summaryrefslogtreecommitdiff
path: root/plugins/btauto/Algebra.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/btauto/Algebra.v')
-rw-r--r--plugins/btauto/Algebra.v591
1 files changed, 591 insertions, 0 deletions
diff --git a/plugins/btauto/Algebra.v b/plugins/btauto/Algebra.v
new file mode 100644
index 00000000..bc5a3900
--- /dev/null
+++ b/plugins/btauto/Algebra.v
@@ -0,0 +1,591 @@
+Require Import Bool PArith DecidableClass Omega ROmega.
+
+Ltac bool :=
+repeat match goal with
+| [ H : ?P && ?Q = true |- _ ] =>
+ apply andb_true_iff in H; destruct H
+| |- ?P && ?Q = true =>
+ apply <- andb_true_iff; split
+end.
+
+Arguments decide P /H.
+
+Hint Extern 5 => progress bool.
+
+Ltac define t x H :=
+set (x := t) in *; assert (H : t = x) by reflexivity; clearbody x.
+
+Lemma Decidable_sound : forall P (H : Decidable P),
+ decide P = true -> P.
+Proof.
+intros P H Hp; apply -> Decidable_spec; assumption.
+Qed.
+
+Lemma Decidable_complete : forall P (H : Decidable P),
+ P -> decide P = true.
+Proof.
+intros P H Hp; apply <- Decidable_spec; assumption.
+Qed.
+
+Lemma Decidable_sound_alt : forall P (H : Decidable P),
+ ~ P -> decide P = false.
+Proof.
+intros P [wit spec] Hd; destruct wit; simpl; tauto.
+Qed.
+
+Lemma Decidable_complete_alt : forall P (H : Decidable P),
+ decide P = false -> ~ P.
+Proof.
+ intros P [wit spec] Hd Hc; simpl in *; intuition congruence.
+Qed.
+
+Ltac try_rewrite :=
+repeat match goal with
+| [ H : ?P |- _ ] => rewrite H
+end.
+
+(* We opacify here decide for proofs, and will make it transparent for
+ reflexive tactics later on. *)
+
+Global Opaque decide.
+
+Ltac tac_decide :=
+match goal with
+| [ H : @decide ?P ?D = true |- _ ] => apply (@Decidable_sound P D) in H
+| [ H : @decide ?P ?D = false |- _ ] => apply (@Decidable_complete_alt P D) in H
+| [ |- @decide ?P ?D = true ] => apply (@Decidable_complete P D)
+| [ |- @decide ?P ?D = false ] => apply (@Decidable_sound_alt P D)
+| [ |- negb ?b = true ] => apply negb_true_iff
+| [ |- negb ?b = false ] => apply negb_false_iff
+| [ H : negb ?b = true |- _ ] => apply negb_true_iff in H
+| [ H : negb ?b = false |- _ ] => apply negb_false_iff in H
+end.
+
+Ltac try_decide := repeat tac_decide.
+
+Ltac make_decide P := match goal with
+| [ |- context [@decide P ?D] ] =>
+ let b := fresh "b" in
+ let H := fresh "H" in
+ define (@decide P D) b H; destruct b; try_decide
+| [ X : context [@decide P ?D] |- _ ] =>
+ let b := fresh "b" in
+ let H := fresh "H" in
+ define (@decide P D) b H; destruct b; try_decide
+end.
+
+Ltac case_decide := match goal with
+| [ |- context [@decide ?P ?D] ] =>
+ let b := fresh "b" in
+ let H := fresh "H" in
+ define (@decide P D) b H; destruct b; try_decide
+| [ X : context [@decide ?P ?D] |- _ ] =>
+ let b := fresh "b" in
+ let H := fresh "H" in
+ define (@decide P D) b H; destruct b; try_decide
+| [ |- context [Pos.compare ?x ?y] ] =>
+ destruct (Pos.compare_spec x y); try (exfalso; zify; romega)
+| [ X : context [Pos.compare ?x ?y] |- _ ] =>
+ destruct (Pos.compare_spec x y); try (exfalso; zify; romega)
+end.
+
+Section Definitions.
