summaryrefslogtreecommitdiff
path: root/contrib7/ring/Ring_abstract.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/ring/Ring_abstract.v')
-rw-r--r--contrib7/ring/Ring_abstract.v699
1 files changed, 0 insertions, 699 deletions
diff --git a/contrib7/ring/Ring_abstract.v b/contrib7/ring/Ring_abstract.v
deleted file mode 100644
index 55bb31da..00000000
--- a/contrib7/ring/Ring_abstract.v
+++ /dev/null
@@ -1,699 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Ring_abstract.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-Require Ring_theory.
-Require Quote.
-Require Ring_normalize.
-
-Section abstract_semi_rings.
-
-Inductive Type aspolynomial :=
- ASPvar : index -> aspolynomial
-| ASP0 : aspolynomial
-| ASP1 : aspolynomial
-| ASPplus : aspolynomial -> aspolynomial -> aspolynomial
-| ASPmult : aspolynomial -> aspolynomial -> aspolynomial
-.
-
-Inductive abstract_sum : Type :=
-| Nil_acs : abstract_sum
-| Cons_acs : varlist -> abstract_sum -> abstract_sum
-.
-
-Fixpoint abstract_sum_merge [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
-Cases s1 of
-| (Cons_acs l1 t1) =>
- Fix asm_aux{asm_aux[s2:abstract_sum] : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 (abstract_sum_merge t1 s2))
- else (Cons_acs l2 (asm_aux t2))
- | Nil_acs => s1
- end}
-| Nil_acs => [s2]s2
-end.
-
-Fixpoint abstract_varlist_insert [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 s2)
- else (Cons_acs l2 (abstract_varlist_insert l1 t2))
- | Nil_acs => (Cons_acs l1 Nil_acs)
- end.
-
-Fixpoint abstract_sum_scalar [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) => (abstract_varlist_insert (varlist_merge l1 l2)
- (abstract_sum_scalar l1 t2))
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint abstract_sum_prod [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
- [s2]Cases s1 of
- | (Cons_acs l1 t1) =>
- (abstract_sum_merge (abstract_sum_scalar l1 s2)
- (abstract_sum_prod t1 s2))
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint aspolynomial_normalize[p:aspolynomial] : abstract_sum :=
- Cases p of
- | (ASPvar i) => (Cons_acs (Cons_var i Nil_var) Nil_acs)
- | ASP1 => (Cons_acs Nil_var Nil_acs)
- | ASP0 => Nil_acs
- | (ASPplus l r) => (abstract_sum_merge (aspolynomial_normalize l)
- (aspolynomial_normalize r))
- | (ASPmult l r) => (abstract_sum_prod (aspolynomial_normalize l)
- (aspolynomial_normalize r))
- end.
-
-
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-
-Fixpoint interp_asp [p:aspolynomial] : A :=
- Cases p of
- | (ASPvar i) => (interp_var Azero vm i)
- | ASP0 => Azero
- | ASP1 => Aone
- | (ASPplus l r) => (Aplus (interp_asp l) (interp_asp r))
- | (ASPmult l r) => (Amult (interp_asp l) (interp_asp r))
- end.
-
-(* Local *) Definition iacs_aux := Fix iacs_aux{iacs_aux [a:A; s:abstract_sum] : A :=
- Cases s of
- | Nil_acs => a
- | (Cons_acs l t) => (Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t))
- end}.
-
-Definition interp_acs [s:abstract_sum] : A :=
- Cases s of
- | (Cons_acs l t) => (iacs_aux (interp_vl Amult Aone Azero vm l) t)
- | Nil_acs => Azero
- end.
-
-Hint SR_plus_sym_T := Resolve (SR_plus_sym T).
-Hint SR_plus_assoc_T := Resolve (SR_plus_assoc T).
-Hint SR_plus_assoc2_T := Resolve (SR_plus_assoc2 T).
-Hint SR_mult_sym_T := Resolve (SR_mult_sym T).
-Hint SR_mult_assoc_T := Resolve (SR_mult_assoc T).
-Hint SR_mult_assoc2_T := Resolve (SR_mult_assoc2 T).
-Hint SR_plus_zero_left_T := Resolve (SR_plus_zero_left T).
-Hint SR_plus_zero_left2_T := Resolve (SR_plus_zero_left2 T).
-Hint SR_mult_one_left_T := Resolve (SR_mult_one_left T).
-Hint SR_mult_one_left2_T := Resolve (SR_mult_one_left2 T).
-Hint SR_mult_zero_left_T := Resolve (SR_mult_zero_left T).
