summaryrefslogtreecommitdiff
path: root/contrib7/omega/OmegaLemmas.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/omega/OmegaLemmas.v')
-rw-r--r--contrib7/omega/OmegaLemmas.v399
1 files changed, 0 insertions, 399 deletions
diff --git a/contrib7/omega/OmegaLemmas.v b/contrib7/omega/OmegaLemmas.v
deleted file mode 100644
index 0d05fc3e..00000000
--- a/contrib7/omega/OmegaLemmas.v
+++ /dev/null
@@ -1,399 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: OmegaLemmas.v,v 1.1.2.1 2004/07/16 19:30:17 herbelin Exp $ i*)
-
-Require ZArith_base.
-
-(** These are specific variants of theorems dedicated for the Omega tactic *)
-
-Lemma new_var: (x:Z) (EX y:Z |(x=y)).
-Intros x; Exists x; Trivial with arith.
-Qed.
-
-Lemma OMEGA1 : (x,y:Z) (x=y) -> (Zle ZERO x) -> (Zle ZERO y).
-Intros x y H; Rewrite H; Auto with arith.
-Qed.
-
-Lemma OMEGA2 : (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zplus x y)).
-Exact Zle_0_plus.
-Qed.
-
-Lemma OMEGA3 :
- (x,y,k:Z)(Zgt k ZERO)-> (x=(Zmult y k)) -> (x=ZERO) -> (y=ZERO).
-
-Intros x y k H1 H2 H3; Apply (Zmult_eq k); [
- Unfold not ; Intros H4; Absurd (Zgt k ZERO); [
- Rewrite H4; Unfold Zgt ; Simpl; Discriminate | Assumption]
- | Rewrite <- H2; Assumption].
-Qed.
-
-Lemma OMEGA4 :
- (x,y,z:Z)(Zgt x ZERO) -> (Zgt y x) -> ~(Zplus (Zmult z y) x) = ZERO.
-
-Unfold not ; Intros x y z H1 H2 H3; Cut (Zgt y ZERO); [
- Intros H4; Cut (Zle ZERO (Zplus (Zmult z y) x)); [
- Intros H5; Generalize (Zmult_le_approx y z x H4 H2 H5) ; Intros H6;
- Absurd (Zgt (Zplus (Zmult z y) x) ZERO); [
- Rewrite -> H3; Unfold Zgt ; Simpl; Discriminate
- | Apply Zle_gt_trans with x ; [
- Pattern 1 x ; Rewrite <- (Zero_left x); Apply Zle_reg_r;
- Rewrite -> Zmult_sym; Generalize H4 ; Unfold Zgt;
- Case y; [
- Simpl; Intros H7; Discriminate H7
- | Intros p H7; Rewrite <- (Zero_mult_right (POS p));
- Unfold Zle ; Rewrite -> Zcompare_Zmult_compatible; Exact H6
- | Simpl; Intros p H7; Discriminate H7]
- | Assumption]]
- | Rewrite -> H3; Unfold Zle ; Simpl; Discriminate]
- | Apply Zgt_trans with x ; [ Assumption | Assumption]].
-Qed.
-
-Lemma OMEGA5: (x,y,z:Z)(x=ZERO) -> (y=ZERO) -> (Zplus x (Zmult y z)) = ZERO.
-
-Intros x y z H1 H2; Rewrite H1; Rewrite H2; Simpl; Trivial with arith.
-Qed.
-
-Lemma OMEGA6:
- (x,y,z:Z)(Zle ZERO x) -> (y=ZERO) -> (Zle ZERO (Zplus x (Zmult y z))).
-
-Intros x y z H1 H2; Rewrite H2; Simpl; Rewrite Zero_right; Assumption.
-Qed.
-
-Lemma OMEGA7:
- (x,y,z,t:Z)(Zgt z ZERO) -> (Zgt t ZERO) -> (Zle ZERO x) -> (Zle ZERO y) ->
- (Zle ZERO (Zplus (Zmult x z) (Zmult y t))).
