summaryrefslogtreecommitdiff
path: root/plugins/cc/cctac.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/cc/cctac.ml')
-rw-r--r--plugins/cc/cctac.ml465
1 files changed, 465 insertions, 0 deletions
diff --git a/plugins/cc/cctac.ml b/plugins/cc/cctac.ml
new file mode 100644
index 00000000..4e6ea802
--- /dev/null
+++ b/plugins/cc/cctac.ml
@@ -0,0 +1,465 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id$ *)
+
+(* This file is the interface between the c-c algorithm and Coq *)
+
+open Evd
+open Proof_type
+open Names
+open Libnames
+open Nameops
+open Inductiveops
+open Declarations
+open Term
+open Termops
+open Tacmach
+open Tactics
+open Tacticals
+open Typing
+open Ccalgo
+open Tacinterp
+open Ccproof
+open Pp
+open Util
+open Format
+
+let constant dir s = lazy (Coqlib.gen_constant "CC" dir s)
+
+let _f_equal = constant ["Init";"Logic"] "f_equal"
+
+let _eq_rect = constant ["Init";"Logic"] "eq_rect"
+
+let _refl_equal = constant ["Init";"Logic"] "refl_equal"
+
+let _sym_eq = constant ["Init";"Logic"] "sym_eq"
+
+let _trans_eq = constant ["Init";"Logic"] "trans_eq"
+
+let _eq = constant ["Init";"Logic"] "eq"
+
+let _False = constant ["Init";"Logic"] "False"
+
+let whd env=
+ let infos=Closure.create_clos_infos Closure.betaiotazeta env in
+ (fun t -> Closure.whd_val infos (Closure.inject t))
+
+let whd_delta env=
+ let infos=Closure.create_clos_infos Closure.betadeltaiota env in
+ (fun t -> Closure.whd_val infos (Closure.inject t))
+
+(* decompose member of equality in an applicative format *)
+
+let sf_of env sigma c = family_of_sort (sort_of env sigma c)
+
+let rec decompose_term env sigma t=
+ match kind_of_term (whd env t) with
+ App (f,args)->
+ let tf=decompose_term env sigma f in
+ let targs=Array.map (decompose_term env sigma) args in
+ Array.fold_left (fun s t->Appli (s,t)) tf targs
+ | Prod (_,a,_b) when not (dependent (mkRel 1) _b) ->
+ let b = pop _b in
+ let sort_b = sf_of env sigma b in
+ let sort_a = sf_of env sigma a in
+ Appli(Appli(Product (sort_a,sort_b) ,
+ decompose_term env sigma a),
+ decompose_term env sigma b)
+ | Construct c->
+ let (oib,_)=Global.lookup_inductive (fst c) in
+ let nargs=mis_constructor_nargs_env env c in
+ Constructor {ci_constr=c;
+ ci_arity=nargs;
+ ci_nhyps=nargs-oib.mind_nparams}
+ | _ ->if closed0 t then (Symb t) else raise Not_found
+
+(* decompose equality in members and type *)
+
+let atom_of_constr env sigma term =
+ let wh = (whd_delta env term) in
+ let kot = kind_of_term wh in
+ match kot with
+ App (f,args)->
+ if eq_constr f (Lazy.force _eq) && (Array.length args)=3
+ then `Eq (args.(0),
+ decompose_term env sigma args.(1),
+ decompose_term env sigma args.(2))
+ else `Other (decompose_term env sigma term)
+ | _ -> `Other (decompose_term env sigma term)
+
+let rec pattern_of_constr env sigma c =
+ match kind_of_term (whd env c) with
+ App (f,args)->
+ let pf = decompose_term env sigma f in
+ let pargs,lrels = List.split
+ (array_map_to_list (pattern_of_constr env sigma) args) in
