summaryrefslogtreecommitdiff
path: root/dev/doc/translate.txt
diff options
context:
space:
mode:
Diffstat (limited to 'dev/doc/translate.txt')
-rw-r--r--dev/doc/translate.txt495
1 files changed, 0 insertions, 495 deletions
diff --git a/dev/doc/translate.txt b/dev/doc/translate.txt
deleted file mode 100644
index 5b372c96..00000000
--- a/dev/doc/translate.txt
+++ /dev/null
@@ -1,495 +0,0 @@
-
- How to use the translator
- =========================
-
- (temporary version to be included in the official
- TeX document describing the translator)
-
-The translator is a smart, robust and powerful tool to improve the
-readibility of your script. The current document describes the
-possibilities of the translator.
-
-In case of problem recompiling the translated files, don't waste time
-to modify the translated file by hand, read first the following
-document telling on how to modify the original files to get a smooth
-uniform safe translation. All 60000 lines of Coq lines on our
-user-contributions server have been translated without any change
-afterwards, and 0,5 % of the lines of the original files (mainly
-notations) had to be modified beforehand to get this result.
-
-Table of contents
------------------
-
-I) Implicit Arguments
- 1) Strict Implicit Arguments
- 2) Implicit Arguments in standard library
-
-II) Notations
- 1) Translating a V7 notation as it was
- 2) Translating a V7 notation which conflicts with the new syntax
- a) Associativity conflicts
- b) Conflicts with other notations
- b1) A notation hides another notation
- b2) A notation conflicts with the V8 grammar
- b3) My notation is already defined at another level
- c) How to use V8only with Distfix ?
- d) Can I overload a notation in V8, e.g. use "*" and "+" ?
- 3) Using the translator to have simplest notations
- 4) Setting the translator to automatically use new notations that
- wasn't used in old syntax
- 5) Defining a construction and its notation simultaneously
-
-III) Various pitfalls
- 1) New keywords
- 2) Old "Case" and "Match"
- 3) Change of definition or theorem names
- 4) Change of tactic names
-
----------------------------------------------------------------------
-
-I) Implicit Arguments
- ------------------
-
-1) Strict Implicit Arguments
-
- "Set Implicit Arguments" changes its meaning in V8: the default is
-to turn implicit only the arguments that are _strictly_ implicit (or
-rigid), i.e. that remains inferable whatever the other arguments
-are. E.g "x" inferable from "P x" is not strictly inferable since it
-can disappears if "P" is instanciated by a term which erase "x".
-
- To respect the old semantics, the default behaviour of the
-translator is to replace each occurrence "Set Implicit Arguments" by
-
- Set Implicit Arguments.
- Unset Strict Implicits.
-
- However, you may wish to adopt the new semantics of "Set Implicit
-Arguments" (for instance because you think that the choice of
-arguments it setsimplicit is more "natural" for you). In this case,
-add the option -strict-implicit to the translator.
-
- Warning: Changing the number of implicit arguments can break the
-notations. Then use the V8only modifier of Notations.
-
-2) Implicit Arguments in standard library
-
- Main definitions of standard library have now implicit
-arguments. These arguments are dropped in the translated files. This
-can exceptionally be a source of incompatibilities which has to be
-solved by hand (it typically happens for polymorphic functions applied
-to "nil" or "None").
-
-II) Notations
- ---------
-
- Grammar (on constr) and Syntax are no longer supported. Replace them by
-Notation before translation.
-
- Precedence levels are now from 0 to 200. In V8, the precedence and
-associativity of an operator cannot be redefined. Typical level are
-(refer to the chapter on notations in the Reference Manual for the
-full list):
-
- <-> : 95 (no associativity)
- -> : 90 (right associativity)
- \/ : 85 (right associativity)
- /\ : 80 (right associativity)
- ~ : 75 (right associativity)
- =, <, >, <=, >=, <> : 70 (no associativity)
- +, - : 50 (left associativity)
- *, / : 40 (left associativity)
- ^ : 30 (right associativity)
-
-1) Translating a V7 notation as it was
-
- By default, the translator keeps the associativity given in V7 while
-the levels are mapped according to the following table:
-
- the V7 levels [ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
- are resp. mapped in V8 to [ 0; 20; 30; 40; 50; 70; 80; 85; 90; 95; 100]
- with predefined assoc [ No; L; R; L; L; No; R; R; R; No; L]
-
- If this is OK for you, just simply apply the translator.