-
-Intros x y z t H1 H2 H3 H4; Rewrite <- (Zero_left ZERO);
-Apply Zle_plus_plus; Apply Zle_mult; Assumption.
-Qed.
-
-Lemma OMEGA8:
- (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> x = (Zopp y) -> x = ZERO.
-
-Intros x y H1 H2 H3; Elim (Zle_lt_or_eq ZERO x H1); [
- Intros H4; Absurd (Zlt ZERO x); [
- Change (Zge ZERO x); Apply Zle_ge; Apply Zsimpl_le_plus_l with y;
- Rewrite -> H3; Rewrite Zplus_inverse_r; Rewrite Zero_right; Assumption
- | Assumption]
-| Intros H4; Rewrite -> H4; Trivial with arith].
-Qed.
-
-Lemma OMEGA9:(x,y,z,t:Z) y=ZERO -> x = z ->
- (Zplus y (Zmult (Zplus (Zopp x) z) t)) = ZERO.
-
-Intros x y z t H1 H2; Rewrite H2; Rewrite Zplus_inverse_l;
-Rewrite Zero_mult_left; Rewrite Zero_right; Assumption.
-Qed.
-
-Lemma OMEGA10:(v,c1,c2,l1,l2,k1,k2:Z)
- (Zplus (Zmult (Zplus (Zmult v c1) l1) k1) (Zmult (Zplus (Zmult v c2) l2) k2))
- = (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2))).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc;
-Rewrite (Zplus_permute (Zmult l1 k1) (Zmult (Zmult v c2) k2)); Trivial with arith.
-Qed.
-
-Lemma OMEGA11:(v1,c1,l1,l2,k1:Z)
- (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2)
- = (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith.
-Qed.
-
-Lemma OMEGA12:(v2,c2,l1,l2,k2:Z)
- (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2))
- = (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Rewrite Zplus_permute;
-Trivial with arith.
-Qed.
-
-Lemma OMEGA13:(v,l1,l2:Z)(x:positive)
- (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2))
- = (Zplus l1 l2).
-
-Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (POS x)) l1);
-Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r;
-Rewrite <- Zopp_NEG; Rewrite (Zplus_sym (Zopp (NEG x)) (NEG x));
-Rewrite Zplus_inverse_r; Rewrite Zero_mult_right; Rewrite Zero_right; Trivial with arith.
-Qed.
-
-Lemma OMEGA14:(v,l1,l2:Z)(x:positive)
- (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2))
- = (Zplus l1 l2).
-
-Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (NEG x)) l1);
-Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r;
-Rewrite <- Zopp_NEG; Rewrite Zplus_inverse_r; Rewrite Zero_mult_right;
-Rewrite Zero_right; Trivial with arith.
-Qed.
-Lemma OMEGA15:(v,c1,c2,l1,l2,k2:Z)
- (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2))
- = (Zplus (Zmult v (Zplus c1 (Zmult c2 k2)))
- (Zplus l1 (Zmult l2 k2))).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc;
-Rewrite (Zplus_permute l1 (Zmult (Zmult v c2) k2)); Trivial with arith.
-Qed.
-
-Lemma OMEGA16:
- (v,c,l,k:Z)
- (Zmult (Zplus (Zmult v c) l) k) = (Zplus (Zmult v (Zmult c k)) (Zmult l k)).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith.
-Qed.
-
-Lemma OMEGA17:
- (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO).
-
-Unfold Zne not; Intros x y z H1 H2 H3; Apply H1;
-Apply Zsimpl_plus_l with (Zmult y z); Rewrite Zplus_sym; Rewrite H3;
-Rewrite H2; Auto with arith.
-Qed.
-
-Lemma OMEGA18:
- (x,y,k:Z) x=(Zmult y k) -> (Zne x ZERO) -> (Zne y ZERO).