+
+(** * Global, inductive definitions. *)
+
+(** A Horner polynomial is either a constant, or a product P × (i + Q), where i
+ is a variable. *)
+
+Inductive poly :=
+| Cst : bool -> poly
+| Poly : poly -> positive -> poly -> poly.
+
+(* TODO: We should use [positive] instead of [nat] to encode variables, for
+ efficiency purpose. *)
+
+Inductive null : poly -> Prop :=
+| null_intro : null (Cst false).
+
+(** Polynomials satisfy a uniqueness condition whenever they are valid. A
+ polynomial [p] satisfies [valid n p] whenever it is well-formed and each of
+ its variable indices is < [n]. *)
+
+Inductive valid : positive -> poly -> Prop :=
+| valid_cst : forall k c, valid k (Cst c)
+| valid_poly : forall k p i q,
+ Pos.lt i k -> ~ null q -> valid i p -> valid (Pos.succ i) q -> valid k (Poly p i q).
+
+(** Linear polynomials are valid polynomials in which every variable appears at
+ most once. *)
+
+Inductive linear : positive -> poly -> Prop :=
+| linear_cst : forall k c, linear k (Cst c)
+| linear_poly : forall k p i q, Pos.lt i k -> ~ null q ->
+ linear i p -> linear i q -> linear k (Poly p i q).
+
+End Definitions.
+
+Section Computational.
+
+Program Instance Decidable_PosEq : forall (p q : positive), Decidable (p = q) :=
+ { Decidable_witness := Pos.eqb p q }.
+Next Obligation.
+apply Pos.eqb_eq.
+Qed.
+
+Program Instance Decidable_PosLt : forall p q, Decidable (Pos.lt p q) :=
+ { Decidable_witness := Pos.ltb p q }.
+Next Obligation.
+apply Pos.ltb_lt.
+Qed.
+
+Program Instance Decidable_PosLe : forall p q, Decidable (Pos.le p q) :=
+ { Decidable_witness := Pos.leb p q }.
+Next Obligation.
+apply Pos.leb_le.
+Qed.
+
+(** * The core reflexive part. *)
+
+Hint Constructors valid.
+
+Fixpoint beq_poly pl pr :=
+match pl with
+| Cst cl =>
+ match pr with
+ | Cst cr => decide (cl = cr)
+ | Poly _ _ _ => false
+ end
+| Poly pl il ql =>
+ match pr with
+ | Cst _ => false
+ | Poly pr ir qr =>
+ decide (il = ir) && beq_poly pl pr && beq_poly ql qr
+ end
+end.
+
+(* We could do that with [decide equality] but dependency in proofs is heavy *)
+Program Instance Decidable_eq_poly : forall (p q : poly), Decidable (eq p q) := {
+ Decidable_witness := beq_poly p q
+}.
+
+Next Obligation.
+split.
+revert q; induction p; intros [] ?; simpl in *; bool; try_decide;
+ f_equal; first [intuition congruence|auto].
+revert q; induction p; intros [] Heq; simpl in *; bool; try_decide; intuition;
+ try injection Heq; first[congruence|intuition].
+Qed.
+
+Program Instance Decidable_null : forall p, Decidable (null p) := {
+ Decidable_witness := match p with Cst false => true | _ => false end
+}.
+Next Obligation.
+split.
+ destruct p as [[]|]; first [discriminate|constructor].
+ inversion 1; trivial.
+Qed.
+
+Definition list_nth {A} p (l : list A) def :=
+ Pos.peano_rect (fun _ => list A -> A)
+ (fun l => match l with nil => def | cons t l => t end)
+ (fun _ F l => match l with nil => def | cons t l => F l end) p l.
+
+Fixpoint eval var (p : poly) :=
+match p with
+| Cst c => c
+| Poly p i q =>
+ let vi := list_nth i var false in
+ xorb (eval var p) (andb vi (eval var q))
+end.
+
+Fixpoint valid_dec k p :=
+match p with
+| Cst c => true
+| Poly p i q =>
+ negb (decide (null q)) && decide (i < k)%positive &&
+ valid_dec i p && valid_dec (Pos.succ i) q
+end.
+
+Program Instance Decidable_valid : forall n p, Decidable (valid n p) := {
+ Decidable_witness := valid_dec n p
+}.
+Next Obligation.
+split.
