summaryrefslogtreecommitdiff
path: root/contrib7/field/Field_Theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/field/Field_Theory.v')
-rw-r--r--contrib7/field/Field_Theory.v612
1 files changed, 612 insertions, 0 deletions
diff --git a/contrib7/field/Field_Theory.v b/contrib7/field/Field_Theory.v
new file mode 100644
index 00000000..3ba2fbc0
--- /dev/null
+++ b/contrib7/field/Field_Theory.v
@@ -0,0 +1,612 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Field_Theory.v,v 1.2.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
+
+Require Peano_dec.
+Require Ring.
+Require Field_Compl.
+
+Record Field_Theory : Type :=
+{ A : Type;
+ Aplus : A -> A -> A;
+ Amult : A -> A -> A;
+ Aone : A;
+ Azero : A;
+ Aopp : A -> A;
+ Aeq : A -> A -> bool;
+ Ainv : A -> A;
+ Aminus : (field_rel_option A);
+ Adiv : (field_rel_option A);
+ RT : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq);
+ Th_inv_def : (n:A)~(n=Azero)->(Amult (Ainv n) n)=Aone
+}.
+
+(* The reflexion structure *)
+Inductive ExprA : Set :=
+| EAzero : ExprA
+| EAone : ExprA
+| EAplus : ExprA -> ExprA -> ExprA
+| EAmult : ExprA -> ExprA -> ExprA
+| EAopp : ExprA -> ExprA
+| EAinv : ExprA -> ExprA
+| EAvar : nat -> ExprA.
+
+(**** Decidability of equality ****)
+
+Lemma eqExprA_O:(e1,e2:ExprA){e1=e2}+{~e1=e2}.
+Proof.
+ Double Induction e1 e2;Try Intros;
+ Try (Left;Reflexivity) Orelse Try (Right;Discriminate).
+ Elim (H1 e0);Intro y;Elim (H2 e);Intro y0;
+ Try (Left; Rewrite y; Rewrite y0;Auto)
+ Orelse (Right;Red;Intro;Inversion H3;Auto).
+ Elim (H1 e0);Intro y;Elim (H2 e);Intro y0;
+ Try (Left; Rewrite y; Rewrite y0;Auto)
+ Orelse (Right;Red;Intro;Inversion H3;Auto).
+ Elim (H0 e);Intro y.
+ Left; Rewrite y; Auto.
+ Right;Red; Intro;Inversion H1;Auto.
+ Elim (H0 e);Intro y.
+ Left; Rewrite y; Auto.
+ Right;Red; Intro;Inversion H1;Auto.
+ Elim (eq_nat_dec n n0);Intro y.
+ Left; Rewrite y; Auto.
+ Right;Red;Intro;Inversion H;Auto.
+Defined.
+
+Definition eq_nat_dec := Eval Compute in Peano_dec.eq_nat_dec.
+Definition eqExprA := Eval Compute in eqExprA_O.
+
+(**** Generation of the multiplier ****)
+
+Fixpoint mult_of_list [e:(listT ExprA)]: ExprA :=
+ Cases e of
+ | nilT => EAone
+ | (consT e1 l1) => (EAmult e1 (mult_of_list l1))
+ end.
+
+Section Theory_of_fields.
+
+Variable T : Field_Theory.
+
+Local AT := (A T).
+Local AplusT := (Aplus T).
+Local AmultT := (Amult T).
+Local AoneT := (Aone T).
+Local AzeroT := (Azero T).
+Local AoppT := (Aopp T).
+Local AeqT := (Aeq T).
+Local AinvT := (Ainv T).
+Local RTT := (RT T).
+Local Th_inv_defT := (Th_inv_def T).
+
+Add Abstract Ring (A T) (Aplus T) (Amult T) (Aone T) (Azero T) (Aopp T)
+ (Aeq T) (RT T).
+
+Add Abstract Ring AT AplusT AmultT AoneT AzeroT AoppT AeqT RTT.
