summaryrefslogtreecommitdiff
path: root/contrib7/ring/Ring_normalize.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/ring/Ring_normalize.v')
-rw-r--r--contrib7/ring/Ring_normalize.v893
1 files changed, 0 insertions, 893 deletions
diff --git a/contrib7/ring/Ring_normalize.v b/contrib7/ring/Ring_normalize.v
deleted file mode 100644
index 1dbd9d56..00000000
--- a/contrib7/ring/Ring_normalize.v
+++ /dev/null
@@ -1,893 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Ring_normalize.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-Require Ring_theory.
-Require Quote.
-
-Set Implicit Arguments.
-
-Lemma index_eq_prop: (n,m:index)(Is_true (index_eq n m)) -> n=m.
-Proof.
- Intros.
- Apply Quote.index_eq_prop.
- Generalize H.
- Case (index_eq n m); Simpl; Trivial; Intros.
- Contradiction.
-Save.
-
-Section semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aeq : A -> A -> bool.
-
-(* Section definitions. *)
-
-
-(******************************************)
-(* Normal abtract Polynomials *)
-(******************************************)
-(* DEFINITIONS :
-- A varlist is a sorted product of one or more variables : x, x*y*z
-- A monom is a constant, a varlist or the product of a constant by a varlist
- variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
-- A canonical sum is either a monom or an ordered sum of monoms
- (the order on monoms is defined later)
-- A normal polynomial it either a constant or a canonical sum or a constant
- plus a canonical sum
-*)
-
-(* varlist is isomorphic to (list var), but we built a special inductive
- for efficiency *)
-Inductive varlist : Type :=
-| Nil_var : varlist
-| Cons_var : index -> varlist -> varlist
-.
-
-Inductive canonical_sum : Type :=
-| Nil_monom : canonical_sum
-| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
-| Cons_varlist : varlist -> canonical_sum -> canonical_sum
-.
-
-(* Order on monoms *)
-
-(* That's the lexicographic order on varlist, extended by :
- - A constant is less than every monom
- - The relation between two varlist is preserved by multiplication by a
- constant.
-
- Examples :
- 3 < x < y
- x*y < x*y*y*z
- 2*x*y < x*y*y*z
- x*y < 54*x*y*y*z
- 4*x*y < 59*x*y*y*z
-*)
-
-Fixpoint varlist_eq [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var Nil_var => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- (andb (index_eq i j) (varlist_eq xrest yrest))
- | _ _ => false
- end.
-
-Fixpoint varlist_lt [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var (Cons_var _ _) => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- if (index_lt i j) then true
- else (andb (index_eq i j) (varlist_lt xrest yrest))
- | _ _ => false
- end.
-
-(* merges two variables lists *)
-Fixpoint varlist_merge [l1:varlist] : varlist -> varlist :=
- Cases l1 of
- | (Cons_var v1 t1) =>
- Fix vm_aux {vm_aux [l2:varlist] : varlist :=
- Cases l2 of
- | (Cons_var v2 t2) =>
- if (index_lt v1 v2)
- then (Cons_var v1 (varlist_merge t1 l2))
- else (Cons_var v2 (vm_aux t2))
- | Nil_var => l1
- end}
- | Nil_var => [l2]l2
- end.
-
-(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
-Cases s1 of
-| (Cons_monom c1 l1 t1) =>
- Fix csm_aux{csm_aux[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux t2))
- | Nil_monom => s1
- end}
-| (Cons_varlist l1 t1) =>
- Fix csm_aux2{csm_aux2[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux2 t2))
- | Nil_monom => s1
- end}
-| Nil_monom => [s2]s2
-end.
-
-(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert [c1:A; l1:varlist; s2 : canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_monom c2 l2 (monom_insert c1 l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_varlist l2 (monom_insert c1 l1 t2))
- | Nil_monom => (Cons_monom c1 l1 Nil_monom)
- end.