+ revert n; induction p; unfold valid_dec in *; intuition; bool; try_decide; auto.
+ intros H; induction H; unfold valid_dec in *; bool; try_decide; auto.
+Qed.
+
+(** Basic algebra *)
+
+(* Addition of polynomials *)
+
+Fixpoint poly_add pl {struct pl} :=
+match pl with
+| Cst cl =>
+ fix F pr := match pr with
+ | Cst cr => Cst (xorb cl cr)
+ | Poly pr ir qr => Poly (F pr) ir qr
+ end
+| Poly pl il ql =>
+ fix F pr {struct pr} := match pr with
+ | Cst cr => Poly (poly_add pl pr) il ql
+ | Poly pr ir qr =>
+ match Pos.compare il ir with
+ | Eq =>
+ let qs := poly_add ql qr in
+ (* Ensure validity *)
+ if decide (null qs) then poly_add pl pr
+ else Poly (poly_add pl pr) il qs
+ | Gt => Poly (poly_add pl (Poly pr ir qr)) il ql
+ | Lt => Poly (F pr) ir qr
+ end
+ end
+end.
+
+(* Multiply a polynomial by a constant *)
+
+Fixpoint poly_mul_cst v p :=
+match p with
+| Cst c => Cst (andb c v)
+| Poly p i q =>
+ let r := poly_mul_cst v q in
+ (* Ensure validity *)
+ if decide (null r) then poly_mul_cst v p
+ else Poly (poly_mul_cst v p) i r
+end.
+
+(* Multiply a polynomial by a monomial *)
+
+Fixpoint poly_mul_mon k p :=
+match p with
+| Cst c =>
+ if decide (null p) then p
+ else Poly (Cst false) k p
+| Poly p i q =>
+ if decide (i <= k)%positive then Poly (Cst false) k (Poly p i q)
+ else Poly (poly_mul_mon k p) i (poly_mul_mon k q)
+end.
+
+(* Multiplication of polynomials *)
+
+Fixpoint poly_mul pl {struct pl} :=
+match pl with
+| Cst cl => poly_mul_cst cl
+| Poly pl il ql =>
+ fun pr =>
+ (* Multiply by a factor *)
+ let qs := poly_mul ql pr in
+ (* Ensure validity *)
+ if decide (null qs) then poly_mul pl pr
+ else poly_add (poly_mul pl pr) (poly_mul_mon il qs)
+end.
+
+(** Quotienting a polynomial by the relation X_i^2 ~ X_i *)
+
+(* Remove the multiple occurences of monomials x_k *)
+
+Fixpoint reduce_aux k p :=
+match p with
+| Cst c => Cst c
+| Poly p i q =>
+ if decide (i = k) then poly_add (reduce_aux k p) (reduce_aux k q)
+ else
+ let qs := reduce_aux i q in
+ (* Ensure validity *)
+ if decide (null qs) then (reduce_aux k p)
+ else Poly (reduce_aux k p) i qs
+end.
+
+(* Rewrite any x_k ^ {n + 1} to x_k *)
+
+Fixpoint reduce p :=
+match p with
+| Cst c => Cst c
+| Poly p i q =>
+ let qs := reduce_aux i q in
+ (* Ensure validity *)
+ if decide (null qs) then reduce p
+ else Poly (reduce p) i qs
+end.
+
+End Computational.
+
+Section Validity.
+
+(* Decision procedure of validity *)
+
+Hint Constructors valid linear.
+
+Lemma valid_le_compat : forall k l p, valid k p -> (k <= l)%positive -> valid l p.
+Proof.
+intros k l p H Hl; induction H; constructor; eauto.
+now eapply Pos.lt_le_trans; eassumption.
+Qed.
+
+Lemma linear_le_compat : forall k l p, linear k p -> (k <= l)%positive -> linear l p.
+Proof.
+intros k l p H; revert l; induction H; constructor; eauto; zify; romega.
+Qed.
+
+Lemma linear_valid_incl : forall k p, linear k p -> valid k p.
+Proof.
+intros k p H; induction H; constructor; auto.
+eapply valid_le_compat; eauto; zify; romega.
+Qed.
+
+End Validity.
+
+Section Evaluation.