-
-2) Translating a V7 notation which conflicts with the new syntax
-
-a) Associativity conflict
-
- Since the associativity of the levels obtained by translating a V7
-level (as shown on table above) cannot be changed, you have to choose
-another level with a compatible associativity.
-
- You can choose any level between 0 and 200, knowing that the
-standard operators are already set at the levels shown on the list
-above.
-
-Example 1: Assume you have a notation
-
-Infix NONA 2 "=_S" my_setoid_eq.
-
-By default, the translator moves it to level 30 which is right
-associative, hence a conflict with the expected no associativity.
-
-To solve the problem, just add the "V8only" modifier to reset the
-level and enforce the associativity as follows:
-
-Infix NONA 2 "=_S" my_setoid_eq V8only (at level 70, no associativity).
-
-The translator now knows that it has to translate "=_S" at level 70
-with no associativity.
-
-Rem: 70 is the "natural" level for relations, hence the choice of 70
-here, but any other level accepting a no-associativity would have been
-OK.
-
-Example 2: Assume you have a notation
-
-Infix RIGHTA 1 "o" my_comp.
-
-By default, the translator moves it to level 20 which is left
-associative, hence a conflict with the expected right associativity.
-
-To solve the problem, just add the "V8only" modifier to reset the
-level and enforce the associativity as follows:
-
-Infix RIGHTA 1 "o" my_comp V8only (at level 20, right associativity).
-
-The translator now knows that it has to translate "o" at level 20
-which has the correct "right associativity".
-
-Rem: We assumed here that the user wants a strong precedence for
-composition, in such a way, say, that "f o g + h" is parsed as
-"(f o g) + h". To get "o" binding less than the arithmetical operators,
-an appropriated level would have been close of 70, and below, e.g. 65.
-
-b) Conflicts with other notations
-
-Since the new syntax comes with new keywords and new predefined
-symbols, new conflicts can occur. Again, you can use the option V8only
-to inform the translator of the new syntax to use.
-
-b1) A notation hides another notation
-
-Rem: use Print Grammar constr in V8 to diagnose the overlap and see the
-section on factorization in the chapter on notations of the Reference
-Manual for hints on how to factorize.
-
-Example:
-
-Notation "{ x }" := (my_embedding x) (at level 1).
-
-overlaps in V8 with notation "{ x : A & P }" at level 0 and with x at
-level 99. The conflicts can be solved by left-factorizing the notation
-as follows:
-
-Notation "{ x }" := (my_embedding x) (at level 1)
- V8only (at level 0, x at level 99).
-
-b2) A notation conflicts with the V8 grammar.
-
-Again, use the V8only modifier to tell the translator to automatically
-take in charge the new syntax.
-
-Example:
-
-Infix 3 "@" app.
-
-Since "@" is used in the new syntax for deactivating the implicit
-arguments, another symbol has to be used, e.g. "@@". This is done via
-the V8only option as follows:
-
-Infix 3 "@" app V8only "@@" (at level 40, left associativity).
-
-or, alternatively by
-
-Notation "x @ y" := (app x y) (at level 3, left associativity)
- V8only "x @@ y" (at level 40, left associativity).
-
-b3) My notation is already defined at another level (or with another
-associativity)
-
-In V8, the level and associativity of a given notation can no longer
-be changed. Then, either you adopt the standard reserved levels and
-associativity for this notation (as given on the list above) or you
-change your notation.
-
-- To change the notation, follow the directions in section b2.
-
-- To adopt the standard level, just use V8only without any argument.
-
-Example.
-
-Infix 6 "*" my_mult.
-
-is not accepted as such in V8. Write
-
-Infix 6 "*" my_mult V8only.
-
-to tell the translator to use "*" at the reserved level (i.e. 40 with
-left associativity). Even better, use interpretation scopes (look at
-the Reference Manual).
-
-c) How to use V8only with Distfix ?
-
-You can't, use Notation instead of Distfix.
-
-d) Can I overload a notation in V8, e.g. use "*" and "+" for my own
-algebraic operations ?