-Hint SR_mult_zero_left2_T := Resolve (SR_mult_zero_left2 T).
-Hint SR_distr_left_T := Resolve (SR_distr_left T).
-Hint SR_distr_left2_T := Resolve (SR_distr_left2 T).
-Hint SR_plus_reg_left_T := Resolve (SR_plus_reg_left T).
-Hint SR_plus_permute_T := Resolve (SR_plus_permute T).
-Hint SR_mult_permute_T := Resolve (SR_mult_permute T).
-Hint SR_distr_right_T := Resolve (SR_distr_right T).
-Hint SR_distr_right2_T := Resolve (SR_distr_right2 T).
-Hint SR_mult_zero_right_T := Resolve (SR_mult_zero_right T).
-Hint SR_mult_zero_right2_T := Resolve (SR_mult_zero_right2 T).
-Hint SR_plus_zero_right_T := Resolve (SR_plus_zero_right T).
-Hint SR_plus_zero_right2_T := Resolve (SR_plus_zero_right2 T).
-Hint SR_mult_one_right_T := Resolve (SR_mult_one_right T).
-Hint SR_mult_one_right2_T := Resolve (SR_mult_one_right2 T).
-Hint SR_plus_reg_right_T := Resolve (SR_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-Remark iacs_aux_ok : (x:A)(s:abstract_sum)
- (iacs_aux x s)==(Aplus x (interp_acs s)).
-Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
-Save.
-
-Hint rew_iacs_aux : core := Extern 10 (eqT A ? ?) Rewrite iacs_aux_ok.
-
-Lemma abstract_varlist_insert_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_varlist_insert l s))
- ==(Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s)).
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Elim (varlist_lt l v); Simpl.
- EAuto.
- Rewrite iacs_aux_ok.
- Rewrite H; Auto.
-
-Save.
-
-Lemma abstract_sum_merge_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_merge x y))
- ==(Aplus (interp_acs x) (interp_acs y)).
-
-Proof.
- Induction x.
- Trivial.
- Induction y; Intros.
-
- Auto.
-
- Simpl; Elim (varlist_lt v v0); Simpl.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H; Simpl; Auto.
-
- Simpl in H0.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H0. Simpl; Auto.
-Save.
-
-Lemma abstract_sum_scalar_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_acs s)).
-Proof.
- Induction s.
- Simpl; EAuto.
-
- Simpl; Intros.
- Rewrite iacs_aux_ok.
- Rewrite abstract_varlist_insert_ok.
- Rewrite H.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Auto.
-Save.
-
-Lemma abstract_sum_prod_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_prod x y))
- == (Amult (interp_acs x) (interp_acs y)).
-
-Proof.
- Induction x.
- Intros; Simpl; EAuto.
-
- NewDestruct y; Intros.
-
- Simpl; Rewrite H; EAuto.
-
- Unfold abstract_sum_prod; Fold abstract_sum_prod.
- Rewrite abstract_sum_merge_ok.
- Rewrite abstract_sum_scalar_ok.
- Rewrite H; Simpl; Auto.
-Save.
-
-Theorem aspolynomial_normalize_ok : (x:aspolynomial)
- (interp_asp x)==(interp_acs (aspolynomial_normalize x)).
-Proof.
- Induction x; Simpl; Intros; Trivial.
- Rewrite abstract_sum_merge_ok.
- Rewrite H; Rewrite H0; EAuto.
- Rewrite abstract_sum_prod_ok.
- Rewrite H; Rewrite H0; EAuto.
-Save.
-
-End abstract_semi_rings.
-
-Section abstract_rings.
-
-(* In abstract polynomials there is no constants other
- than 0 and 1. An abstract ring is a ring whose operations plus,
- and mult are not functions but constructors. In other words,
- when c1 and c2 are closed, (plus c1 c2) doesn't reduce to a closed
- term. "closed" mean here "without plus and mult". *)
-
-(* this section is not parametrized by a (semi-)ring.
- Nevertheless, they are two different types for semi-rings and rings
- and there will be 2 correction theorems *)
-
-Inductive Type apolynomial :=
- APvar : index -> apolynomial
-| AP0 : apolynomial
-| AP1 : apolynomial
-| APplus : apolynomial -> apolynomial -> apolynomial
-| APmult : apolynomial -> apolynomial -> apolynomial
-| APopp : apolynomial -> apolynomial
-.
-
-(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
- Invariant : the list is sorted and there is no varlist is present
- with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
-
-Inductive signed_sum : Type :=
-| Nil_varlist : signed_sum
-| Plus_varlist : varlist -> signed_sum -> signed_sum
-| Minus_varlist : varlist -> signed_sum -> signed_sum
-.