+
+(***************************)
+(* Lemmas to be used *)
+(***************************)
+
+Lemma AplusT_sym:(r1,r2:AT)(AplusT r1 r2)=(AplusT r2 r1).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AplusT_assoc:(r1,r2,r3:AT)(AplusT (AplusT r1 r2) r3)=
+ (AplusT r1 (AplusT r2 r3)).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_sym:(r1,r2:AT)(AmultT r1 r2)=(AmultT r2 r1).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_assoc:(r1,r2,r3:AT)(AmultT (AmultT r1 r2) r3)=
+ (AmultT r1 (AmultT r2 r3)).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AplusT_Ol:(r:AT)(AplusT AzeroT r)=r.
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_1l:(r:AT)(AmultT AoneT r)=r.
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AplusT_AoppT_r:(r:AT)(AplusT r (AoppT r))=AzeroT.
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma AmultT_AplusT_distr:(r1,r2,r3:AT)(AmultT r1 (AplusT r2 r3))=
+ (AplusT (AmultT r1 r2) (AmultT r1 r3)).
+Proof.
+ Intros;Ring.
+Save.
+
+Lemma r_AplusT_plus:(r,r1,r2:AT)(AplusT r r1)=(AplusT r r2)->r1=r2.
+Proof.
+ Intros; Transitivity (AplusT (AplusT (AoppT r) r) r1).
+ Ring.
+ Transitivity (AplusT (AplusT (AoppT r) r) r2).
+ Repeat Rewrite -> AplusT_assoc; Rewrite <- H; Reflexivity.
+ Ring.
+Save.
+
+Lemma r_AmultT_mult:
+ (r,r1,r2:AT)(AmultT r r1)=(AmultT r r2)->~r=AzeroT->r1=r2.
+Proof.
+ Intros; Transitivity (AmultT (AmultT (AinvT r) r) r1).
+ Rewrite Th_inv_defT;[Symmetry; Apply AmultT_1l;Auto|Auto].
+ Transitivity (AmultT (AmultT (AinvT r) r) r2).
+ Repeat Rewrite AmultT_assoc; Rewrite H; Trivial.
+ Rewrite Th_inv_defT;[Apply AmultT_1l;Auto|Auto].
+Save.
+
+Lemma AmultT_Or:(r:AT) (AmultT r AzeroT)=AzeroT.
+Proof.
+ Intro; Ring.
+Save.
+
+Lemma AmultT_Ol:(r:AT)(AmultT AzeroT r)=AzeroT.
+Proof.
+ Intro; Ring.
+Save.
+
+Lemma AmultT_1r:(r:AT)(AmultT r AoneT)=r.
+Proof.
+ Intro; Ring.
+Save.
+
+Lemma AinvT_r:(r:AT)~r=AzeroT->(AmultT r (AinvT r))=AoneT.
+Proof.
+ Intros; Rewrite -> AmultT_sym; Apply Th_inv_defT; Auto.
+Save.
+
+Lemma without_div_O_contr:
+ (r1,r2:AT)~(AmultT r1 r2)=AzeroT ->~r1=AzeroT/\~r2=AzeroT.
+Proof.
+ Intros r1 r2 H; Split; Red; Intro; Apply H; Rewrite H0; Ring.
+Save.
+
+(************************)
+(* Interpretation *)
+(************************)
+
+(**** ExprA --> A ****)
+
+Fixpoint interp_ExprA [lvar:(listT (prodT AT nat));e:ExprA] : AT :=
+ Cases e of
+ | EAzero => AzeroT
+ | EAone => AoneT
+ | (EAplus e1 e2) => (AplusT (interp_ExprA lvar e1) (interp_ExprA lvar e2))
+ | (EAmult e1 e2) => (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2))
+ | (EAopp e) => ((Aopp T) (interp_ExprA lvar e))
+ | (EAinv e) => ((Ainv T) (interp_ExprA lvar e))
+ | (EAvar n) => (assoc_2nd AT nat eq_nat_dec lvar n AzeroT)
+ end.
