summaryrefslogtreecommitdiff
path: root/plugins/micromega/EnvRing.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/EnvRing.v')
-rw-r--r--plugins/micromega/EnvRing.v1257
1 files changed, 468 insertions, 789 deletions
diff --git a/plugins/micromega/EnvRing.v b/plugins/micromega/EnvRing.v
index 309ebdef..786c3393 100644
--- a/plugins/micromega/EnvRing.v
+++ b/plugins/micromega/EnvRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -11,15 +11,10 @@
Set Implicit Arguments.
-Require Import Setoid.
-Require Import BinList.
-Require Import Env.
-Require Import BinPos.
-Require Import BinNat.
-Require Import BinInt.
+Require Import Setoid Morphisms Env BinPos BinNat BinInt.
Require Export Ring_theory.
-Open Local Scope positive_scope.
+Local Open Scope positive_scope.
Import RingSyntax.
Section MakeRingPol.
@@ -30,7 +25,7 @@ Section MakeRingPol.
Variable req : R -> R -> Prop.
(* Ring properties *)
- Variable Rsth : Setoid_Theory R req.
+ Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
@@ -42,35 +37,55 @@ Section MakeRingPol.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
- (* Power coefficients *)
+ (* Power coefficients *)
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
-
(* R notations *)
Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
- Notation "x == y" := (req x y).
+ Infix "+" := radd. Infix "*" := rmul.
+ Infix "-" := rsub. Notation "- x" := (ropp x).
+ Infix "==" := req.
+ Infix "^" := (pow_pos rmul).
(* C notations *)
- Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
- Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
- Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
-
- (* Usefull tactics *)
- Add Setoid R req Rsth as R_set1.
- Ltac rrefl := gen_reflexivity Rsth.
- Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
- Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
- Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
- Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Infix "+!" := cadd. Infix "*!" := cmul.
+ Infix "-! " := csub. Notation "-! x" := (copp x).
+ Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
+
+ (* Useful tactics *)
+ Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
+ Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
+
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
+ Ltac add_permut_rec t :=
+ match t with
+ | ?x + ?y => add_permut_rec y || add_permut_rec x
+ | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity]
+ end.
+
+ Ltac add_permut :=
+ repeat (reflexivity ||
+ match goal with |- ?t == _ => add_permut_rec t end).
+
+ Ltac mul_permut_rec t :=
+ match t with
+ | ?x * ?y => mul_permut_rec y || mul_permut_rec x
+ | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity]
+ end.
+
+ Ltac mul_permut :=
+ repeat (reflexivity ||
+ match goal with |- ?t == _ => mul_permut_rec t end).
+
+
(* Definition of multivariable polynomials with coefficients in C :
Type [Pol] represents [X1 ... Xn].
The representation is Horner's where a [n] variable polynomial
@@ -117,19 +132,19 @@ Section MakeRingPol.
| _, _ => false
end.
- Notation " P ?== P' " := (Peq P P').
+ Infix "?==" := Peq.
Definition mkPinj j P :=
match P with
| Pc _ => P
- | Pinj j' Q => Pinj ((j + j'):positive) Q
+ | Pinj j' Q => Pinj (j + j') Q
| _ => Pinj j P
end.
Definition mkPinj_pred j P:=
match j with
| xH => P
- | xO j => Pinj (Pdouble_minus_one j) P
+ | xO j => Pinj (Pos.pred_double j) P
| xI j => Pinj (xO j) P
end.
@@ -157,14 +172,14 @@ Section MakeRingPol.
(** Addition et subtraction *)
- Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PaddC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 +! c)
| Pinj j Q => Pinj j (PaddC Q c)
| PX P i Q => PX P i (PaddC Q c)
end.
- Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PsubC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 -! c)
| Pinj j Q => Pinj j (PsubC Q c)
@@ -176,11 +191,11 @@ Section MakeRingPol.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
- Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol :=
+ Fixpoint PaddI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC Q c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PaddI k Q')
@@ -188,16 +203,16 @@ Section MakeRingPol.
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
- | xO j => PX P i (PaddI (Pdouble_minus_one j) Q')
+ | xO j => PX P i (PaddI (Pos.pred_double j) Q')
| xI j => PX P i (PaddI (xO j) Q')
end
end.
- Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol :=
+ Fixpoint PsubI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC (--Q) c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PsubI k Q')
@@ -205,41 +220,41 @@ Section MakeRingPol.
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
- | xO j => PX P i (PsubI (Pdouble_minus_one j) Q')
+ | xO j => PX P i (PsubI (Pos.pred_double j) Q')
| xI j => PX P i (PsubI (xO j) Q')
end
end.
Variable P' : Pol.
- Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PaddX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX P' i' P
| Pinj j Q' =>
match j with
| xH => PX P' i' Q'
- | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q')
+ | xO j => PX P' i' (Pinj (Pos.pred_double j) Q')
| xI j => PX P' i' (Pinj (xO j) Q')
end
| PX P i Q' =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PaddX k P) i Q'
end
end.
- Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PsubX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX (--P') i' P
| Pinj j Q' =>
match j with
| xH => PX (--P') i' Q'
- | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q')
+ | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q')
| xI j => PX (--P') i' (Pinj (xO j) Q')
end
| PX P i Q' =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PsubX k P) i Q'
@@ -259,18 +274,18 @@ Section MakeRingPol.
| Pinj j Q =>
match j with
| xH => PX P' i' (Padd Q Q')
- | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q')
+ | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
end
| PX P i Q =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
| Z0 => mkPX (Padd P P') i (Padd Q Q')
| Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
end
end
end.
- Notation "P ++ P'" := (Padd P P').
+ Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
match P' with
@@ -282,22 +297,22 @@ Section MakeRingPol.
| Pinj j Q =>
match j with
| xH => PX (--P') i' (Psub Q Q')
- | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q')
+ | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
end
| PX P i Q =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
| Z0 => mkPX (Psub P P') i (Psub Q Q')
| Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
end
end
end.
- Notation "P -- P'" := (Psub P P').
+ Infix "--" := Psub.
(** Multiplication *)
- Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PmulC_aux (P:Pol) (c:C) : Pol :=
match P with
| Pc c' => Pc (c' *! c)
| Pinj j Q => mkPinj j (PmulC_aux Q c)
@@ -311,11 +326,11 @@ Section MakeRingPol.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
- Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PmulI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PmulC Q c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
| Z0 => mkPinj j (Pmul Q' Q)
| Zneg k => mkPinj j' (PmulI k Q')
@@ -323,13 +338,12 @@ Section MakeRingPol.
| PX P' i' Q' =>
match j with
| xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
- | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q')
+ | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q')
| xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
end
end.