-
-Fixpoint signed_sum_merge [s1:signed_sum]
- : signed_sum -> signed_sum :=
-Cases s1 of
-| (Plus_varlist l1 t1) =>
- Fix ssm_aux{ssm_aux[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux t2))
- | Nil_varlist => s1
- end}
-| (Minus_varlist l1 t1) =>
- Fix ssm_aux2{ssm_aux2[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux2 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux2 t2))
- | Nil_varlist => s1
- end}
-| Nil_varlist => [s2]s2
-end.
-
-Fixpoint plus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Plus_varlist l2 (plus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Minus_varlist l2 (plus_varlist_insert l1 t2))
- | Nil_varlist => (Plus_varlist l1 Nil_varlist)
- end.
-
-Fixpoint minus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Plus_varlist l2 (minus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Minus_varlist l2 (minus_varlist_insert l1 t2))
- | Nil_varlist => (Minus_varlist l1 Nil_varlist)
- end.
-
-Fixpoint signed_sum_opp [s:signed_sum] : signed_sum :=
- Cases s of
- | (Plus_varlist l2 t2) => (Minus_varlist l2 (signed_sum_opp t2))
- | (Minus_varlist l2 t2) => (Plus_varlist l2 (signed_sum_opp t2))
- | Nil_varlist => Nil_varlist
- end.
-
-
-Fixpoint plus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint minus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint signed_sum_prod [s1:signed_sum]
- : signed_sum -> signed_sum :=
- [s2]Cases s1 of
- | (Plus_varlist l1 t1) =>
- (signed_sum_merge (plus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | (Minus_varlist l1 t1) =>
- (signed_sum_merge (minus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint apolynomial_normalize[p:apolynomial] : signed_sum :=
- Cases p of
- | (APvar i) => (Plus_varlist (Cons_var i Nil_var) Nil_varlist)
- | AP1 => (Plus_varlist Nil_var Nil_varlist)
- | AP0 => Nil_varlist
- | (APplus l r) => (signed_sum_merge (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APmult l r) => (signed_sum_prod (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APopp q) => (signed_sum_opp (apolynomial_normalize q))
- end.
-
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp :A -> A.
-Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq).
-
-(* Local *) Definition isacs_aux := Fix isacs_aux{isacs_aux [a:A; s:signed_sum] : A :=
- Cases s of
- | Nil_varlist => a
- | (Plus_varlist l t) =>
- (Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t))
- | (Minus_varlist l t) =>
- (Aplus a (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t))
- end}.
-
-Definition interp_sacs [s:signed_sum] : A :=
- Cases s of
- | (Plus_varlist l t) => (isacs_aux (interp_vl Amult Aone Azero vm l) t)
- | (Minus_varlist l t) =>
- (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
- | Nil_varlist => Azero
- end.
-
-Fixpoint interp_ap [p:apolynomial] : A :=
- Cases p of
- | (APvar i) => (interp_var Azero vm i)
- | AP0 => Azero
- | AP1 => Aone
- | (APplus l r) => (Aplus (interp_ap l) (interp_ap r))
- | (APmult l r) => (Amult (interp_ap l) (interp_ap r))
- | (APopp q) => (Aopp (interp_ap q))
- end.
-
-Hint Th_plus_sym_T := Resolve (Th_plus_sym T).
-Hint Th_plus_assoc_T := Resolve (Th_plus_assoc T).
-Hint Th_plus_assoc2_T := Resolve (Th_plus_assoc2 T).
-Hint Th_mult_sym_T := Resolve (Th_mult_sym T).
-Hint Th_mult_assoc_T := Resolve (Th_mult_assoc T).
-Hint Th_mult_assoc2_T := Resolve (Th_mult_assoc2 T).
-Hint Th_plus_zero_left_T := Resolve (Th_plus_zero_left T).
-Hint Th_plus_zero_left2_T := Resolve (Th_plus_zero_left2 T).
-Hint Th_mult_one_left_T := Resolve (Th_mult_one_left T).
-Hint Th_mult_one_left2_T := Resolve (Th_mult_one_left2 T).
-Hint Th_mult_zero_left_T := Resolve (Th_mult_zero_left T).
-Hint Th_mult_zero_left2_T := Resolve (Th_mult_zero_left2 T).
-Hint Th_distr_left_T := Resolve (Th_distr_left T).
-Hint Th_distr_left2_T := Resolve (Th_distr_left2 T).
