summaryrefslogtreecommitdiff
path: root/plugins/fourier/Fourier_util.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/fourier/Fourier_util.v')
-rw-r--r--plugins/fourier/Fourier_util.v222
1 files changed, 222 insertions, 0 deletions
diff --git a/plugins/fourier/Fourier_util.v b/plugins/fourier/Fourier_util.v
new file mode 100644
index 00000000..0fd92d60
--- /dev/null
+++ b/plugins/fourier/Fourier_util.v
@@ -0,0 +1,222 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id$ *)
+
+Require Export Rbase.
+Comments "Lemmas used by the tactic Fourier".
+
+Open Scope R_scope.
+
+Lemma Rfourier_lt : forall x1 y1 a:R, x1 < y1 -> 0 < a -> a * x1 < a * y1.
+intros; apply Rmult_lt_compat_l; assumption.
+Qed.
+
+Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1.
+red in |- *.
+intros.
+case H; auto with real.
+Qed.
+
+Lemma Rfourier_lt_lt :
+ forall x1 y1 x2 y2 a:R,
+ x1 < y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+apply Rplus_lt_compat.
+try exact H.
+apply Rfourier_lt.
+try exact H0.
+try exact H1.
+Qed.
+
+Lemma Rfourier_lt_le :
+ forall x1 y1 x2 y2 a:R,
+ x1 < y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H0; intros.
+apply Rplus_lt_compat.
+try exact H.
+apply Rfourier_lt; auto with real.
+rewrite H2.
+rewrite (Rplus_comm y1 (a * y2)).
+rewrite (Rplus_comm x1 (a * y2)).
+apply Rplus_lt_compat_l.
+try exact H.
+Qed.
+
+Lemma Rfourier_le_lt :
+ forall x1 y1 x2 y2 a:R,
+ x1 <= y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H; intros.
+apply Rfourier_lt_le; auto with real.
+rewrite H2.
+apply Rplus_lt_compat_l.
+apply Rfourier_lt; auto with real.
+Qed.
+
+Lemma Rfourier_le_le :
+ forall x1 y1 x2 y2 a:R,
+ x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H0; intros.
+red in |- *.
+left; try assumption.
+apply Rfourier_le_lt; auto with real.
+rewrite H2.
+case H; intros.
+red in |- *.
+left; try assumption.
+rewrite (Rplus_comm x1 (a * y2)).
+rewrite (Rplus_comm y1 (a * y2)).
+apply Rplus_lt_compat_l.
+try exact H3.
+rewrite H3.
+red in |- *.
+right; try assumption.
+auto with real.
+Qed.
+
+Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
+intros x H; try assumption.
+rewrite Rplus_comm.
+apply Rle_lt_0_plus_1.
+red in |- *; auto with real.
+Qed.
+
+Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
+intros x y H H0; try assumption.
+replace 0 with (x * 0).
+apply Rmult_lt_compat_l; auto with real.
+ring.
+Qed.
+
+Lemma Rlt_zero_1 : 0 < 1.
+exact Rlt_0_1.
+Qed.
+
+Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
+intros x H; try assumption.
+case H; intros.
+red in |- *.
+left; try assumption.
+apply Rlt_zero_pos_plus1; auto with real.
+rewrite <- H0.
+replace (1 + 0) with 1.
+red in |- *; left.
+exact Rlt_zero_1.
+ring.
+Qed.
+
+Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
+intros x y H H0; try assumption.
+case H; intros.
+red in |- *; left.
+apply Rlt_mult_inv_pos; auto with real.
+rewrite <- H1.
+red in |- *; right; ring.
+Qed.
+
+Lemma Rle_zero_1 : 0 <= 1.
+red in |- *; left.
+exact Rlt_zero_1.
+Qed.
+
+Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d.
+intros n d H; red in |- *; intros H0; try exact H0.
+generalize (Rgt_not_le 0 (n * / d)).
+intros H1; elim H1; try assumption.
+replace (n * / d) with (- - (n * / d)).
+replace 0 with (- -0).
+replace (- (n * / d)) with (- n * / d).
+replace (-0) with 0.
+red in |- *.
+apply Ropp_gt_lt_contravar.
+red in |- *.
+exact H0.
+ring.
+ring.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_lt0 : forall x:R, ~ 0 < 0 * x.
+intros x; try assumption.
+replace (0 * x) with 0.
+apply Rlt_irrefl.
+ring.
+Qed.
+
+Lemma Rlt_not_le_frac_opp : forall n d:R, 0 < n * / d -> ~ 0 <= - n * / d.
+intros n d H; try assumption.
+apply Rgt_not_le.
+replace 0 with (-0).
+replace (- n * / d) with (- (n * / d)).
+apply Ropp_lt_gt_contravar.
+try exact H.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y.
+unfold not in |- *; intros.
+apply H.
+apply Rplus_lt_reg_r with x.
+replace (x + 0) with x.
+replace (x + (y - x)) with y.
+try exact H0.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y.
+unfold not in |- *; intros.
+apply H.
+case H0; intros.
+left.
+apply Rplus_lt_reg_r with x.
+replace (x + 0) with x.
+replace (x + (y - x)) with y.
+try exact H1.
+ring.
+ring.
+right.
+rewrite H1; ring.
+Qed.
+
+Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y.
+unfold Rgt in |- *; intros; assumption.
+Qed.
+
+Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y.
+intros x y; exact (Rge_le y x).
+Qed.
+
+Lemma Rfourier_eqLR_to_le : forall x y:R, x = y -> x <= y.
+exact Req_le.
+Qed.
+
+Lemma Rfourier_eqRL_to_le : forall x y:R, y = x -> x <= y.
+exact Req_le_sym.
+Qed.
+
+Lemma Rfourier_not_ge_lt : forall x y:R, (x >= y -> False) -> x < y.
+exact Rnot_ge_lt.
+Qed.
+
+Lemma Rfourier_not_gt_le : forall x y:R, (x > y -> False) -> x <= y.
+exact Rnot_gt_le.
+Qed.
+
+Lemma Rfourier_not_le_gt : forall x y:R, (x <= y -> False) -> x > y.
+exact Rnot_le_lt.
+Qed.
+
+Lemma Rfourier_not_lt_ge : forall x y:R, (x < y -> False) -> x >= y.
+exact Rnot_lt_ge.
+Qed.