-
-Fixpoint varlist_insert [l1:varlist; s2:canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_monom c2 l2 (varlist_insert l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_varlist l2 (varlist_insert l1 t2))
- | Nil_monom => (Cons_varlist l1 Nil_monom)
- end.
-
-(* Computes c0*s *)
-Fixpoint canonical_sum_scalar [c0:A; s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t))
- | (Cons_varlist l t) =>
- (Cons_monom c0 l (canonical_sum_scalar c0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 [l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | (Cons_varlist l t) =>
- (varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 [c0:A;l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | (Cons_varlist l t) =>
- (monom_insert c0 (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
- [s2]Cases s1 of
- | (Cons_monom c1 l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2))
- | (Cons_varlist l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2))
- | Nil_monom => Nil_monom
- end.
-
-(* The type to represent concrete semi-ring polynomials *)
-Inductive Type spolynomial :=
- SPvar : index -> spolynomial
-| SPconst : A -> spolynomial
-| SPplus : spolynomial -> spolynomial -> spolynomial
-| SPmult : spolynomial -> spolynomial -> spolynomial.
-
-Fixpoint spolynomial_normalize[p:spolynomial] : canonical_sum :=
- Cases p of
- | (SPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- | (SPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SPplus l r) => (canonical_sum_merge (spolynomial_normalize l)
- (spolynomial_normalize r))
- | (SPmult l r) => (canonical_sum_prod (spolynomial_normalize l)
- (spolynomial_normalize r))
- end.
-
-(* Deletion of useless 0 and 1 in canonical sums *)
-Fixpoint canonical_sum_simplify [ s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- if (Aeq c Azero)
- then (canonical_sum_simplify t)
- else if (Aeq c Aone)
- then (Cons_varlist l (canonical_sum_simplify t))
- else (Cons_monom c l (canonical_sum_simplify t))
- | (Cons_varlist l t) => (Cons_varlist l (canonical_sum_simplify t))
- | Nil_monom => Nil_monom
- end.
-
-Definition spolynomial_simplify :=
- [x:spolynomial](canonical_sum_simplify (spolynomial_normalize x)).
-
-(* End definitions. *)
-
-(* Section interpretation. *)
-
-(*** Here a variable map is defined and the interpetation of a spolynom
- acording to a certain variables map. Once again the choosen definition
- is generic and could be changed ****)
-
-Variable vm : (varmap A).
-
-(* Interpretation of list of variables
- * [x1; ... ; xn ] is interpreted as (find v x1)* ... *(find v xn)
- * The unbound variables are mapped to 0. Normally this case sould
- * never occur. Since we want only to prove correctness theorems, which form
- * is : for any varmap and any spolynom ... this is a safe and pain-saving
- * choice *)
-Definition interp_var [i:index] := (varmap_find Azero i vm).
-
-(* Local *) Definition ivl_aux := Fix ivl_aux {ivl_aux[x:index; t:varlist] : A :=
- Cases t of
- | Nil_var => (interp_var x)
- | (Cons_var x' t') => (Amult (interp_var x) (ivl_aux x' t'))
- end}.
-
-Definition interp_vl := [l:varlist]
- Cases l of
- | Nil_var => Aone
- | (Cons_var x t) => (ivl_aux x t)
- end.
-
-(* Local *) Definition interp_m := [c:A][l:varlist]
- Cases l of
- | Nil_var => c
- | (Cons_var x t) =>
- (Amult c (ivl_aux x t))
- end.
-
-(* Local *) Definition ics_aux := Fix ics_aux{ics_aux[a:A; s:canonical_sum] : A :=
- Cases s of
- | Nil_monom => a
- | (Cons_varlist l t) => (Aplus a (ics_aux (interp_vl l) t))
- | (Cons_monom c l t) => (Aplus a (ics_aux (interp_m c l) t))
- end}.
-
-(* Interpretation of a canonical sum *)
-Definition interp_cs : canonical_sum -> A :=
- [s]Cases s of
- | Nil_monom => Azero
- | (Cons_varlist l t) =>
- (ics_aux (interp_vl l) t)
- | (Cons_monom c l t) =>
- (ics_aux (interp_m c l) t)
- end.