End PmulI.
-(* A symmetric version of the multiplication *)
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
match P'' with
@@ -342,7 +356,7 @@ Section MakeRingPol.
let QQ' :=
match j with
| xH => Pmul Q Q'
- | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q'
+ | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q'
| xI j => Pmul (Pinj (xO j) Q) Q'
end in
mkPX (Pmul P P') i' QQ'
@@ -355,25 +369,7 @@ Section MakeRingPol.
end
end.
-(* Non symmetric *)
-(*
- Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol :=
- match P' with
- | Pc c' => PmulC P c'
- | Pinj j' Q' => PmulI Pmul_aux Q' j' P
- | PX P' i' Q' =>
- (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P)
- end.
-
- Definition Pmul P P' :=
- match P with
- | Pc c => PmulC P' c
- | Pinj j Q => PmulI Pmul_aux Q j P'
- | PX P i Q =>
- (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P')
- end.
-*)
- Notation "P ** P'" := (Pmul P P').
+ Infix "**" := Pmul.
Fixpoint Psquare (P:Pol) : Pol :=
match P with
@@ -388,26 +384,26 @@ Section MakeRingPol.
(** Monomial **)
+ (** A monomial is X1^k1...Xi^ki. Its representation
+ is a simplified version of the polynomial representation:
+
+ - [mon0] correspond to the polynom [P1].
+ - [(zmon j M)] corresponds to [(Pinj j ...)],
+ i.e. skip j variable indices.
+ - [(vmon i M)] is X^i*M with X the current variable,
+ its corresponds to (PX P1 i ...)]
+ *)
+
Inductive Mon: Set :=
- mon0: Mon
+ | mon0: Mon
| zmon: positive -> Mon -> Mon
| vmon: positive -> Mon -> Mon.
- Fixpoint Mphi(l:Env R) (M: Mon) {struct M} : R :=
- match M with
- mon0 => rI
- | zmon j M1 => Mphi (jump j l) M1
- | vmon i M1 =>
- let x := hd 0 l in
- let xi := pow_pos rmul x i in
- (Mphi (tail l) M1) * xi
- end.
-
Definition mkZmon j M :=
match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M :=
- match j with xH => M | _ => mkZmon (Ppred j) M end.
+ match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M :=
match M with
@@ -416,7 +412,7 @@ Section MakeRingPol.
| vmon i' m => vmon (i+i') m
end.
- Fixpoint MFactor (P: Pol) (M: Mon) {struct P}: Pol * Pol :=
+ Fixpoint MFactor (P: Pol) (M: Mon) : Pol * Pol :=
match P, M with
_, mon0 => (Pc cO, P)
| Pc _, _ => (P, Pc cO)
@@ -453,7 +449,7 @@ Section MakeRingPol.
| _ => Some (Padd Q1 (Pmul P2 R1))
end.
- Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) {struct n}: Pol :=
+ Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) : Pol :=
match POneSubst P1 M1 P2 with
Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end
| _ => P1
@@ -465,14 +461,13 @@ Section MakeRingPol.
| _ => None
end.
- Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}:
- Pol :=
+ Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : Pol :=
match LM1 with
cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
| _ => P1
end.
- Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: option Pol :=
+ Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : option Pol :=
match LM1 with
cons (M1,P2) LM2 =>
match PNSubst P1 M1 P2 n with
@@ -482,7 +477,7 @@ Section MakeRingPol.
| _ => None
end.
- Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) {struct m}: Pol :=
+ Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) : Pol :=
match PSubstL P1 LM1 n with
Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
| _ => P1
@@ -490,726 +485,446 @@ Section MakeRingPol.
(** Evaluation of a polynomial towards R *)
- Fixpoint Pphi(l:Env R) (P:Pol) {struct P} : R :=
+ Fixpoint Pphi(l:Env R) (P:Pol) : R :=
match P with
| Pc c => [c]
| Pinj j Q => Pphi (jump j l) Q
- | PX P i Q =>
- let x := hd 0 l in
- let xi := pow_pos rmul x i in
- (Pphi l P) * xi + (Pphi (tail l) Q)
+ | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
+
+ (** Evaluation of a monomial towards R *)
+
+ Fixpoint Mphi(l:Env R) (M: Mon) : R :=
+ match M with
+ | mon0 => rI
+ | zmon j M1 => Mphi (jump j l) M1
+ | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i
+ end.
+
+ Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
+
(** Proofs *)
- Lemma ZPminus_spec : forall x y,
- match ZPminus x y with
- | Z0 => x = y
- | Zpos k => x = (y + k)%positive
- | Zneg k => y = (x + k)%positive
+
+ Ltac destr_pos_sub :=
+ match goal with |- context [Z.pos_sub ?x ?y] =>
+ generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
+
+ Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l.
Proof.
- induction x;destruct y.
- replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
- replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial.
- apply Pplus_xI_double_minus_one.
- simpl;trivial.
- replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial.
- apply Pplus_xI_double_minus_one.
- replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
- replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial.
- replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- simpl;trivial.
+ revert P';induction P;destruct P';simpl; intros H l; try easy.
+ - now apply (morph_eq CRmorph).
+ - destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
+ now rewrite IHP.
+ - specialize (IHP1 P'1); specialize (IHP2 P'2).
+ destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
+ destruct (P2 ?== P'1); [|easy].
+ rewrite H in *.
+ now rewrite IHP1, IHP2.
Qed.
- Lemma Peq_ok : forall P P',
- (P ?== P') = true -> forall l, P@l == P'@ l.
+ Lemma Peq_spec P P' :
+ BoolSpec (forall l, P@l == P'@l) True (P ?== P').
Proof.
- induction P;destruct P';simpl;intros;try discriminate;trivial.
- apply (morph_eq CRmorph);trivial.
- assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0);
- try discriminate H.
- rewrite (IHP P' H); rewrite H1;trivial;rrefl.
- assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0);
- try discriminate H.
- rewrite H1;trivial. clear H1.
- assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2);
- destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H]
- |discriminate H].
- rewrite (H1 H);rewrite (H2 H);rrefl.
+ generalize (Peq_ok P P'). destruct (P ?== P'); auto.
Qed.
- Lemma Pphi0 : forall l, P0@l == 0.
+ Lemma Pphi0 l : P0@l == 0.
Proof.
- intros;simpl;apply (morph0 CRmorph).
+ simpl;apply (morph0 CRmorph).
Qed.
-Lemma env_morph : forall p e1 e2, (forall x, e1 x = e2 x) ->
- p @ e1 = p @ e2.