-
-Unfold Zne not; Intros x y k H1 H2 H3; Apply H2; Rewrite H1; Rewrite H3; Auto with arith.
-Qed.
-
-Lemma OMEGA19:
- (x:Z) (Zne x ZERO) ->
- (Zle ZERO (Zplus x (NEG xH))) \/ (Zle ZERO (Zplus (Zmult x (NEG xH)) (NEG xH))).
-
-Unfold Zne ; Intros x H; Elim (Zle_or_lt ZERO x); [
- Intros H1; Elim Zle_lt_or_eq with 1:=H1; [
- Intros H2; Left; Change (Zle ZERO (Zpred x)); Apply Zle_S_n;
- Rewrite <- Zs_pred; Apply Zlt_le_S; Assumption
- | Intros H2; Absurd x=ZERO; Auto with arith]
-| Intros H1; Right; Rewrite <- Zopp_one; Rewrite Zplus_sym;
- Apply Zle_left; Apply Zle_S_n; Simpl; Apply Zlt_le_S; Auto with arith].
-Qed.
-
-Lemma OMEGA20:
- (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO).
-
-Unfold Zne not; Intros x y z H1 H2 H3; Apply H1; Rewrite H2 in H3;
-Simpl in H3; Rewrite Zero_right in H3; Trivial with arith.
-Qed.
-
-Definition fast_Zplus_sym :=
-[x,y:Z][P:Z -> Prop][H: (P (Zplus y x))]
- (eq_ind_r Z (Zplus y x) P H (Zplus x y) (Zplus_sym x y)).
-
-Definition fast_Zplus_assoc_r :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus n (Zplus m p)))]
- (eq_ind_r Z (Zplus n (Zplus m p)) P H (Zplus (Zplus n m) p) (Zplus_assoc_r n m p)).
-
-Definition fast_Zplus_assoc_l :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus (Zplus n m) p))]
- (eq_ind_r Z (Zplus (Zplus n m) p) P H (Zplus n (Zplus m p))
- (Zplus_assoc_l n m p)).
-
-Definition fast_Zplus_permute :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus m (Zplus n p)))]
- (eq_ind_r Z (Zplus m (Zplus n p)) P H (Zplus n (Zplus m p))
- (Zplus_permute n m p)).
-
-Definition fast_OMEGA10 :=
-[v,c1,c2,l1,l2,k1,k2:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2)))
- P H
- (Zplus (Zmult (Zplus (Zmult v c1) l1) k1)
- (Zmult (Zplus (Zmult v c2) l2) k2))
- (OMEGA10 v c1 c2 l1 l2 k1 k2)).
-
-Definition fast_OMEGA11 :=
-[v1,c1,l1,l2,k1:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)))]
- (eq_ind_r Z
- (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2))
- P H
- (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2)
- (OMEGA11 v1 c1 l1 l2 k1)).
-Definition fast_OMEGA12 :=
-[v2,c2,l1,l2,k2:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2)))
- P H
- (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2))
- (OMEGA12 v2 c2 l1 l2 k2)).
-
-Definition fast_OMEGA15 :=
-[v,c1,c2,l1,l2,k2 :Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2)))
- P H
- (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2))
- (OMEGA15 v c1 c2 l1 l2 k2)).
-Definition fast_OMEGA16 :=
-[v,c,l,k :Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zmult c k)) (Zmult l k)))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zmult c k)) (Zmult l k))
- P H
- (Zmult (Zplus (Zmult v c) l) k)
- (OMEGA16 v c l k)).
-
-Definition fast_OMEGA13 :=
-[v,l1,l2 :Z][x:positive][P:Z -> Prop]
-[H : (P (Zplus l1 l2))]
- (eq_ind_r Z
- (Zplus l1 l2)
- P H
- (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2))
- (OMEGA13 v l1 l2 x )).
-
-Definition fast_OMEGA14 :=
-[v,l1,l2 :Z][x:positive][P:Z -> Prop]
-[H : (P (Zplus l1 l2))]
- (eq_ind_r Z
- (Zplus l1 l2)
- P H
- (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2))
- (OMEGA14 v l1 l2 x )).