-Hint Th_plus_reg_left_T := Resolve (Th_plus_reg_left T).
-Hint Th_plus_permute_T := Resolve (Th_plus_permute T).
-Hint Th_mult_permute_T := Resolve (Th_mult_permute T).
-Hint Th_distr_right_T := Resolve (Th_distr_right T).
-Hint Th_distr_right2_T := Resolve (Th_distr_right2 T).
-Hint Th_mult_zero_right2_T := Resolve (Th_mult_zero_right2 T).
-Hint Th_plus_zero_right_T := Resolve (Th_plus_zero_right T).
-Hint Th_plus_zero_right2_T := Resolve (Th_plus_zero_right2 T).
-Hint Th_mult_one_right_T := Resolve (Th_mult_one_right T).
-Hint Th_mult_one_right2_T := Resolve (Th_mult_one_right2 T).
-Hint Th_plus_reg_right_T := Resolve (Th_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-Lemma isacs_aux_ok : (x:A)(s:signed_sum)
- (isacs_aux x s)==(Aplus x (interp_sacs s)).
-Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
- Reflexivity.
-Save.
-
-Hint rew_isacs_aux : core := Extern 10 (eqT A ? ?) Rewrite isacs_aux_ok.
-
-Tactic Definition Solve1 v v0 H H0 :=
- Simpl; Elim (varlist_lt v v0); Simpl; Rewrite isacs_aux_ok;
- [Rewrite H; Simpl; Auto
- |Simpl in H0; Rewrite H0; Auto ].
-
-Lemma signed_sum_merge_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_merge x y))
- ==(Aplus (interp_sacs x) (interp_sacs y)).
-
- Induction x.
- Intro; Simpl; Auto.
-
- Induction y; Intros.
-
- Auto.
-
- Solve1 v v0 H H0.
-
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v0))
- (interp_vl Amult Aone Azero vm v0)).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
-
- Solve1 v v0 H H0.
-
- Induction y; Intros.
-
- Auto.
-
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
-
- Solve1 v v0 H H0.
-
- Solve1 v v0 H H0.
-
-Save.
-
-Tactic Definition Solve2 l v H :=
- Elim (varlist_lt l v); Simpl; Rewrite isacs_aux_ok;
- [ Auto
- | Rewrite H; Auto ].
-
-Lemma plus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_varlist_insert l s))
- == (Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
-Proof.
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Solve2 l v H.
-
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
-
- Solve2 l v H.
-
-Save.
-
-Lemma minus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_varlist_insert l s))
- == (Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s)).
-Proof.
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v))
- (interp_vl Amult Aone Azero vm v)).
- Rewrite (Th_opp_def T).
- Auto.
-
- Simpl; Intros.
- Solve2 l v H.
-
- Simpl; Intros; Solve2 l v H.
-
-Save.
-
-Lemma signed_sum_opp_ok : (s:signed_sum)
- (interp_sacs (signed_sum_opp s))
- == (Aopp (interp_sacs s)).
-Proof.
-
- Induction s; Simpl; Intros.
-
- Symmetry; Apply (Th_opp_zero T).
-
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
-
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
-
-Save.
-
-Lemma plus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
-Proof.
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Reflexivity.
-
-Save.
-
-Lemma minus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_sum_scalar l s))
- == (Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s))).
-Proof.
-
- Induction s; Simpl; Intros.
-
- Rewrite (Th_mult_zero_right T); Symmetry; Apply (Th_opp_zero T).
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
-
-Save.
-
-Lemma signed_sum_prod_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_prod x y)) ==
- (Amult (interp_sacs x) (interp_sacs y)).
-Proof.
-
- Induction x.
-
- Simpl; EAuto 1.
-
- Intros; Simpl.
- Rewrite signed_sum_merge_ok.
- Rewrite plus_sum_scalar_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
-
- Intros; Simpl.
- Repeat Rewrite isacs_aux_ok.
- Rewrite signed_sum_merge_ok.
- Rewrite minus_sum_scalar_ok.
- Rewrite H.
- Rewrite (Th_distr_left T).
- Rewrite (Th_opp_mult_left T).
- Reflexivity.
-
-Save.
-
-Theorem apolynomial_normalize_ok : (p:apolynomial)
- (interp_sacs (apolynomial_normalize p))==(interp_ap p).
-Proof.
- Induction p; Simpl; Auto 1.
- Intros.
- Rewrite signed_sum_merge_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_prod_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_opp_ok.
- Rewrite H; Reflexivity.
-Save.
-
-End abstract_rings.