+ Lemma Pphi1 l : P1@l == 1.
+ Proof.
+ simpl;apply (morph1 CRmorph).
+ Qed.
+
+Lemma env_morph p e1 e2 :
+ (forall x, e1 x = e2 x) -> p @ e1 = p @ e2.
Proof.
- induction p ; simpl.
- reflexivity.
- intros.
- apply IHp.
- intros.
- unfold jump.
- apply H.
- intros.
- rewrite (IHp1 e1 e2) ; auto.
- rewrite (IHp2 (tail e1) (tail e2)) ; auto.
- unfold hd. unfold nth. rewrite H. reflexivity.
- unfold tail. unfold jump. intros ; apply H.
+ revert e1 e2. induction p ; simpl.
+ - reflexivity.
+ - intros e1 e2 EQ. apply IHp. intros. apply EQ.
+ - intros e1 e2 EQ. f_equal; [f_equal|].
+ + now apply IHp1.
+ + f_equal. apply EQ.
+ + apply IHp2. intros; apply EQ.
Qed.
-Lemma Pjump_Pplus : forall P i j l, P @ (jump (i + j) l ) = P @ (jump j (jump i l)).
+Lemma Pjump_add P i j l :
+ P @ (jump (i + j) l) = P @ (jump j (jump i l)).
Proof.
- intros. apply env_morph. intros. rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
+ apply env_morph. intros. rewrite <- jump_add. f_equal.
+ apply Pos.add_comm.
Qed.
-Lemma Pjump_xO_tail : forall P p l,
+Lemma Pjump_xO_tail P p l :
P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l).
Proof.
- intros.
- apply env_morph.
- intros.
- rewrite (@jump_simpl R (xI p)).
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply env_morph. intros. now jump_simpl.
Qed.
-Lemma Pjump_Pdouble_minus_one : forall P p l,
- P @ (jump (Pdouble_minus_one p) (tail l)) = P @ (jump (xO p) l).
+Lemma Pjump_pred_double P p l :
+ P @ (jump (Pos.pred_double p) (tail l)) = P @ (jump (xO p) l).
Proof.
- intros.
- apply env_morph.
- intros.
- rewrite jump_Pdouble_minus_one.
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply env_morph. intros.
+ rewrite jump_pred_double. now jump_simpl.
Qed.
-
-
- Lemma Pphi1 : forall l, P1@l == 1.
+ Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Proof.
- intros;simpl;apply (morph1 CRmorph).
+ destruct P;simpl;rsimpl.
+ now rewrite Pjump_add.
Qed.
- Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l).
+ Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
Proof.
- intros j l p;destruct p;simpl;rsimpl.
- rewrite Pjump_Pplus.
- reflexivity.
+ rewrite Pos.add_comm.
+ apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
Qed.
- Let pow_pos_Pplus :=
- pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc).
-
- Lemma mkPX_ok : forall l P i Q,
- (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l).
+ Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Proof.
- intros l P i Q;unfold mkPX.
- destruct P;try (simpl;rrefl).
- assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl.
- rewrite (H (refl_equal true));rewrite (morph0 CRmorph).
- rewrite mkPinj_ok;rsimpl;simpl;rrefl.
- assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl.
- rewrite (H (refl_equal true));trivial.
- rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl.
+ generalize (morph_eq CRmorph c c').
+ destruct (c ?=! c'); auto.
Qed.
-
- Ltac Esimpl :=
- repeat (progress (
- match goal with
- | |- context [P0@?l] => rewrite (Pphi0 l)
- | |- context [P1@?l] => rewrite (Pphi1 l)
- | |- context [(mkPinj ?j ?P)@?l] => rewrite (mkPinj_ok j l P)
- | |- context [(mkPX ?P ?i ?Q)@?l] => rewrite (mkPX_ok l P i Q)
- | |- context [[cO]] => rewrite (morph0 CRmorph)
- | |- context [[cI]] => rewrite (morph1 CRmorph)
- | |- context [[?x +! ?y]] => rewrite ((morph_add CRmorph) x y)
- | |- context [[?x *! ?y]] => rewrite ((morph_mul CRmorph) x y)
- | |- context [[?x -! ?y]] => rewrite ((morph_sub CRmorph) x y)
- | |- context [[-! ?x]] => rewrite ((morph_opp CRmorph) x)
- end));
- rsimpl; simpl.
-
- Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c].
+ Lemma mkPX_ok l P i Q :
+ (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Proof.
- induction P;simpl;intros;Esimpl;trivial.
- rewrite IHP2;rsimpl.
+ unfold mkPX. destruct P.
+ - case ceqb_spec; intros H; simpl; try reflexivity.
+ rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl.
+ - reflexivity.
+ - case Peq_spec; intros H; simpl; try reflexivity.
+ rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl.
Qed.
- Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c].
+ Hint Rewrite
+ Pphi0
+ Pphi1
+ mkPinj_ok
+ mkPX_ok
+ (morph0 CRmorph)
+ (morph1 CRmorph)
+ (morph0 CRmorph)
+ (morph_add CRmorph)
+ (morph_mul CRmorph)
+ (morph_sub CRmorph)
+ (morph_opp CRmorph)
+ : Esimpl.
+
+ (* Quicker than autorewrite with Esimpl :-) *)
+ Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
+
+ Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Proof.
- induction P;simpl;intros.
- Esimpl.
- rewrite IHP;rsimpl.
+ revert l;induction P;simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
- Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
+ Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Proof.
- induction P;simpl;intros;Esimpl;trivial.
- rewrite IHP1;rewrite IHP2;rsimpl.
- mul_push ([c]);rrefl.
+ revert l;induction P;simpl;intros.
+ - Esimpl.
+ - rewrite IHP;rsimpl.
+ - rewrite IHP2;rsimpl.
Qed.
- Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
+ Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Proof.
- intros c P l; unfold PmulC.
- assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO).
- rewrite (H (refl_equal true));Esimpl.
- assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
- rewrite (H1 (refl_equal true));Esimpl.
- apply PmulC_aux_ok.
+ revert l;induction P;simpl;intros;Esimpl;trivial.
+ rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut.
Qed.
- Lemma Popp_ok : forall P l, (--P)@l == - P@l.
+ Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Proof.
- induction P;simpl;intros.
- Esimpl.
- apply IHP.
- rewrite IHP1;rewrite IHP2;rsimpl.
+ unfold PmulC.
+ case ceqb_spec; intros H.
+ - rewrite H; Esimpl.
+ - case ceqb_spec; intros H'.
+ + rewrite H'; Esimpl.
+ + apply PmulC_aux_ok.