-
-Fixpoint interp_sp [p:spolynomial] : A :=
- Cases p of
- (SPconst c) => c
- | (SPvar i) => (interp_var i)
- | (SPplus p1 p2) => (Aplus (interp_sp p1) (interp_sp p2))
- | (SPmult p1 p2) => (Amult (interp_sp p1) (interp_sp p2))
- end.
-
-
-(* End interpretation. *)
-
-Unset Implicit Arguments.
-
-(* Section properties. *)
-
-Variable T : (Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-
-Hint SR_plus_sym_T := Resolve (SR_plus_sym T).
-Hint SR_plus_assoc_T := Resolve (SR_plus_assoc T).
-Hint SR_plus_assoc2_T := Resolve (SR_plus_assoc2 T).
-Hint SR_mult_sym_T := Resolve (SR_mult_sym T).
-Hint SR_mult_assoc_T := Resolve (SR_mult_assoc T).
-Hint SR_mult_assoc2_T := Resolve (SR_mult_assoc2 T).
-Hint SR_plus_zero_left_T := Resolve (SR_plus_zero_left T).
-Hint SR_plus_zero_left2_T := Resolve (SR_plus_zero_left2 T).
-Hint SR_mult_one_left_T := Resolve (SR_mult_one_left T).
-Hint SR_mult_one_left2_T := Resolve (SR_mult_one_left2 T).
-Hint SR_mult_zero_left_T := Resolve (SR_mult_zero_left T).
-Hint SR_mult_zero_left2_T := Resolve (SR_mult_zero_left2 T).
-Hint SR_distr_left_T := Resolve (SR_distr_left T).
-Hint SR_distr_left2_T := Resolve (SR_distr_left2 T).
-Hint SR_plus_reg_left_T := Resolve (SR_plus_reg_left T).
-Hint SR_plus_permute_T := Resolve (SR_plus_permute T).
-Hint SR_mult_permute_T := Resolve (SR_mult_permute T).
-Hint SR_distr_right_T := Resolve (SR_distr_right T).
-Hint SR_distr_right2_T := Resolve (SR_distr_right2 T).
-Hint SR_mult_zero_right_T := Resolve (SR_mult_zero_right T).
-Hint SR_mult_zero_right2_T := Resolve (SR_mult_zero_right2 T).
-Hint SR_plus_zero_right_T := Resolve (SR_plus_zero_right T).
-Hint SR_plus_zero_right2_T := Resolve (SR_plus_zero_right2 T).
-Hint SR_mult_one_right_T := Resolve (SR_mult_one_right T).
-Hint SR_mult_one_right2_T := Resolve (SR_mult_one_right2 T).
-Hint SR_plus_reg_right_T := Resolve (SR_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(* Hints Resolve refl_eqT sym_eqT trans_eqT. *)
-Hints Immediate T.
-
-Lemma varlist_eq_prop : (x,y:varlist)
- (Is_true (varlist_eq x y))->x==y.
-Proof.
- Induction x; Induction y; Contradiction Orelse Try Reflexivity.
- Simpl; Intros.
- Generalize (andb_prop2 ? ? H1); Intros; Elim H2; Intros.
- Rewrite (index_eq_prop H3); Rewrite (H v0 H4); Reflexivity.
-Save.
-
-Remark ivl_aux_ok : (v:varlist)(i:index)
- (ivl_aux i v)==(Amult (interp_var i) (interp_vl v)).
-Proof.
- Induction v; Simpl; Intros.
- Trivial.
- Rewrite H; Trivial.
-Save.
-
-Lemma varlist_merge_ok : (x,y:varlist)
- (interp_vl (varlist_merge x y))
- ==(Amult (interp_vl x) (interp_vl y)).
-Proof.
- Induction x.
- Simpl; Trivial.
- Induction y.
- Simpl; Trivial.