+ PApp (pf,List.rev pargs),
+ List.fold_left Intset.union Intset.empty lrels
+ | Prod (_,a,_b) when not (dependent (mkRel 1) _b) ->
+ let b =pop _b in
+ let pa,sa = pattern_of_constr env sigma a in
+ let pb,sb = pattern_of_constr env sigma (pop b) in
+ let sort_b = sf_of env sigma b in
+ let sort_a = sf_of env sigma a in
+ PApp(Product (sort_a,sort_b),
+ [pa;pb]),(Intset.union sa sb)
+ | Rel i -> PVar i,Intset.singleton i
+ | _ ->
+ let pf = decompose_term env sigma c in
+ PApp (pf,[]),Intset.empty
+
+let non_trivial = function
+ PVar _ -> false
+ | _ -> true
+
+let patterns_of_constr env sigma nrels term=
+ let f,args=
+ try destApp (whd_delta env term) with _ -> raise Not_found in
+ if eq_constr f (Lazy.force _eq) && (Array.length args)=3
+ then
+ let patt1,rels1 = pattern_of_constr env sigma args.(1)
+ and patt2,rels2 = pattern_of_constr env sigma args.(2) in
+ let valid1 =
+ if Intset.cardinal rels1 <> nrels then Creates_variables
+ else if non_trivial patt1 then Normal
+ else Trivial args.(0)
+ and valid2 =
+ if Intset.cardinal rels2 <> nrels then Creates_variables
+ else if non_trivial patt2 then Normal
+ else Trivial args.(0) in
+ if valid1 <> Creates_variables
+ || valid2 <> Creates_variables then
+ nrels,valid1,patt1,valid2,patt2
+ else raise Not_found
+ else raise Not_found
+
+let rec quantified_atom_of_constr env sigma nrels term =
+ match kind_of_term (whd_delta env term) with
+ Prod (_,atom,ff) ->
+ if eq_constr ff (Lazy.force _False) then
+ let patts=patterns_of_constr env sigma nrels atom in
+ `Nrule patts
+ else
+ quantified_atom_of_constr env sigma (succ nrels) ff
+ | _ ->
+ let patts=patterns_of_constr env sigma nrels term in
+ `Rule patts
+
+let litteral_of_constr env sigma term=
+ match kind_of_term (whd_delta env term) with
+ | Prod (_,atom,ff) ->
+ if eq_constr ff (Lazy.force _False) then
+ match (atom_of_constr env sigma atom) with
+ `Eq(t,a,b) -> `Neq(t,a,b)
+ | `Other(p) -> `Nother(p)
+ else
+ begin
+ try
+ quantified_atom_of_constr env sigma 1 ff
+ with Not_found ->
+ `Other (decompose_term env sigma term)
+ end
+ | _ ->
+ atom_of_constr env sigma term
+
+
+(* store all equalities from the context *)
+
+let rec make_prb gls depth additionnal_terms =
+ let env=pf_env gls in
+ let sigma=sig_sig gls in
+ let state = empty depth gls in
+ let pos_hyps = ref [] in
+ let neg_hyps =ref [] in
+ List.iter
+ (fun c ->
+ let t = decompose_term env sigma c in
+ ignore (add_term state t)) additionnal_terms;
+ List.iter
+ (fun (id,_,e) ->
+ begin
+ let cid=mkVar id in
+ match litteral_of_constr env sigma e with
+ `Eq (t,a,b) -> add_equality state cid a b
+ | `Neq (t,a,b) -> add_disequality state (Hyp cid) a b
+ | `Other ph ->
+ List.iter
+ (fun (cidn,nh) ->
+ add_disequality state (HeqnH (cid,cidn)) ph nh)
+ !neg_hyps;
+ pos_hyps:=(cid,ph):: !pos_hyps
+ | `Nother nh ->
+ List.iter
+ (fun (cidp,ph) ->
+ add_disequality state (HeqnH (cidp,cid)) ph nh)
+ !pos_hyps;
+ neg_hyps:=(cid,nh):: !neg_hyps
+ | `Rule patts -> add_quant state id true patts