Qed.
- Ltac Esimpl2 :=
- Esimpl;
- repeat (progress (
- match goal with
- | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l)
- | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l)
- | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
- | |- context [(--?P)@?l] => rewrite (Popp_ok P l)
- end)); Esimpl.
-
-
-
-
- Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l.
+ Lemma Popp_ok P l : (--P)@l == - P@l.
Proof.
- induction P';simpl;intros;Esimpl2.
- generalize P p l;clear P p l.
- induction P;simpl;intros.
- Esimpl2;apply (ARadd_comm ARth).
- assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
- rewrite H;Esimpl. rewrite IHP';rrefl.
- rewrite H;Esimpl. rewrite IHP';Esimpl.
- rewrite Pjump_Pplus. rrefl.
- rewrite H;Esimpl. rewrite IHP.
- rewrite Pjump_Pplus. rrefl.
- destruct p0;simpl.
- rewrite IHP2;simpl. rsimpl.
- rewrite Pjump_xO_tail. Esimpl.
- rewrite IHP2;simpl.
- rewrite Pjump_Pdouble_minus_one.
- rsimpl.
- rewrite IHP'.
- rsimpl.
- destruct P;simpl.
- Esimpl2;add_push [c];rrefl.
- destruct p0;simpl;Esimpl2.
- rewrite IHP'2;simpl.
- rewrite Pjump_xO_tail.
- rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
- rewrite IHP'2;simpl.
- rewrite Pjump_Pdouble_minus_one. rsimpl.
- add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
- rewrite IHP'2;rsimpl.
- unfold tail.
- add_push (P @ (jump 1 l));rrefl.
- assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
- rewrite IHP'1;rewrite IHP'2;rsimpl.
- add_push (P3 @ (tail l));rewrite H;rrefl.
- rewrite IHP'1;rewrite IHP'2;simpl;Esimpl.
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
- assert (forall P k l,
- (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k).
- induction P;simpl;intros;try apply (ARadd_comm ARth).
- destruct p2; simpl; try apply (ARadd_comm ARth).
- rewrite Pjump_xO_tail.
- apply (ARadd_comm ARth).
- rewrite Pjump_Pdouble_minus_one.
- apply (ARadd_comm ARth).
- assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2.
- rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl.
- rewrite IHP'1;simpl;Esimpl.
- rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;Esimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite IHP1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;rsimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite H0;rsimpl.
- add_push (P3 @ (tail l)).
- rewrite H;rewrite Pplus_comm.
- rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
+ revert l;induction P;simpl;intros.
+ - Esimpl.
+ - apply IHP.
+ - rewrite IHP1, IHP2;rsimpl.
Qed.
- Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
+ Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
+
+ Lemma PaddX_ok P' P k l :
+ (forall P l, (P++P')@l == P@l + P'@l) ->
+ (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Proof.
- induction P';simpl;intros;Esimpl2;trivial.
- generalize P p l;clear P p l.
- induction P;simpl;intros.
- Esimpl2;apply (ARadd_comm ARth).
- assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
- rewrite H;Esimpl. rewrite IHP';rsimpl.
- rewrite H;Esimpl. rewrite IHP';Esimpl.
- rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl.
- rewrite H;Esimpl. rewrite IHP.
- rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl.
- destruct p0;simpl.
- rewrite IHP2;simpl; try rewrite Pjump_xO_tail ; rsimpl.
- rewrite IHP2;simpl.
- rewrite Pjump_Pdouble_minus_one;rsimpl.
- unfold tail ; rsimpl.
- rewrite IHP';rsimpl.
- destruct P;simpl.
- repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl.
- destruct p0;simpl;Esimpl2.
- rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial.
- rewrite Pjump_xO_tail.
- add_push (P @ ((jump (xI p0) l)));rrefl.
- rewrite IHP'2;simpl;rewrite Pjump_Pdouble_minus_one;rsimpl.
- add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl.
- unfold tail.
- rewrite IHP'2;rsimpl;add_push (P @ (jump 1 l));rrefl.
- assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
- rewrite IHP'1; rewrite IHP'2;rsimpl.
- add_push (P3 @ (tail l));rewrite H;rrefl.
- rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl.
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
- assert (forall P k l,
- (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k).
- induction P;simpl;intros.
- rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial.
- destruct p2;simpl; rewrite Popp_ok;rsimpl.
- rewrite Pjump_xO_tail.
- apply (ARadd_comm ARth);trivial.
- rewrite Pjump_Pdouble_minus_one.
- apply (ARadd_comm ARth);trivial.
- apply (ARadd_comm ARth);trivial.
- assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl.
- rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl.
- rewrite IHP'1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;Esimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite IHP1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;rsimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite H0;rsimpl.
- rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)).
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
+ intros IHP'.
+ revert k l. induction P;simpl;intros.
+ - add_permut.
+ - destruct p; simpl;
+ rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
+ - destr_pos_sub; intros ->;Esimpl.
+ + rewrite IHP';rsimpl. add_permut.
+ + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ + rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
-(* Proof for the symmetric version *)
- Lemma PmulI_ok :
- forall P',
- (forall (P : Pol) (l : Env R), (Pmul P P') @ l == P @ l * P' @ l) ->
- forall (P : Pol) (p : positive) (l : Env R),
- (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
+ Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Proof.
- induction P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
- rewrite H1; rewrite H;rrefl.
- rewrite H1; rewrite H.
- rewrite Pjump_Pplus;simpl;rrefl.
- rewrite H1.
- rewrite Pjump_Pplus;rewrite IHP;rrefl.
- destruct p0;Esimpl2.
- rewrite IHP1;rewrite IHP2;rsimpl.
- rewrite Pjump_xO_tail.
- mul_push (pow_pos rmul (hd 0 l) p);rrefl.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p); rewrite Pjump_Pdouble_minus_one.
- rrefl.
- rewrite IHP1;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p).
- rewrite H;rrefl.
+ revert P l; induction P';simpl;intros;Esimpl.
+ - revert p l; induction P;simpl;intros.
+ + Esimpl; add_permut.
+ + destr_pos_sub; intros ->;Esimpl.
+ * now rewrite IHP'.
+ * rewrite IHP';Esimpl. now rewrite Pjump_add.
+ * rewrite IHP. now rewrite Pjump_add.
+ + destruct p0;simpl.
+ * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl.
+ * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl.
+ * rewrite IHP'. rsimpl.
+ - destruct P;simpl.
+ + Esimpl. add_permut.
+ + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
+ * rewrite Pjump_xO_tail. rsimpl. add_permut.