-
-Yes, using interpretation scopes (see the corresponding chapter in the
-Reference Manual).
-
-3) Using the translator to have simplest notations
-
-Thanks to the new syntax, * has now the expected left associativity,
-and the symbols <, >, <= and >= are now available.
-
-Thanks to the interpretation scopes, you can overload the
-interpretation of these operators with the default interpretation
-provided in Coq.
-
-This may be a motivation to use the translator to automatically change
-the notations while switching to the new syntax.
-
-See sections b) and d) above for examples.
-
-4) Setting the translator to automatically use new notations that
-wasn't used in old syntax
-
-Thanks to the "Notation" mechanism, defining symbolic notations is
-simpler than in the previous versions of Coq.
-
-Thanks to the new syntax and interpretation scopes, new symbols and
-overloading is available.
-
-This may be a motivation for using the translator to automatically change
-the notations while switching to the new syntax.
-
-Use for that the commands V8Notation and V8Infix.
-
-Examples:
-
-V8Infix "==>" my_relation (at level 65, right associativity).
-
-tells the translator to write an infix "==>" instead of my_relation in
-the translated files.
-
-V8Infix ">=" my_ge.
-
-tells the translator to write an infix ">=" instead of my_ge in the
-translated files and that the level and associativity are the standard
-one (as defined in the chart above).
-
-V8Infix ">=" my_ge : my_scope.
-
-tells the translator to write an infix ">=" instead of my_ge in the
-translated files, that the level and associativity are the standard
-one (as defined in the chart above), but only if scope my_scope is
-open or if a delimiting key is available for "my_scope" (see the
-Reference Manual).
-
-5) Defining a construction and its notation simultaneously
-
-This is permitted by the new syntax. Look at the Reference Manual for
-explanation. The translator is not fully able to take this in charge...
-
-III) Various pitfalls
- ----------------
-
-1) New keywords
-
- The following identifiers are new keywords
-
- "forall"; "fun"; "match"; "fix"; "cofix"; "for"; "if"; "then";
- "else"; "return"; "mod"; "at"; "let"; "_"; ".("
-
- The translator automatically add a "_" to names clashing with a
-keyword, except for files. Hence users may need to rename the files
-whose name clashes with a keyword.
-
- Remark: "in"; "with"; "end"; "as"; "Prop"; "Set"; "Type"
- were already keywords
-
-2) Old "Case" and "Match"
-
- "Case" and "Match" are normally automatically translated into
- "match" or "match" and "fix", but sometimes it fails to do so. It
- typically fails when the Case or Match is argument of a tactic whose
- typing context is unknown because of a preceding Intro/Intros, as e.g. in
-
- Intros; Exists [m:nat](<quasiterm>Case m of t [p:nat](f m) end)
-
- The solution is then to replace the invocation of the sequence of
- tactics into several invocation of the elementary tactics as follows
-
- Intros. Exists [m:nat](<quasiterm>Case m of t [p:nat](f m) end)
- ^^^
-
-3) Change of definition or theorem names
-
- Type "entier" from fast_integer.v is renamed into "N" by the
-translator. As a consequence, user-defined objects of same name "N"
-are systematically qualified even tough it may not be necessary. The
-same apply for names "GREATER", "EQUAL", "LESS", etc... [COMPLETE LIST
-TO GIVE].
-
-4) Change of tactics names
-
- Since tactics names are now lowercase, this can clash with
-user-defined tactic definitions. To pally this, clashing names are
-renamed by adding an extra "_" to their name.
-
-======================================================================
-Main examples for new syntax
-----------------------------
-
-1) Constructions
-
- Applicative terms don't any longer require to be surrounded by parentheses as
-e.g in
-
- "x = f y -> S x = S (f y)"
-
-
- Product is written
-
- "forall x y : T, U"
- "forall x y, U"
- "forall (x y : T) z (v w : V), U"
- etc.
-
- Abstraction is written
-
- "fun x y : T, U"
- "fun x y, U"
- "fun (x y : T) z (v w : V), U"
- etc.