+
+(* Useful simple properties *)
+
+Lemma eval_null_zero : forall p var, null p -> eval var p = false.
+Proof.
+intros p var []; reflexivity.
+Qed.
+
+Lemma eval_extensional_eq_compat : forall p var1 var2,
+ (forall x, list_nth x var1 false = list_nth x var2 false) -> eval var1 p = eval var2 p.
+Proof.
+intros p var1 var2 H; induction p; simpl; try_rewrite; auto.
+Qed.
+
+Lemma eval_suffix_compat : forall k p var1 var2,
+ (forall i, (i < k)%positive -> list_nth i var1 false = list_nth i var2 false) -> valid k p ->
+ eval var1 p = eval var2 p.
+Proof.
+intros k p var1 var2 Hvar Hv; revert var1 var2 Hvar.
+induction Hv; intros var1 var2 Hvar; simpl; [now auto|].
+rewrite Hvar; [|now auto]; erewrite (IHHv1 var1 var2).
+ + erewrite (IHHv2 var1 var2); [ring|].
+ intros; apply Hvar; zify; omega.
+ + intros; apply Hvar; zify; omega.
+Qed.
+
+End Evaluation.
+
+Section Algebra.
+
+(* Compatibility with evaluation *)
+
+Lemma poly_add_compat : forall pl pr var, eval var (poly_add pl pr) = xorb (eval var pl) (eval var pr).
+Proof.
+intros pl; induction pl; intros pr var; simpl.
++ induction pr; simpl; auto; solve [try_rewrite; ring].
++ induction pr; simpl; auto; try solve [try_rewrite; simpl; ring].
+ destruct (Pos.compare_spec p p0); repeat case_decide; simpl; first [try_rewrite; ring|idtac].
+ try_rewrite; ring_simplify; repeat rewrite xorb_assoc.
+ match goal with [ |- context [xorb (andb ?b1 ?b2) (andb ?b1 ?b3)] ] =>
+ replace (xorb (andb b1 b2) (andb b1 b3)) with (andb b1 (xorb b2 b3)) by ring
+ end.
+ rewrite <- IHpl2.
+ match goal with [ H : null ?p |- _ ] => rewrite (eval_null_zero _ _ H) end; ring.
+ simpl; rewrite IHpl1; simpl; ring.
+Qed.
+
+Lemma poly_mul_cst_compat : forall v p var,
+ eval var (poly_mul_cst v p) = andb v (eval var p).
+Proof.
+intros v p; induction p; intros var; simpl; [ring|].
+case_decide; simpl; try_rewrite; [ring_simplify|ring].
+replace (v && list_nth p2 var false && eval var p3) with (list_nth p2 var false && (v && eval var p3)) by ring.
+rewrite <- IHp2; inversion H; simpl; ring.
+Qed.
+
+Lemma poly_mul_mon_compat : forall i p var,
+ eval var (poly_mul_mon i p) = (list_nth i var false && eval var p).
+Proof.
+intros i p var; induction p; simpl; case_decide; simpl; try_rewrite; try ring.
+inversion H; ring.
+match goal with [ |- ?u = ?t ] => set (x := t); destruct x; reflexivity end.
+match goal with [ |- ?u = ?t ] => set (x := t); destruct x; reflexivity end.
+Qed.
+
+Lemma poly_mul_compat : forall pl pr var, eval var (poly_mul pl pr) = andb (eval var pl) (eval var pr).
+Proof.
+intros pl; induction pl; intros pr var; simpl.
+ apply poly_mul_cst_compat.
+ case_decide; simpl.
+ rewrite IHpl1; ring_simplify.
+ replace (eval var pr && list_nth p var false && eval var pl2)
+ with (list_nth p var false && (eval var pl2 && eval var pr)) by ring.
+ now rewrite <- IHpl2; inversion H; simpl; ring.
+ rewrite poly_add_compat, poly_mul_mon_compat, IHpl1, IHpl2; ring.
+Qed.
+
+Hint Extern 5 =>
+match goal with
+| [ |- (Pos.max ?x ?y <= ?z)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| [ |- (?z <= Pos.max ?x ?y)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| [ |- (Pos.max ?x ?y < ?z)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| [ |- (?z < Pos.max ?x ?y)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| _ => zify; omega
+end.