+ * rewrite Pjump_pred_double. rsimpl. add_permut.
+ * rsimpl. unfold tail. add_permut.
+ + destr_pos_sub; intros ->; Esimpl.
+ * rewrite IHP'1, IHP'2;rsimpl. add_permut.
+ * rewrite IHP'1, IHP'2;simpl;Esimpl.
+ rewrite pow_pos_add;rsimpl. add_permut.
+ * rewrite PaddX_ok by trivial; rsimpl.
+ rewrite IHP'2, pow_pos_add; rsimpl. add_permut.
Qed.
-(*
- Lemma PmulI_ok :
- forall P',
- (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) ->
- forall (P : Pol) (p : positive) (l : list R),
- (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l).
+ Lemma PsubX_ok P' P k l :
+ (forall P l, (P--P')@l == P@l - P'@l) ->
+ (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k.
Proof.
- induction P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
- rewrite H1; rewrite H;rrefl.
- rewrite H1; rewrite H.
- rewrite Pplus_comm.
- rewrite jump_Pplus;simpl;rrefl.
- rewrite H1;rewrite Pplus_comm.
- rewrite jump_Pplus;rewrite IHP;rrefl.
- destruct p0;Esimpl2.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p);rrefl.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
- rewrite IHP1;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p).
- rewrite H;rrefl.
+ intros IHP'.
+ revert k l. induction P;simpl;intros.
+ - rewrite Popp_ok;rsimpl; add_permut.
+ - destruct p; simpl;
+ rewrite Popp_ok;rsimpl;
+ rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
+ - destr_pos_sub; intros ->; Esimpl.
+ + rewrite IHP';rsimpl. add_permut.
+ + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ + rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
- Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l.
+ Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Proof.
- induction P';simpl;intros.
- Esimpl2;trivial.
- apply PmulI_ok;trivial.
- rewrite Padd_ok;Esimpl2.
- rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl.
+ revert P l; induction P';simpl;intros;Esimpl.
+ - revert p l; induction P;simpl;intros.
+ + Esimpl; add_permut.
+ + destr_pos_sub; intros ->;Esimpl.
+ * rewrite IHP';rsimpl.
+ * rewrite IHP';Esimpl. now rewrite Pjump_add.
+ * rewrite IHP. now rewrite Pjump_add.
+ + destruct p0;simpl.
+ * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl.
+ * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl.
+ * rewrite IHP'. rsimpl.
+ - destruct P;simpl.
+ + Esimpl; add_permut.
+ + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
+ * rewrite Pjump_xO_tail. rsimpl. add_permut.
+ * rewrite Pjump_pred_double. rsimpl. add_permut.
+ * rsimpl. unfold tail. add_permut.
+ + destr_pos_sub; intros ->; Esimpl.
+ * rewrite IHP'1, IHP'2;rsimpl. add_permut.
+ * rewrite IHP'1, IHP'2;simpl;Esimpl.
+ rewrite pow_pos_add;rsimpl. add_permut.
+ * rewrite PsubX_ok by trivial;rsimpl.
+ rewrite IHP'2, pow_pos_add;rsimpl. add_permut.
Qed.
-*)
-(* Proof for the symmetric version *)
- Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
+ Lemma PmulI_ok P' :
+ (forall P l, (Pmul P P') @ l == P @ l * P' @ l) ->
+ forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
- intros P P';generalize P;clear P;induction P';simpl;intros.
- apply PmulC_ok. apply PmulI_ok;trivial.
- destruct P.
- rewrite (ARmul_comm ARth);Esimpl2;Esimpl2.
- Esimpl2. rewrite IHP'1;Esimpl2.
- assert (match p0 with
- | xI j => Pinj (xO j) P ** P'2
- | xO j => Pinj (Pdouble_minus_one j) P ** P'2
- | 1 => P ** P'2
- end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)).
- destruct p0;rewrite IHP'2;Esimpl.
- rewrite Pjump_xO_tail. reflexivity.
- rewrite Pjump_Pdouble_minus_one;Esimpl.
- rewrite H;Esimpl.
- rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2.
- repeat (rewrite IHP'1 || rewrite IHP'2);simpl.
- rewrite PmulI_ok;trivial.
- unfold tail.
- mul_push (P'1@l). simpl. mul_push (P'2 @ (jump 1 l)). Esimpl.
+ intros IHP'.
+ induction P;simpl;intros.
+ - Esimpl; mul_permut.
+ - destr_pos_sub; intros ->;Esimpl.
+ + now rewrite IHP'.
+ + now rewrite IHP', Pjump_add.
+ + now rewrite IHP, Pjump_add.
+ - destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl.
+ + rewrite Pjump_xO_tail. f_equiv. mul_permut.
+ + rewrite Pjump_pred_double. f_equiv. mul_permut.
+ + rewrite IHP'. f_equiv. mul_permut.
Qed.
-(*
-Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
+ Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Proof.
- destruct P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- rewrite (PmulI_ok P (Pmul_aux_ok P)).
- apply (ARmul_comm ARth).
- rewrite Padd_ok; Esimpl2.
- rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial.
- rewrite Pmul_aux_ok;mul_push (P' @ l).
- rewrite (ARmul_comm ARth (P' @ l));rrefl.
+ revert P l;induction P';simpl;intros.
+ - apply PmulC_ok.
+ - apply PmulI_ok;trivial.
+ - destruct P.
+ + rewrite (ARmul_comm ARth). Esimpl.
+ + Esimpl. rewrite IHP'1;Esimpl. f_equiv.
+ destruct p0;rewrite IHP'2;Esimpl.
+ * now rewrite Pjump_xO_tail.
+ * rewrite Pjump_pred_double; Esimpl.
+ + rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok,
+ !IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl.
+ unfold tail.
+ add_permut; f_equiv; mul_permut.
Qed.
-*)
- Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l.
+ Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l.
Proof.
- induction P;simpl;intros;Esimpl2.
- apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2.
- rewrite IHP1;rewrite IHP2.
- mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l).
- rrefl.
+ revert l;induction P;simpl;intros;Esimpl.
+ - apply IHP.
+ - rewrite Padd_ok, Pmul_ok;Esimpl.
+ rewrite IHP1, IHP2.
+ mul_push ((hd l)^p). now mul_push (P2@l).
Qed.
- Lemma Mphi_morph : forall P env env', (forall x, env x = env' x ) ->
- Mphi env P = Mphi env' P.
+ Lemma Mphi_morph M e1 e2 :
+ (forall x, e1 x = e2 x) -> M @@ e1 = M @@ e2.
Proof.