- Simpl; Intros.
- Elim (index_lt i i0); Simpl; Intros.
-
- Repeat Rewrite ivl_aux_ok.
- Rewrite H. Simpl.
- Rewrite ivl_aux_ok.
- EAuto.
-
- Repeat Rewrite ivl_aux_ok.
- Rewrite H0.
- Rewrite ivl_aux_ok.
- EAuto.
-Save.
-
-Remark ics_aux_ok : (x:A)(s:canonical_sum)
- (ics_aux x s)==(Aplus x (interp_cs s)).
-Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
- Reflexivity.
-Save.
-
-Remark interp_m_ok : (x:A)(l:varlist)
- (interp_m x l)==(Amult x (interp_vl l)).
-Proof.
- NewDestruct l.
- Simpl; Trivial.
- Reflexivity.
-Save.
-
-Lemma canonical_sum_merge_ok : (x,y:canonical_sum)
- (interp_cs (canonical_sum_merge x y))
- ==(Aplus (interp_cs x) (interp_cs y)).
-
-Induction x; Simpl.
-Trivial.
-
-Induction y; Simpl; Intros.
-(* monom and nil *)
-EAuto.
-
-(* monom and monom *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Apply congr_eqT with f:=(Aplus (Amult a (interp_vl v0))).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-
-(* monom and varlist *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Apply congr_eqT with f:=(Aplus (Amult a (interp_vl v0))).
-Rewrite (SR_mult_one_left T).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-
-Induction y; Simpl; Intros.
-(* varlist and nil *)
-Trivial.
-
-(* varlist and monom *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_one_left T).
-Apply congr_eqT with f:=(Aplus (interp_vl v0)).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-
-(* varlist and varlist *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_one_left T).
-Apply congr_eqT with f:=(Aplus (interp_vl v0)).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-Save.
-
-Lemma monom_insert_ok: (a:A)(l:varlist)(s:canonical_sum)
- (interp_cs (monom_insert a l s))
- == (Aplus (Amult a (interp_vl l)) (interp_cs s)).
-Intros; Generalize s; Induction s0.
-
-Simpl; Rewrite interp_m_ok; Trivial.
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok; Rewrite interp_m_ok;
- Rewrite (SR_distr_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-Save.
-
-Lemma varlist_insert_ok :
- (l:varlist)(s:canonical_sum)
- (interp_cs (varlist_insert l s))
- == (Aplus (interp_vl l) (interp_cs s)).
-Intros; Generalize s; Induction s0.
-
-Simpl; Trivial.
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok; Rewrite interp_m_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-Save.
-
-Lemma canonical_sum_scalar_ok : (a:A)(s:canonical_sum)
- (interp_cs (canonical_sum_scalar a s))
- ==(Amult a (interp_cs s)).
-Induction s.
-Simpl; EAuto.
-
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Reflexivity.
-
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_scalar2_ok : (l:varlist; s:canonical_sum)
- (interp_cs (canonical_sum_scalar2 l s))
- ==(Amult (interp_vl l) (interp_cs s)).
-Induction s.
-Simpl; Trivial.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-Reflexivity.
-
-Simpl; Intros.
-Rewrite varlist_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_scalar3_ok : (c:A; l:varlist; s:canonical_sum)
- (interp_cs (canonical_sum_scalar3 c l s))
- ==(Amult c (Amult (interp_vl l) (interp_cs s))).
-Induction s.
-Simpl; Repeat Rewrite (SR_mult_zero_right T); Reflexivity.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-Reflexivity.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_prod_ok : (x,y:canonical_sum)
- (interp_cs (canonical_sum_prod x y))
- ==(Amult (interp_cs x) (interp_cs y)).
-Induction x; Simpl; Intros.
-Trivial.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite canonical_sum_scalar3_ok.
-Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
-Symmetry.
-EAuto.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite canonical_sum_scalar2_ok.
-Rewrite ics_aux_ok.
-Rewrite H.
-Trivial.
-Save.