+Hint Resolve Pos.le_max_r Pos.le_max_l.
+
+Hint Constructors valid linear.
+
+(* Compatibility of validity w.r.t algebraic operations *)
+
+Lemma poly_add_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr ->
+ valid (Pos.max kl kr) (poly_add pl pr).
+Proof.
+intros kl kr pl pr Hl Hr; revert kr pr Hr; induction Hl; intros kr pr Hr; simpl.
+{ eapply valid_le_compat; [clear k|apply Pos.le_max_r].
+ now induction Hr; auto. }
+{ assert (Hle : (Pos.max (Pos.succ i) kr <= Pos.max k kr)%positive) by auto.
+ apply (valid_le_compat (Pos.max (Pos.succ i) kr)); [|assumption].
+ clear - IHHl1 IHHl2 Hl2 Hr H0; induction Hr.
+ constructor; auto.
+ now rewrite <- (Pos.max_id i); intuition.
+ destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
+ + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto.
+ + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; zify; romega.
+ + apply (valid_le_compat (Pos.max (Pos.succ i0) (Pos.succ i0))); [now auto|]; rewrite Pos.max_id; zify; romega.
+ + apply (valid_le_compat (Pos.max (Pos.succ i) i0)); intuition.
+ + apply (valid_le_compat (Pos.max i (Pos.succ i0))); intuition.
+}
+Qed.
+
+Lemma poly_mul_cst_valid_compat : forall k v p, valid k p -> valid k (poly_mul_cst v p).
+Proof.
+intros k v p H; induction H; simpl; [now auto|].
+case_decide; [|now auto].
+eapply (valid_le_compat i); [now auto|zify; romega].
+Qed.
+
+Lemma poly_mul_mon_null_compat : forall i p, null (poly_mul_mon i p) -> null p.
+Proof.
+intros i p; induction p; simpl; case_decide; simpl; inversion 1; intuition.
+Qed.
+
+Lemma poly_mul_mon_valid_compat : forall k i p,
+ valid k p -> valid (Pos.max (Pos.succ i) k) (poly_mul_mon i p).
+Proof.
+intros k i p H; induction H; simpl poly_mul_mon; case_decide; intuition.
++ apply (valid_le_compat (Pos.succ i)); auto; constructor; intuition.
+ - match goal with [ H : null ?p |- _ ] => solve[inversion H] end.
++ apply (valid_le_compat k); auto; constructor; intuition.
+ - assert (X := poly_mul_mon_null_compat); intuition eauto.
+ - cutrewrite <- (Pos.max (Pos.succ i) i0 = i0); intuition.
+ - cutrewrite <- (Pos.max (Pos.succ i) (Pos.succ i0) = Pos.succ i0); intuition.
+Qed.
+
+Lemma poly_mul_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr ->
+ valid (Pos.max kl kr) (poly_mul pl pr).
+Proof.
+intros kl kr pl pr Hl Hr; revert kr pr Hr.
+induction Hl; intros kr pr Hr; simpl.
++ apply poly_mul_cst_valid_compat; auto.
+ apply (valid_le_compat kr); now auto.
++ apply (valid_le_compat (Pos.max (Pos.max i kr) (Pos.max (Pos.succ i) (Pos.max (Pos.succ i) kr)))).
+ - case_decide.
+ { apply (valid_le_compat (Pos.max i kr)); auto. }
+ { apply poly_add_valid_compat; auto.
+ now apply poly_mul_mon_valid_compat; intuition. }
+ - repeat apply Pos.max_case_strong; zify; omega.
+Qed.
+
+(* Compatibility of linearity wrt to linear operations *)
+
+Lemma poly_add_linear_compat : forall kl kr pl pr, linear kl pl -> linear kr pr ->
+ linear (Pos.max kl kr) (poly_add pl pr).
+Proof.
+intros kl kr pl pr Hl; revert kr pr; induction Hl; intros kr pr Hr; simpl.
++ apply (linear_le_compat kr); [|apply Pos.max_case_strong; zify; omega].
+ now induction Hr; constructor; auto.
++ apply (linear_le_compat (Pos.max kr (Pos.succ i))); [|now auto].
