: nil
+ | OpGe => (psub lhs rhs,NonStrict) :: nil
+ | OpLe => (psub rhs lhs,NonStrict) :: nil
+ end.
+
+Definition cnf_negate (t:Formula) : cnf (NFormula) :=
+ List.map (fun x => x::nil) (xnegate t).
+
+Lemma cnf_negate_correct : forall env t, eval_cnf (eval_nformula env) (cnf_negate t) -> ~ eval_formula env t.
+Proof.
+ unfold cnf_negate, xnegate ; simpl ; intros env t.
+ unfold eval_cnf.
+ destruct t as [lhs o rhs]; case_eq o ; simpl;
+ repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
+ generalize (eval_pexpr env lhs);
+ generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros ; intuition.
+ (**)
+ apply H0.
+ rewrite H1 ; ring.
+ (**)
+ apply H1.
+ apply sor.(SORle_antisymm).
+ rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
+ rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
+ (**)
+ apply H0. now rewrite (Rle_le_minus sor) in H1.
+ apply H0. now rewrite (Rle_le_minus sor) in H1.
+ apply H0. now rewrite (Rlt_lt_minus sor) in H1.
+ apply H0. now rewrite (Rlt_lt_minus sor) in H1.
+Qed.
+
+Lemma eval_nformula_dec : forall env d, (eval_nformula env d) \/ ~ (eval_nformula env d).
+Proof.
+ intros.
+ destruct d ; simpl.
+ generalize (eval_pol env p); intros.
+ destruct o ; simpl.
+ apply (Req_em sor r 0).
+ destruct (Req_em sor r 0) ; tauto.
+ rewrite <- (Rle_ngt sor r 0). generalize (Rle_gt_cases sor r 0). tauto.
+ rewrite <- (Rlt_nge sor r 0). generalize (Rle_gt_cases sor 0 r). tauto.
+Qed.
+
+(** Reverse transformation *)
+
+Fixpoint xdenorm (jmp : positive) (p: Pol C) : PExpr C :=
+ match p with
+ | Pc c => PEc c
+ | Pinj j p => xdenorm (Pplus j jmp ) p
+ | PX p j q => PEadd
+ (PEmul (xdenorm jmp p) (PEpow (PEX _ jmp) (Npos j)))
+ (xdenorm (Psucc jmp) q)
+ end.
+
+Lemma xdenorm_correct : forall p i env, eval_pol (jump i env) p == eval_pexpr env (xdenorm (Psucc i) p).
+Proof.
+ unfold eval_pol.
+ induction p.
+ simpl. reflexivity.
+ (* Pinj *)
+ simpl.
+ intros.
+ rewrite Pplus_succ_permute_r.
+ rewrite <- IHp.
+ symmetry.
+ rewrite Pplus_comm.
+ rewrite Pjump_Pplus. reflexivity.
+ (* PX *)
+ simpl.
+ intros.
+ rewrite <- IHp1.
+ rewrite <- IHp2.
+ unfold Env.tail , Env.hd.
+ rewrite <- Pjump_Pplus.
+ rewrite <- Pplus_one_succ_r.
+ unfold Env.nth.
+ unfold jump at 2.
+ rewrite Pplus_one_succ_l.
+ rewrite addon.(SORpower).(rpow_pow_N).
+ unfold pow_N. ring.
+Qed.
+
+Definition denorm (p : Pol C) := xdenorm xH p.
+
+Lemma denorm_correct : forall p env, eval_pol env p == eval_pexpr env (denorm p).
+Proof.
+ unfold denorm.
+ induction p.
+ reflexivity.
+ simpl.
+ rewrite <- Pplus_one_succ_r.
+ apply xdenorm_correct.
+ simpl.
+ intros.
+ rewrite IHp1.
+ unfold Env.tail.
+ rewrite xdenorm_correct.
+ change (Psucc xH) with 2%positive.
+ rewrite addon.(SORpower).(rpow_pow_N).
+ simpl. reflexivity.
+Qed.
+
+
+(** Some syntactic simplifications of expressions *)
+
+
+Definition simpl_cone (e:Psatz) : Psatz :=
+ match e with
+ | PsatzSquare t =>
+ match t with
+ | Pc c => if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
+ | _ => PsatzSquare t
+ end
+ | PsatzMulE t1 t2 =>
+ match t1 , t2 with
+ | PsatzZ , x => PsatzZ
+ | x , PsatzZ => PsatzZ
+ | PsatzC c , PsatzC c' => PsatzC (ctimes c c')
+ | PsatzC p1 , PsatzMulE (PsatzC p2) x => PsatzMulE (PsatzC (ctimes p1 p2)) x
+ | PsatzC p1 , PsatzMulE x (PsatzC p2) => PsatzMulE (PsatzC (ctimes p1 p2)) x
+ | PsatzMulE (PsatzC p2) x , PsatzC p1 => PsatzMulE (PsatzC (ctimes p1 p2)) x
+ | PsatzMulE x (PsatzC p2) , PsatzC p1 => PsatzMulE (PsatzC (ctimes p1 p2)) x
+ | PsatzC x , PsatzAdd y z => PsatzAdd (PsatzMulE (PsatzC x) y) (PsatzMulE (PsatzC x) z)
+ | PsatzC c , _ => if ceqb cI c then t2 else PsatzMulE t1 t2
+ | _ , PsatzC c => if ceqb cI c then t1 else PsatzMulE t1 t2
+ | _ , _ => e
+ end
+ | PsatzAdd t1 t2 =>
+ match t1 , t2 with
+ | PsatzZ , x => x
+ | x , PsatzZ => x
+ | x , y => PsatzAdd x y
+ end
+ | _ => e
+ end.
+
+
+
+
+End Micromega.
+
+(* Local Variables: *)
+(* coding: utf-8 *)
+(* End: *) \ No newline at end of file