-
-Theorem spolynomial_normalize_ok : (p:spolynomial)
- (interp_cs (spolynomial_normalize p)) == (interp_sp p).
-Induction p; Simpl; Intros.
-
-Reflexivity.
-Reflexivity.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite H; Rewrite H0.
-Reflexivity.
-
-Rewrite canonical_sum_prod_ok.
-Rewrite H; Rewrite H0.
-Reflexivity.
-Save.
-
-Lemma canonical_sum_simplify_ok : (s:canonical_sum)
- (interp_cs (canonical_sum_simplify s)) == (interp_cs s).
-Induction s.
-
-Reflexivity.
-
-(* cons_monom *)
-Simpl; Intros.
-Generalize (SR_eq_prop T 8!a 9!Azero).
-Elim (Aeq a Azero).
-Intro Heq; Rewrite (Heq I).
-Rewrite H.
-Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite (SR_mult_zero_left T).
-Trivial.
-
-Intros; Simpl.
-Generalize (SR_eq_prop T 8!a 9!Aone).
-Elim (Aeq a Aone).
-Intro Heq; Rewrite (Heq I).
-Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_mult_one_left T).
-Reflexivity.
-
-Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Reflexivity.
-
-(* cons_varlist *)
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Rewrite H.
-Reflexivity.
-
-Save.
-
-Theorem spolynomial_simplify_ok : (p:spolynomial)
- (interp_cs (spolynomial_simplify p)) == (interp_sp p).
-Intro.
-Unfold spolynomial_simplify.
-Rewrite canonical_sum_simplify_ok.
-Apply spolynomial_normalize_ok.
-Save.
-
-(* End properties. *)
-End semi_rings.
-
-Implicits Cons_varlist.
-Implicits Cons_monom.
-Implicits SPconst.
-Implicits SPplus.
-Implicits SPmult.
-
-Section rings.
-
-(* Here the coercion between Ring and Semi-Ring will be useful *)
-
-Set Implicit Arguments.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq).
-
-Hint Th_plus_sym_T := Resolve (Th_plus_sym T).
-Hint Th_plus_assoc_T := Resolve (Th_plus_assoc T).
-Hint Th_plus_assoc2_T := Resolve (Th_plus_assoc2 T).
-Hint Th_mult_sym_T := Resolve (Th_mult_sym T).
-Hint Th_mult_assoc_T := Resolve (Th_mult_assoc T).
-Hint Th_mult_assoc2_T := Resolve (Th_mult_assoc2 T).
-Hint Th_plus_zero_left_T := Resolve (Th_plus_zero_left T).
-Hint Th_plus_zero_left2_T := Resolve (Th_plus_zero_left2 T).
-Hint Th_mult_one_left_T := Resolve (Th_mult_one_left T).
-Hint Th_mult_one_left2_T := Resolve (Th_mult_one_left2 T).
-Hint Th_mult_zero_left_T := Resolve (Th_mult_zero_left T).
-Hint Th_mult_zero_left2_T := Resolve (Th_mult_zero_left2 T).
-Hint Th_distr_left_T := Resolve (Th_distr_left T).
-Hint Th_distr_left2_T := Resolve (Th_distr_left2 T).
-Hint Th_plus_reg_left_T := Resolve (Th_plus_reg_left T).
-Hint Th_plus_permute_T := Resolve (Th_plus_permute T).
-Hint Th_mult_permute_T := Resolve (Th_mult_permute T).
-Hint Th_distr_right_T := Resolve (Th_distr_right T).
-Hint Th_distr_right2_T := Resolve (Th_distr_right2 T).
-Hint Th_mult_zero_right_T := Resolve (Th_mult_zero_right T).
-Hint Th_mult_zero_right2_T := Resolve (Th_mult_zero_right2 T).
-Hint Th_plus_zero_right_T := Resolve (Th_plus_zero_right T).
-Hint Th_plus_zero_right2_T := Resolve (Th_plus_zero_right2 T).