- induction P ; simpl.
- reflexivity.
- intros.
- apply IHP.
- intros.
- unfold jump.
- apply H.
- (**)
- intros.
- replace (Mphi (tail env) P) with (Mphi (tail env') P).
- unfold hd. unfold nth.
- rewrite H.
- reflexivity.
- apply IHP.
- unfold tail,jump.
- intros. symmetry. apply H.
+ revert e1 e2; induction M; simpl; intros e1 e2 EQ; trivial.
+ - apply IHM. intros; apply EQ.
+ - f_equal.
+ * apply IHM. intros; apply EQ.
+ * f_equal. apply EQ.
Qed.
-Lemma Mjump_xO_tail : forall M p l,
- Mphi (jump (xO p) (tail l)) M = Mphi (jump (xI p) l) M.
+Lemma Mjump_xO_tail M p l :
+ M @@ (jump (xO p) (tail l)) = M @@ (jump (xI p) l).
Proof.
- intros.
- apply Mphi_morph.
- intros.
- rewrite (@jump_simpl R (xI p)).
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply Mphi_morph. intros. now jump_simpl.
Qed.
-Lemma Mjump_Pdouble_minus_one : forall M p l,
- Mphi (jump (Pdouble_minus_one p) (tail l)) M = Mphi (jump (xO p) l) M.
+Lemma Mjump_pred_double M p l :
+ M @@ (jump (Pos.pred_double p) (tail l)) = M @@ (jump (xO p) l).
Proof.
- intros.
- apply Mphi_morph.
- intros.
- rewrite jump_Pdouble_minus_one.
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply Mphi_morph. intros.
+ rewrite jump_pred_double. now jump_simpl.
Qed.
-Lemma Mjump_Pplus : forall M i j l, Mphi (jump (i + j) l ) M = Mphi (jump j (jump i l)) M.
+Lemma Mjump_add M i j l :
+ M @@ (jump (i + j) l) = M @@ (jump j (jump i l)).
Proof.
- intros. apply Mphi_morph. intros. rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
+ apply Mphi_morph. intros. now rewrite <- jump_add, Pos.add_comm.
Qed.
-
-
- Lemma mkZmon_ok: forall M j l,
- Mphi l (mkZmon j M) == Mphi l (zmon j M).
- intros M j l; case M; simpl; intros; rsimpl.
+ Lemma mkZmon_ok M j l :
+ (mkZmon j M) @@ l == (zmon j M) @@ l.
+ Proof.
+ destruct M; simpl; rsimpl.
Qed.
- Lemma zmon_pred_ok : forall M j l,
- Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M).
+ Lemma zmon_pred_ok M j l :
+ (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Proof.
- destruct j; simpl;intros l; rsimpl.
- rewrite mkZmon_ok;rsimpl.
- simpl.
- rewrite Mjump_xO_tail.
- reflexivity.
- rewrite mkZmon_ok;simpl.
- rewrite Mjump_Pdouble_minus_one; rsimpl.
+ destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl.
+ - now rewrite Mjump_xO_tail.
+ - rewrite Mjump_pred_double; rsimpl.
Qed.
- Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i.
+ Lemma mkVmon_ok M i l :
+ (mkVmon i M)@@l == M@@l * (hd l)^i.
Proof.
destruct M;simpl;intros;rsimpl.
- rewrite zmon_pred_ok;simpl;rsimpl.
- rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl.
+ - rewrite zmon_pred_ok;simpl;rsimpl.
+ - rewrite pow_pos_add;rsimpl.
Qed.
+ Ltac destr_mfactor R S := match goal with
+ | H : context [MFactor ?P _] |- context [MFactor ?P ?M] =>
+ specialize (H M); destruct MFactor as (R,S)
+ end.
- Lemma Mphi_ok: forall P M l,
- let (Q,R) := MFactor P M in
- P@l == Q@l + (Mphi l M) * (R@l).
+ Lemma Mphi_ok P M l :
+ let (Q,R) := MFactor P M in
+ P@l == Q@l + M@@l * R@l.
Proof.
- intros P; elim P; simpl; auto; clear P.
- intros c M l; case M; simpl; auto; try intro p; try intro m;
- try rewrite (morph0 CRmorph); rsimpl.
-
- intros i P Hrec M l; case M; simpl; clear M.
- rewrite (morph0 CRmorph); rsimpl.
- intros j M.
- case_eq (i ?= j); intros He; simpl.
- rewrite (Pos.compare_eq _ _ He).
- generalize (Hrec M (jump j l)); case (MFactor P M);
- simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
- generalize (Hrec (zmon (j -i) M) (jump i l));
- case (MFactor P (zmon (j -i) M)); simpl.
- intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
- rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)).
- rewrite Mjump_Pplus; auto.
- rewrite (morph0 CRmorph); rsimpl.
- intros P2 m; rewrite (morph0 CRmorph); rsimpl.
-
- intros P2 Hrec1 i Q2 Hrec2 M l; case M; simpl; auto.
- rewrite (morph0 CRmorph); rsimpl.
- intros j M1.
- generalize (Hrec1 (zmon j M1) l);
- case (MFactor P2 (zmon j M1)).
- intros R1 S1 H1.
- generalize (Hrec2 (zmon_pred j M1) (tail l));
- case (MFactor Q2 (zmon_pred j M1)); simpl.
- intros R2 S2 H2; rewrite H1; rewrite H2.
- repeat rewrite mkPX_ok; simpl.
- rsimpl.
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- rewrite zmon_pred_ok;rsimpl.
- intros j M1.
- case_eq (i ?= j); intros He; simpl.
- rewrite (Pos.compare_eq _ _ He).
- generalize (Hrec1 (mkZmon xH M1) l); case (MFactor P2 (mkZmon xH M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- rewrite mkZmon_ok.
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- generalize (Hrec1 (vmon (j - i) M1) l);
- case (MFactor P2 (vmon (j - i) M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto.
- rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- apply rmul_ext; rsimpl.
- rewrite <- pow_pos_Pplus.
- rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl.
- generalize (Hrec1 (mkZmon 1 M1) l);
- case (MFactor P2 (mkZmon 1 M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rsimpl.
- rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- rewrite mkZmon_ok.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- rewrite mkPX_ok; simpl; rsimpl.
- rewrite (morph0 CRmorph); rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- rewrite (ARmul_comm ARth (Q3@l)); rsimpl.
- apply rmul_ext; rsimpl.
- rewrite <- pow_pos_Pplus.
- rewrite (Pplus_minus _ _ He); rsimpl.