-
- Pattern-matching is written
-
- "match x with c1 x1 x2 => t | c2 y as z => u end"
- "match v1, v2 with c1 x1 x2, _ => t | c2 y, d z => u end"
- "match v1 as y in le _ n, v2 as z in I p q return P n y p q z with
- c1 x1 x2, _ => t | c2 y, d z => u end"
-
- The last example is the new form of what was written
-
- "<[n;y:(le ? n);p;q;z:(I p q)](P n y p q z)>Cases v1 v2 of
- (c1 x1 x2) _ => t | (c2 y) (d z) => u end"
-
- Pattern-matching of type with one constructors and no dependencies
-of the arguments in the resulting type can be written
-
- "let (x,y,z) as u return P u := t in v"
-
- Local fixpoints are written
-
- "fix f (n m:nat) z (x : X) {struct m} : nat := ...
- with ..."
-
- and "struct" tells which argument is structurally decreasing.
-
- Explicitation of implicit arguments is written
-
- "f @1:=u v @3:=w t"
- "@f u v w t"
-
-2) Tactics
-
- The main change is that tactics names are now lowercase. Besides
-this, the following renaming are applied:
-
- "NewDestruct" -> "destruct"
- "NewInduction" -> "induction"
- "Induction" -> "simple induction"
- "Destruct" -> "simple destruct"
-
- For tactics with occurrences, the occurrences now comes after and
- repeated use is separated by comma as in
-
- "Pattern 1 3 c d 4 e" -> "pattern c at 3 1, d, e at 4"
- "Unfold 1 3 f 4 g" -> "unfold f at 1 3, g at 4"
- "Simpl 1 3 e" -> "simpl e at 1 3"
-
-3) Tactic language
-
- Definitions are now introduced with keyword "Ltac" (instead of
-"Tactic"/"Meta" "Definition") and are implicitly recursive
-("Recursive" is no longer used).
-
- The new rule for distinguishing terms from ltac expressions is:
-
- Write "ltac:" in front of any tactic in argument position and
- "constr:" in front of any construction in head position
-
-4) Vernacular language
-
-a) Assumptions
-
- The syntax for commands is mainly unchanged. Declaration of
-assumptions is now done as follows
-
- Variable m : t.
- Variables m n p : t.
- Variables (m n : t) (u v : s) (w : r).
-
-b) Definitions
-
- Definitions are done as follows
-
- Definition f m n : t := ... .
- Definition f m n := ... .
- Definition f m n := ... : t.
- Definition f (m n : u) : t := ... .
- Definition f (m n : u) := ... : t.
- Definition f (m n : u) := ... .
- Definition f a b (p q : v) r s (m n : t) : t := ... .
- Definition f a b (p q : v) r s (m n : t) := ... .
- Definition f a b (p q : v) r s (m n : t) := ... : t.
-
-c) Fixpoints
-
- Fixpoints are done this way
-
- Fixpoint f x (y : t) z a (b c : u) {struct z} : v := ... with ... .
- Fixpoint f x : v := ... .
- Fixpoint f (x : t) : v := ... .
-
- It is possible to give a concrete notation to a fixpoint as follows
-
- Fixpoint plus (n m:nat) {struct n} : nat as "n + m" :=
- match n with
- | O => m
- | S p => S (p + m)
- end.
-
-d) Inductive types
-
- The syntax for inductive types is as follows
-
- Inductive t (a b : u) (d : e) : v :=
- c1 : w1 | c2 : w2 | ... .
-
- Inductive t (a b : u) (d : e) : v :=
- c1 : w1 | c2 : w2 | ... .
-
- Inductive t (a b : u) (d : e) : v :=
- c1 (x y : t) : w1 | c2 (z : r) : w2 | ... .
-
- As seen in the last example, arguments of the constructors can be
-given before the colon. If the type itself is omitted (allowed only in
-case the inductive type has no real arguments), this yields an
-ML-style notation as follows
-
- Inductive nat : Set := O | S (n:nat).
- Inductive bool : Set := true | false.
-
- It is even possible to define a syntax at the same time, as follows:
-
- Inductive or (A B:Prop) : Prop as "A \/ B":=
- | or_introl (a:A) : A \/ B
- | or_intror (b:B) : A \/ B.
-
- Inductive and (A B:Prop) : Prop as "A /\ B" := conj (a:A) (b:B).
-