-Hint Th_mult_one_right_T := Resolve (Th_mult_one_right T).
-Hint Th_mult_one_right2_T := Resolve (Th_mult_one_right2 T).
-Hint Th_plus_reg_right_T := Resolve (Th_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-(*** Definitions *)
-
-Inductive Type polynomial :=
- Pvar : index -> polynomial
-| Pconst : A -> polynomial
-| Pplus : polynomial -> polynomial -> polynomial
-| Pmult : polynomial -> polynomial -> polynomial
-| Popp : polynomial -> polynomial.
-
-Fixpoint polynomial_normalize [x:polynomial] : (canonical_sum A) :=
- Cases x of
- (Pplus l r) => (canonical_sum_merge Aplus Aone
- (polynomial_normalize l)
- (polynomial_normalize r))
- | (Pmult l r) => (canonical_sum_prod Aplus Amult Aone
- (polynomial_normalize l)
- (polynomial_normalize r))
- | (Pconst c) => (Cons_monom c Nil_var (Nil_monom A))
- | (Pvar i) => (Cons_varlist (Cons_var i Nil_var) (Nil_monom A))
- | (Popp p) => (canonical_sum_scalar3 Aplus Amult Aone
- (Aopp Aone) Nil_var
- (polynomial_normalize p))
- end.
-
-Definition polynomial_simplify :=
- [x:polynomial](canonical_sum_simplify Aone Azero Aeq
- (polynomial_normalize x)).
-
-Fixpoint spolynomial_of [x:polynomial] : (spolynomial A) :=
- Cases x of
- (Pplus l r) => (SPplus (spolynomial_of l) (spolynomial_of r))
- | (Pmult l r) => (SPmult (spolynomial_of l) (spolynomial_of r))
- | (Pconst c) => (SPconst c)
- | (Pvar i) => (SPvar A i)
- | (Popp p) => (SPmult (SPconst (Aopp Aone)) (spolynomial_of p))
- end.
-
-(*** Interpretation *)
-
-Fixpoint interp_p [p:polynomial] : A :=
- Cases p of
- (Pconst c) => c
- | (Pvar i) => (varmap_find Azero i vm)
- | (Pplus p1 p2) => (Aplus (interp_p p1) (interp_p p2))
- | (Pmult p1 p2) => (Amult (interp_p p1) (interp_p p2))
- | (Popp p1) => (Aopp (interp_p p1))
- end.
-
-(*** Properties *)
-
-Unset Implicit Arguments.
-
-Lemma spolynomial_of_ok : (p:polynomial)
- (interp_p p)==(interp_sp Aplus Amult Azero vm (spolynomial_of p)).
-Induction p; Reflexivity Orelse (Simpl; Intros).
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H.
-Rewrite (Th_opp_mult_left2 T).
-Rewrite (Th_mult_one_left T).
-Reflexivity.
-Save.
-
-Theorem polynomial_normalize_ok : (p:polynomial)
- (polynomial_normalize p)
- ==(spolynomial_normalize Aplus Amult Aone (spolynomial_of p)).
-Induction p; Reflexivity Orelse (Simpl; Intros).
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Simpl.
-Elim (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
- (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
-[ Reflexivity
-| Simpl; Intros; Rewrite H0; Reflexivity
-| Simpl; Intros; Rewrite H0; Reflexivity ].
-Save.
-
-Theorem polynomial_simplify_ok : (p:polynomial)
- (interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p))
- ==(interp_p p).
-Intro.
-Unfold polynomial_simplify.
-Rewrite spolynomial_of_ok.
-Rewrite polynomial_normalize_ok.
-Rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
-Rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
-Reflexivity.
-Save.
-
-End rings.
-
-V8Infix "+" Pplus : ring_scope.
-V8Infix "*" Pmult : ring_scope.
-V8Notation "- x" := (Popp x) : ring_scope.
-V8Notation "[ x ]" := (Pvar x) (at level 1) : ring_scope.
-
-Delimits Scope ring_scope with ring.