+ revert M l; induction P; destruct M; intros l; simpl; auto; Esimpl.
+ - case Pos.compare_spec; intros He; simpl.
+ * destr_mfactor R1 S1. now rewrite IHP, He, !mkPinj_ok.
+ * destr_mfactor R1 S1. rewrite IHP; simpl.
+ now rewrite !mkPinj_ok, <- Mjump_add, Pos.add_comm, Pos.sub_add.
+ * Esimpl.
+ - destr_mfactor R1 S1. destr_mfactor R2 S2.
+ rewrite IHP1, IHP2, !mkPX_ok, zmon_pred_ok; simpl; rsimpl.
+ add_permut.
+ - case Pos.compare_spec; intros He; simpl; destr_mfactor R1 S1;
+ rewrite ?He, IHP1, mkPX_ok, ?mkZmon_ok; simpl; rsimpl;
+ unfold tail; add_permut; mul_permut.
+ * rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl.
+ * rewrite mkPX_ok. simpl. Esimpl. mul_permut.
+ rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl.
Qed.
-(* Proof for the symmetric version *)
-
- Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
- POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
+ Lemma POneSubst_ok P1 M1 P2 P3 l :
+ POneSubst P1 M1 P2 = Some P3 -> M1@@l == P2@l ->
+ P1@l == P3@l.
Proof.
- intros P2 M1 P3 P4 l; unfold POneSubst.
- generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
- intros Q1 R1; case R1.
- intros c H; rewrite H.
- generalize (morph_eq CRmorph c cO);
- case (c ?=! cO); simpl; auto.
- intros H1 H2; rewrite H1; auto; rsimpl.
- discriminate.
- intros _ H1 H2; injection H1; intros; subst.
- rewrite H2; rsimpl.
- (* new version *)
- rewrite Padd_ok; rewrite PmulC_ok; rsimpl.
- intros i P5 H; rewrite H.
- intros HH H1; injection HH; intros; subst; rsimpl.
- rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl.
- intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
- assert (P4 = Q1 ++ P3 ** PX i P5 P6).
- injection H2; intros; subst;trivial.
- rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl.
-Qed.
-(*
- Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
- POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
-Proof.
- intros P2 M1 P3 P4 l; unfold POneSubst.
- generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
- intros Q1 R1; case R1.
- intros c H; rewrite H.
- generalize (morph_eq CRmorph c cO);
- case (c ?=! cO); simpl; auto.
- intros H1 H2; rewrite H1; auto; rsimpl.
- discriminate.
- intros _ H1 H2; injection H1; intros; subst.
- rewrite H2; rsimpl.
- rewrite Padd_ok; rewrite Pmul_ok; rsimpl.
- intros i P5 H; rewrite H.
- intros HH H1; injection HH; intros; subst; rsimpl.
- rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl.
- intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
- injection H2; intros; subst; rsimpl.
- rewrite Padd_ok.
- rewrite Pmul_ok; rsimpl.
+ unfold POneSubst.
+ assert (H := Mphi_ok P1). destr_mfactor R1 S1. rewrite H; clear H.
+ intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1).
+ - rewrite EQ', Padd_ok, Pmul_ok; rsimpl.
+ - revert EQ. destruct S1; try now injection 1.
+ case ceqb_spec; now inversion 2.
Qed.
-*)
- Lemma PNSubst1_ok: forall n P1 M1 P2 l,
- Mphi l M1 == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
+
+ Lemma PNSubst1_ok n P1 M1 P2 l :
+ M1@@l == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
Proof.
- intros n; elim n; simpl; auto.
- intros P2 M1 P3 l H.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
- intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl.
- intros n1 Hrec P2 M1 P3 l H.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
- intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl.
+ revert P1. induction n; simpl; intros P1;
+ generalize (POneSubst_ok P1 M1 P2); destruct POneSubst;
+ intros; rewrite <- ?IHn; auto; reflexivity.
Qed.
- Lemma PNSubst_ok: forall n P1 M1 P2 l P3,
- PNSubst P1 M1 P2 n = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
+ Lemma PNSubst_ok n P1 M1 P2 l P3 :
+ PNSubst P1 M1 P2 n = Some P3 -> M1@@l == P2@l -> P1@l == P3@l.
Proof.
- intros n P2 M1 P3 l P4; unfold PNSubst.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; discriminate].
- intros P5 H1; case n; try (intros; discriminate).
- intros n1 H2; injection H2; intros; subst.
- rewrite <- PNSubst1_ok; auto.
+ unfold PNSubst.
+ assert (H := POneSubst_ok P1 M1 P2); destruct POneSubst; try discriminate.
+ destruct n; inversion_clear 1.
+ intros. rewrite <- PNSubst1_ok; auto.
Qed.
- Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) {struct LM1} : Prop :=
- match LM1 with
- cons (M1,P2) LM2 => (Mphi l M1 == P2@l) /\ (MPcond LM2 l)
- | _ => True
- end.
+ Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) : Prop :=
+ match LM1 with
+ | cons (M1,P2) LM2 => (M1@@l == P2@l) /\ MPcond LM2 l
+ | _ => True
+ end.
- Lemma PSubstL1_ok: forall n LM1 P1 l,
- MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
+ Lemma PSubstL1_ok n LM1 P1 l :
+ MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
- intros n LM1; elim LM1; simpl; auto.
- intros; rsimpl.
- intros (M2,P2) LM2 Hrec P3 l [H H1].
- rewrite <- Hrec; auto.
- apply PNSubst1_ok; auto.
+ revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
+ - reflexivity.
+ - rewrite <- IH by intuition. now apply PNSubst1_ok.
Qed.
- Lemma PSubstL_ok: forall n LM1 P1 P2 l,
- PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
+ Lemma PSubstL_ok n LM1 P1 P2 l :
+ PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
- intros n LM1; elim LM1; simpl; auto.
- intros; discriminate.
- intros (M2,P2) LM2 Hrec P3 P4 l.
- generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n).
- intros P5 H0 H1 [H2 H3]; injection H1; intros; subst.
- rewrite <- PSubstL1_ok; auto.
- intros l1 H [H1 H2]; auto.
+ revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros.
+ - discriminate.
+ - assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst.
+ * injection H; intros <-. rewrite <- PSubstL1_ok; intuition.
+ * now apply IH.
Qed.
- Lemma PNSubstL_ok: forall m n LM1 P1 l,
- MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
+ Lemma PNSubstL_ok m n LM1 P1 l :
+ MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
- intros m; elim m; simpl; auto.
- intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
- case (PSubstL P2 LM1 n); intros; rsimpl; auto.