+ | `Nrule patts -> add_quant state id false patts
+ end) (Environ.named_context_of_val gls.it.evar_hyps);
+ begin
+ match atom_of_constr env sigma gls.it.evar_concl with
+ `Eq (t,a,b) -> add_disequality state Goal a b
+ | `Other g ->
+ List.iter
+ (fun (idp,ph) ->
+ add_disequality state (HeqG idp) ph g) !pos_hyps
+ end;
+ state
+
+(* indhyps builds the array of arrays of constructor hyps for (ind largs) *)
+
+let build_projection intype outtype (cstr:constructor) special default gls=
+ let env=pf_env gls in
+ let (h,argv) =
+ try destApp intype with
+ Invalid_argument _ -> (intype,[||]) in
+ let ind=destInd h in
+ let types=Inductiveops.arities_of_constructors env ind in
+ let lp=Array.length types in
+ let ci=pred (snd cstr) in
+ let branch i=
+ let ti=Term.prod_appvect types.(i) argv in
+ let rc=fst (decompose_prod_assum ti) in
+ let head=
+ if i=ci then special else default in
+ it_mkLambda_or_LetIn head rc in
+ let branches=Array.init lp branch in
+ let casee=mkRel 1 in
+ let pred=mkLambda(Anonymous,intype,outtype) in
+ let case_info=make_case_info (pf_env gls) ind RegularStyle in
+ let body= mkCase(case_info, pred, casee, branches) in
+ let id=pf_get_new_id (id_of_string "t") gls in
+ mkLambda(Name id,intype,body)
+
+(* generate an adhoc tactic following the proof tree *)
+
+let _M =mkMeta
+
+let rec proof_tac p gls =
+ match p.p_rule with
+ Ax c -> exact_check c gls
+ | SymAx c ->
+ let l=constr_of_term p.p_lhs and
+ r=constr_of_term p.p_rhs in
+ let typ = refresh_universes (pf_type_of gls l) in
+ exact_check
+ (mkApp(Lazy.force _sym_eq,[|typ;r;l;c|])) gls
+ | Refl t ->
+ let lr = constr_of_term t in
+ let typ = refresh_universes (pf_type_of gls lr) in
+ exact_check
+ (mkApp(Lazy.force _refl_equal,[|typ;constr_of_term t|])) gls
+ | Trans (p1,p2)->
+ let t1 = constr_of_term p1.p_lhs and
+ t2 = constr_of_term p1.p_rhs and
+ t3 = constr_of_term p2.p_rhs in
+ let typ = refresh_universes (pf_type_of gls t2) in
+ let prf =
+ mkApp(Lazy.force _trans_eq,[|typ;t1;t2;t3;_M 1;_M 2|]) in
+ tclTHENS (refine prf) [(proof_tac p1);(proof_tac p2)] gls
+ | Congr (p1,p2)->
+ let tf1=constr_of_term p1.p_lhs
+ and tx1=constr_of_term p2.p_lhs
+ and tf2=constr_of_term p1.p_rhs
+ and tx2=constr_of_term p2.p_rhs in
+ let typf = refresh_universes (pf_type_of gls tf1) in
+ let typx = refresh_universes (pf_type_of gls tx1) in
+ let typfx = refresh_universes (pf_type_of gls (mkApp (tf1,[|tx1|]))) in
+ let id = pf_get_new_id (id_of_string "f") gls in
+ let appx1 = mkLambda(Name id,typf,mkApp(mkRel 1,[|tx1|])) in
+ let lemma1 =
+ mkApp(Lazy.force _f_equal,
+ [|typf;typfx;appx1;tf1;tf2;_M 1|]) in
+ let lemma2=
+ mkApp(Lazy.force _f_equal,
+ [|typx;typfx;tf2;tx1;tx2;_M 1|]) in
+ let prf =
+ mkApp(Lazy.force _trans_eq,
+ [|typfx;
+ mkApp(tf1,[|tx1|]);
+ mkApp(tf2,[|tx1|]);
+ mkApp(tf2,[|tx2|]);_M 2;_M 3|]) in
+ tclTHENS (refine prf)
+ [tclTHEN (refine lemma1) (proof_tac p1);
+ tclFIRST
+ [tclTHEN (refine lemma2) (proof_tac p2);
+ reflexivity;
+ fun gls ->
+ errorlabstrm "Congruence"