+ induction Hr; simpl.
+ - constructor; auto.
+ replace i with (Pos.max i i) by (apply Pos.max_id); intuition.
+ - destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
+ { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
+ { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
+ { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
+ { apply (linear_le_compat (Pos.max i0 (Pos.succ i))); intuition. }
+ { apply (linear_le_compat (Pos.max i (Pos.succ i0))); intuition. }
+Qed.
+
+End Algebra.
+
+Section Reduce.
+
+(* A stronger version of the next lemma *)
+
+Lemma reduce_aux_eval_compat : forall k p var, valid (Pos.succ k) p ->
+ (list_nth k var false && eval var (reduce_aux k p) = list_nth k var false && eval var p).
+Proof.
+intros k p var; revert k; induction p; intros k Hv; simpl; auto.
+inversion Hv; case_decide; subst.
++ rewrite poly_add_compat; ring_simplify.
+ specialize (IHp1 k); specialize (IHp2 k).
+ destruct (list_nth k var false); ring_simplify; [|now auto].
+ rewrite <- (andb_true_l (eval var p1)), <- (andb_true_l (eval var p3)).
+ rewrite <- IHp2; auto; rewrite <- IHp1; [ring|].
+ apply (valid_le_compat k); [now auto|zify; omega].
++ remember (list_nth k var false) as b; destruct b; ring_simplify; [|now auto].
+ case_decide; simpl.
+ - rewrite <- (IHp2 p2); [inversion H|now auto]; simpl.
+ replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring); rewrite <- (IHp1 k).
+ { rewrite <- Heqb; ring. }
+ { apply (valid_le_compat p2); [auto|zify; omega]. }
+ - rewrite (IHp2 p2); [|now auto].
+ replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring).
+ rewrite <- (IHp1 k); [rewrite <- Heqb; ring|].
+ apply (valid_le_compat p2); [auto|zify; omega].
+Qed.
+
+(* Reduction preserves evaluation by boolean assignations *)
+
+Lemma reduce_eval_compat : forall k p var, valid k p ->
+ eval var (reduce p) = eval var p.
+Proof.
+intros k p var H; induction H; simpl; auto.
+case_decide; try_rewrite; simpl.
++ rewrite <- reduce_aux_eval_compat; auto; inversion H3; simpl; ring.
++ repeat rewrite reduce_aux_eval_compat; try_rewrite; now auto.
+Qed.
+
+Lemma reduce_aux_le_compat : forall k l p, valid k p -> (k <= l)%positive ->
+ reduce_aux l p = reduce_aux k p.
+Proof.
+intros k l p; revert k l; induction p; intros k l H Hle; simpl; auto.
+inversion H; subst; repeat case_decide; subst; try (exfalso; zify; omega).
++ apply IHp1; [|now auto]; eapply valid_le_compat; [eauto|zify; omega].
++ f_equal; apply IHp1; auto.
+ now eapply valid_le_compat; [eauto|zify; omega].
+Qed.
+
+(* Reduce projects valid polynomials into linear ones *)
+
+Lemma linear_reduce_aux : forall i p, valid (Pos.succ i) p -> linear i (reduce_aux i p).
+Proof.
+intros i p; revert i; induction p; intros i Hp; simpl.
++ constructor.
++ inversion Hp; subst; case_decide; subst.
+ - rewrite <- (Pos.max_id i) at 1; apply poly_add_linear_compat.
+ { apply IHp1; eapply valid_le_compat; [eassumption|zify; omega]. }
+ { intuition. }
+ - case_decide.
+ { apply IHp1; eapply valid_le_compat; [eauto|zify; omega]. }
+ { constructor; try (zify; omega); auto.
+ erewrite (reduce_aux_le_compat p2); [|assumption|zify; omega].
+ apply IHp1; eapply valid_le_compat; [eauto|]; zify; omega. }
+Qed.
+
+Lemma linear_reduce : forall k p, valid k p -> linear k (reduce p).
+Proof.
+intros k p H; induction H; simpl.
++ now constructor.
++ case_decide.
+ - eapply linear_le_compat; [eauto|zify; omega].
+ - constructor; auto.
+ apply linear_reduce_aux; auto.
+Qed.
+
+End Reduce.