-Definition fast_Zred_factor0:=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (POS xH)) )]
- (eq_ind_r Z
- (Zmult x (POS xH))
- P H
- x
- (Zred_factor0 x)).
-
-Definition fast_Zopp_one :=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (NEG xH)))]
- (eq_ind_r Z
- (Zmult x (NEG xH))
- P H
- (Zopp x)
- (Zopp_one x)).
-
-Definition fast_Zmult_sym :=
-[x,y :Z][P:Z -> Prop]
-[H : (P (Zmult y x))]
- (eq_ind_r Z
-(Zmult y x)
- P H
-(Zmult x y)
- (Zmult_sym x y )).
-
-Definition fast_Zopp_Zplus :=
-[x,y :Z][P:Z -> Prop]
-[H : (P (Zplus (Zopp x) (Zopp y)) )]
- (eq_ind_r Z
- (Zplus (Zopp x) (Zopp y))
- P H
- (Zopp (Zplus x y))
- (Zopp_Zplus x y )).
-
-Definition fast_Zopp_Zopp :=
-[x:Z][P:Z -> Prop]
-[H : (P x )] (eq_ind_r Z x P H (Zopp (Zopp x)) (Zopp_Zopp x)).
-
-Definition fast_Zopp_Zmult_r :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zopp y)))]
- (eq_ind_r Z
- (Zmult x (Zopp y))
- P H
- (Zopp (Zmult x y))
- (Zopp_Zmult_r x y )).
-
-Definition fast_Zmult_plus_distr :=
-[n,m,p:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult n p) (Zmult m p)))]
- (eq_ind_r Z
- (Zplus (Zmult n p) (Zmult m p))
- P H
- (Zmult (Zplus n m) p)
- (Zmult_plus_distr_l n m p)).
-Definition fast_Zmult_Zopp_left:=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zopp y)))]
- (eq_ind_r Z
- (Zmult x (Zopp y))
- P H
- (Zmult (Zopp x) y)
- (Zmult_Zopp_left x y)).
-
-Definition fast_Zmult_assoc_r :=
-[n,m,p :Z][P:Z -> Prop]
-[H : (P (Zmult n (Zmult m p)))]
- (eq_ind_r Z
- (Zmult n (Zmult m p))
- P H
- (Zmult (Zmult n m) p)
- (Zmult_assoc_r n m p)).
-
-Definition fast_Zred_factor1 :=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (POS (xO xH))) )]
- (eq_ind_r Z
- (Zmult x (POS (xO xH)))
- P H
- (Zplus x x)
- (Zred_factor1 x)).
-
-Definition fast_Zred_factor2 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus (POS xH) y)))]
- (eq_ind_r Z
- (Zmult x (Zplus (POS xH) y))
- P H
- (Zplus x (Zmult x y))
- (Zred_factor2 x y)).
-Definition fast_Zred_factor3 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus (POS xH) y)))]
- (eq_ind_r Z
- (Zmult x (Zplus (POS xH) y))
- P H
- (Zplus (Zmult x y) x)
- (Zred_factor3 x y)).
-
-Definition fast_Zred_factor4 :=
-[x,y,z:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus y z)))]
- (eq_ind_r Z
- (Zmult x (Zplus y z))
- P H
- (Zplus (Zmult x y) (Zmult x z))
- (Zred_factor4 x y z)).
-
-Definition fast_Zred_factor5 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P y)]
- (eq_ind_r Z
- y
- P H
- (Zplus (Zmult x ZERO) y)
- (Zred_factor5 x y)).
-
-Definition fast_Zred_factor6 :=
-[x :Z][P:Z -> Prop]
-[H : (P(Zplus x ZERO) )]
- (eq_ind_r Z
- (Zplus x ZERO)
- P H
- x
- (Zred_factor6 x )).