+ (Pp.str
+ "I don't know how to handle dependent equality")]] gls
+ | Inject (prf,cstr,nargs,argind) ->
+ let ti=constr_of_term prf.p_lhs in
+ let tj=constr_of_term prf.p_rhs in
+ let default=constr_of_term p.p_lhs in
+ let intype=refresh_universes (pf_type_of gls ti) in
+ let outtype=refresh_universes (pf_type_of gls default) in
+ let special=mkRel (1+nargs-argind) in
+ let proj=build_projection intype outtype cstr special default gls in
+ let injt=
+ mkApp (Lazy.force _f_equal,[|intype;outtype;proj;ti;tj;_M 1|]) in
+ tclTHEN (refine injt) (proof_tac prf) gls
+
+let refute_tac c t1 t2 p gls =
+ let tt1=constr_of_term t1 and tt2=constr_of_term t2 in
+ let intype=refresh_universes (pf_type_of gls tt1) in
+ let neweq=
+ mkApp(Lazy.force _eq,
+ [|intype;tt1;tt2|]) in
+ let hid=pf_get_new_id (id_of_string "Heq") gls in
+ let false_t=mkApp (c,[|mkVar hid|]) in
+ tclTHENS (assert_tac (Name hid) neweq)
+ [proof_tac p; simplest_elim false_t] gls
+
+let convert_to_goal_tac c t1 t2 p gls =
+ let tt1=constr_of_term t1 and tt2=constr_of_term t2 in
+ let sort=refresh_universes (pf_type_of gls tt2) in
+ let neweq=mkApp(Lazy.force _eq,[|sort;tt1;tt2|]) in
+ let e=pf_get_new_id (id_of_string "e") gls in
+ let x=pf_get_new_id (id_of_string "X") gls in
+ let identity=mkLambda (Name x,sort,mkRel 1) in
+ let endt=mkApp (Lazy.force _eq_rect,
+ [|sort;tt1;identity;c;tt2;mkVar e|]) in
+ tclTHENS (assert_tac (Name e) neweq)
+ [proof_tac p;exact_check endt] gls
+
+let convert_to_hyp_tac c1 t1 c2 t2 p gls =
+ let tt2=constr_of_term t2 in
+ let h=pf_get_new_id (id_of_string "H") gls in
+ let false_t=mkApp (c2,[|mkVar h|]) in
+ tclTHENS (assert_tac (Name h) tt2)
+ [convert_to_goal_tac c1 t1 t2 p;
+ simplest_elim false_t] gls
+
+let discriminate_tac cstr p gls =
+ let t1=constr_of_term p.p_lhs and t2=constr_of_term p.p_rhs in
+ let intype=refresh_universes (pf_type_of gls t1) in
+ let concl=pf_concl gls in
+ let outsort=mkType (new_univ ()) in
+ let xid=pf_get_new_id (id_of_string "X") gls in
+ let tid=pf_get_new_id (id_of_string "t") gls in
+ let identity=mkLambda(Name xid,outsort,mkLambda(Name tid,mkRel 1,mkRel 1)) in
+ let trivial=pf_type_of gls identity in
+ let outtype=mkType (new_univ ()) in
+ let pred=mkLambda(Name xid,outtype,mkRel 1) in
+ let hid=pf_get_new_id (id_of_string "Heq") gls in
+ let proj=build_projection intype outtype cstr trivial concl gls in
+ let injt=mkApp (Lazy.force _f_equal,
+ [|intype;outtype;proj;t1;t2;mkVar hid|]) in
+ let endt=mkApp (Lazy.force _eq_rect,
+ [|outtype;trivial;pred;identity;concl;injt|]) in
+ let neweq=mkApp(Lazy.force _eq,[|intype;t1;t2|]) in
+ tclTHENS (assert_tac (Name hid) neweq)
+ [proof_tac p;exact_check endt] gls
+
+(* wrap everything *)
+
+let build_term_to_complete uf meta pac =
+ let cinfo = get_constructor_info uf pac.cnode in
+ let real_args = List.map (fun i -> constr_of_term (term uf i)) pac.args in
+ let dummy_args = List.rev (list_tabulate meta pac.arity) in
+ let all_args = List.rev_append real_args dummy_args in