- intros m1 Hrec n LM1 P2 l H.
- generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
- case (PSubstL P2 LM1 n); intros; rsimpl; auto.
- rewrite <- Hrec; auto.
+ revert LM1 P1. induction m; simpl; intros;
+ assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL;
+ auto; try reflexivity.
+ rewrite <- IHm; auto.
Qed.
(** Definition of polynomial expressions *)
@@ -1228,7 +943,7 @@ Proof.
(** evaluation of polynomial expressions towards R *)
- Fixpoint PEeval (l:Env R) (pe:PExpr) {struct pe} : R :=
+ Fixpoint PEeval (l:Env R) (pe:PExpr) : R :=
match pe with
| PEc c => phi c
| PEX j => nth j l
@@ -1241,60 +956,23 @@ Proof.
(** Correctness proofs *)
- Lemma mkX_ok : forall p l, nth p l == (mk_X p) @ l.
+ Lemma mkX_ok p l : nth p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
rewrite nth_spec ; auto.
unfold hd.
- rewrite <- nth_Pdouble_minus_one.
- rewrite (nth_jump (Pdouble_minus_one p) l 1).
- reflexivity.
+ now rewrite <- nth_pred_double, nth_jump.
Qed.
- Ltac Esimpl3 :=
- repeat match goal with
- | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l)
- | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l)
- end;Esimpl2;try rrefl;try apply (ARadd_comm ARth).
-
-(* Power using the chinise algorithm *)
-(*Section POWER.
- Variable subst_l : Pol -> Pol.
- Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol :=
- match p with
- | xH => P
- | xO p => subst_l (Psquare (Ppow_pos P p))
- | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p)))
- end.
-
- Definition Ppow_N P n :=
- match n with
- | N0 => P1
- | Npos p => Ppow_pos P p
- end.
-
- Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l.
- Proof.
- intros l subst_l_ok P.
- induction p;simpl;intros;try rrefl;try rewrite subst_l_ok.
- repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
- repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
- Qed.
-
- Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
- Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed.
-
- End POWER. *)
+ Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
- Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol :=
+ Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol :=
match p with
- | xH => subst_l (Pmul res P)
+ | xH => subst_l (res ** P)
| xO p => Ppow_pos (Ppow_pos res P p) P p
- | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P)
+ | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P)
end.
Definition Ppow_N P n :=
@@ -1303,17 +981,23 @@ Section POWER.
| Npos p => Ppow_pos P1 P p
end.
- Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
+ Lemma Ppow_pos_ok l :
+ (forall P, subst_l P@l == P@l) ->
+ forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
- intros l subst_l_ok res P p. generalize res;clear res.
- induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp.
- rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl.
+ intros subst_l_ok res P p. revert res.
+ induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp;
+ mul_permut.
Qed.
- Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
- Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok. trivial. Esimpl. auto. Qed.
+ Lemma Ppow_N_ok l :
+ (forall P, subst_l P@l == P@l) ->
+ forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
+ Proof.
+ destruct n;simpl.
+ - reflexivity.
+ - rewrite Ppow_pos_ok by trivial. Esimpl.
+ Qed.
End POWER.
@@ -1342,62 +1026,57 @@ Section POWER.
Definition norm_subst pe := subst_l (norm_aux pe).
- (*
- Fixpoint norm_subst (pe:PExpr) : Pol :=
+ (** Internally, [norm_aux] is expanded in a large number of cases.
+ To speed-up proofs, we use an alternative definition. *)
+
+ Definition get_PEopp pe :=
match pe with
- | PEc c => Pc c
- | PEX j => subst_l (mk_X j)
- | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1)
- | PEadd pe1 (PEopp pe2) =>
- Psub (norm_subst pe1) (norm_subst pe2)
- | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2)
- | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2)
- | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2)
- | PEopp pe1 => Popp (norm_subst pe1)
- | PEpow pe1 n => Ppow_subst (norm_subst pe1) n
+ | PEopp pe' => Some pe'
+ | _ => None
end.
- Lemma norm_subst_spec :
- forall l pe, MPcond lmp l ->
- PEeval l pe == (norm_subst pe)@l.
+ Lemma norm_aux_PEadd pe1 pe2 :
+ norm_aux (PEadd pe1 pe2) =
+ match get_PEopp pe1, get_PEopp pe2 with
+ | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1')
+ | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2')
+ | None, None => (norm_aux pe1) ++ (norm_aux pe2)
+ end.
Proof.
- intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l).
- unfold subst_l;intros.
- rewrite <- PNSubstL_ok;trivial. rrefl.
- assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l).
- intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl.
- induction pe;simpl;Esimpl3.
- rewrite subst_l_ok;apply mkX_ok.
- rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
- rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite IHpe;rrefl.
- unfold Ppow_subst. rewrite Ppow_N_ok. trivial.
- rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
- induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
- repeat rewrite Pmul_ok;rrefl.
+ simpl (norm_aux (PEadd _ _)).
+ destruct pe1; [ | | | | | reflexivity | ];
+ destruct pe2; simpl get_PEopp; reflexivity.
Qed.
-*)
- Lemma norm_aux_spec :
- forall l pe, (*MPcond lmp l ->*)
- PEeval l pe == (norm_aux pe)@l.
+
+ Lemma norm_aux_PEopp pe :
+ match get_PEopp pe with
+ | Some pe' => norm_aux pe = -- (norm_aux pe')
+ | None => True
+ end.
Proof.
- intros.
- induction pe;simpl;Esimpl3.
- apply mkX_ok.
- rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
- rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl.
- rewrite IHpe;rrefl.
- rewrite Ppow_N_ok by reflexivity.
- rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
- induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
- repeat rewrite Pmul_ok;rrefl.
+ now destruct pe.
Qed.
+ Lemma norm_aux_spec l pe :
+ PEeval l pe == (norm_aux pe)@l.
+ Proof.
+ intros.
+ induction pe.
+ - reflexivity.
+ - apply mkX_ok.
+ - simpl PEeval. rewrite IHpe1, IHpe2.
+ assert (H1 := norm_aux_PEopp pe1).
+ assert (H2 := norm_aux_PEopp pe2).
+ rewrite norm_aux_PEadd.
+ do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut.
+ - simpl. rewrite IHpe1, IHpe2. Esimpl.
+ - simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok.
+ - simpl. rewrite IHpe. Esimpl.
+ - simpl. rewrite Ppow_N_ok by reflexivity.
+ rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl.
+ induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok.
+ Qed.
End NORM_SUBST_REC.
-
End MakeRingPol.
-