+ applistc (mkConstruct cinfo.ci_constr) all_args
+
+let cc_tactic depth additionnal_terms gls=
+ Coqlib.check_required_library ["Coq";"Init";"Logic"];
+ let _ = debug Pp.msgnl (Pp.str "Reading subgoal ...") in
+ let state = make_prb gls depth additionnal_terms in
+ let _ = debug Pp.msgnl (Pp.str "Problem built, solving ...") in
+ let sol = execute true state in
+ let _ = debug Pp.msgnl (Pp.str "Computation completed.") in
+ let uf=forest state in
+ match sol with
+ None -> tclFAIL 0 (str "congruence failed") gls
+ | Some reason ->
+ debug Pp.msgnl (Pp.str "Goal solved, generating proof ...");
+ match reason with
+ Discrimination (i,ipac,j,jpac) ->
+ let p=build_proof uf (`Discr (i,ipac,j,jpac)) in
+ let cstr=(get_constructor_info uf ipac.cnode).ci_constr in
+ discriminate_tac cstr p gls
+ | Incomplete ->
+ let metacnt = ref 0 in
+ let newmeta _ = incr metacnt; _M !metacnt in
+ let terms_to_complete =
+ List.map
+ (build_term_to_complete uf newmeta)
+ (epsilons uf) in
+ Pp.msgnl
+ (Pp.str "Goal is solvable by congruence but \
+ some arguments are missing.");
+ Pp.msgnl
+ (Pp.str " Try " ++
+ hov 8
+ begin
+ str "\"congruence with (" ++
+ prlist_with_sep
+ (fun () -> str ")" ++ pr_spc () ++ str "(")
+ (print_constr_env (pf_env gls))
+ terms_to_complete ++
+ str ")\","
+ end);
+ Pp.msgnl
+ (Pp.str " replacing metavariables by arbitrary terms.");
+ tclFAIL 0 (str "Incomplete") gls
+ | Contradiction dis ->
+ let p=build_proof uf (`Prove (dis.lhs,dis.rhs)) in
+ let ta=term uf dis.lhs and tb=term uf dis.rhs in
+ match dis.rule with
+ Goal -> proof_tac p gls
+ | Hyp id -> refute_tac id ta tb p gls
+ | HeqG id ->
+ convert_to_goal_tac id ta tb p gls
+ | HeqnH (ida,idb) ->
+ convert_to_hyp_tac ida ta idb tb p gls
+
+
+let cc_fail gls =
+ errorlabstrm "Congruence" (Pp.str "congruence failed.")
+
+let congruence_tac depth l =
+ tclORELSE
+ (tclTHEN (tclREPEAT introf) (cc_tactic depth l))
+ cc_fail
+
+(* Beware: reflexivity = constructor 1 = apply refl_equal
+ might be slow now, let's rather do something equivalent
+ to a "simple apply refl_equal" *)
+
+let simple_reflexivity () = apply (Lazy.force _refl_equal)
+
+(* The [f_equal] tactic.
+
+ It mimics the use of lemmas [f_equal], [f_equal2], etc.
+ This isn't particularly related with congruence, apart from
+ the fact that congruence is called internally.
+*)
+
+let f_equal gl =
+ let cut_eq c1 c2 =
+ let ty = refresh_universes (pf_type_of gl c1) in
+ tclTHENTRY
+ (Tactics.cut (mkApp (Lazy.force _eq, [|ty; c1; c2|])))
+ (simple_reflexivity ())
+ in
+ try match kind_of_term (pf_concl gl) with
+ | App (r,[|_;t;t'|]) when eq_constr r (Lazy.force _eq) ->
+ begin match kind_of_term t, kind_of_term t' with
+ | App (f,v), App (f',v') when Array.length v = Array.length v' ->
+ let rec cuts i =
+ if i < 0 then tclTRY (congruence_tac 1000 [])
+ else tclTHENFIRST (cut_eq v.(i) v'.(i)) (cuts (i-1))
+ in cuts (Array.length v - 1) gl
+ | _ -> tclIDTAC gl
+ end
+ | _ -> tclIDTAC gl
+ with Type_errors.TypeError _ -> tclIDTAC gl