+
+(************************)
+(* Simplification *)
+(************************)
+
+(**** Associativity ****)
+
+Definition merge_mult :=
+ Fix merge_mult {merge_mult [e1:ExprA] : ExprA -> ExprA :=
+ [e2:ExprA]Cases e1 of
+ | (EAmult t1 t2) =>
+ Cases t2 of
+ | (EAmult t2 t3) => (EAmult t1 (EAmult t2 (merge_mult t3 e2)))
+ | _ => (EAmult t1 (EAmult t2 e2))
+ end
+ | _ => (EAmult e1 e2)
+ end}.
+
+Fixpoint assoc_mult [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAmult e1 e3) =>
+ Cases e1 of
+ | (EAmult e1 e2) =>
+ (merge_mult (merge_mult (assoc_mult e1) (assoc_mult e2))
+ (assoc_mult e3))
+ | _ => (EAmult e1 (assoc_mult e3))
+ end
+ | _ => e
+ end.
+
+Definition merge_plus :=
+ Fix merge_plus {merge_plus [e1:ExprA]:ExprA->ExprA:=
+ [e2:ExprA]Cases e1 of
+ | (EAplus t1 t2) =>
+ Cases t2 of
+ | (EAplus t2 t3) => (EAplus t1 (EAplus t2 (merge_plus t3 e2)))
+ | _ => (EAplus t1 (EAplus t2 e2))
+ end
+ | _ => (EAplus e1 e2)
+ end}.
+
+Fixpoint assoc [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e3) =>
+ Cases e1 of
+ | (EAplus e1 e2) =>
+ (merge_plus (merge_plus (assoc e1) (assoc e2)) (assoc e3))
+ | _ => (EAplus (assoc_mult e1) (assoc e3))
+ end
+ | _ => (assoc_mult e)
+ end.
+
+Lemma merge_mult_correct1:
+ (e1,e2,e3:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_mult (EAmult e1 e2) e3))=
+ (interp_ExprA lvar (EAmult e1 (merge_mult e2 e3))).
+Proof.
+Intros e1 e2;Generalize e1;Generalize e2;Clear e1 e2.
+Induction e2;Auto;Intros.
+Unfold 1 merge_mult;Fold merge_mult;
+ Unfold 2 interp_ExprA;Fold interp_ExprA;
+ Rewrite (H0 e e3 lvar);
+ Unfold 1 interp_ExprA;Fold interp_ExprA;
+ Unfold 5 interp_ExprA;Fold interp_ExprA;Auto.
+Save.
+
+Lemma merge_mult_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_mult e1 e2))=
+ (interp_ExprA lvar (EAmult e1 e2)).
+Proof.
+Induction e1;Auto;Intros.
+Elim e0;Try (Intros;Simpl;Ring).
+Unfold interp_ExprA in H2;Fold interp_ExprA in H2;
+ Cut (AmultT (interp_ExprA lvar e2) (AmultT (interp_ExprA lvar e4)
+ (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e3))))=
+ (AmultT (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+Intro H3;Rewrite H3;Rewrite <-H2;
+ Rewrite merge_mult_correct1;Simpl;Ring.
+Ring.
+Save.
+
+Lemma assoc_mult_correct1:(e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (AmultT (interp_ExprA lvar (assoc_mult e1))
+ (interp_ExprA lvar (assoc_mult e2)))=
+ (interp_ExprA lvar (assoc_mult (EAmult e1 e2))).
+Proof.
+Induction e1;Auto;Intros.
+Rewrite <-(H e0 lvar);Simpl;Rewrite merge_mult_correct;Simpl;
+ Rewrite merge_mult_correct;Simpl;Auto.
+Save.
+
+Lemma assoc_mult_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (assoc_mult e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Auto;Intros.
+Elim e0;Intros.
+Intros;Simpl;Ring.
+Simpl;Rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
+ Rewrite (AmultT_1l (interp_ExprA lvar e1)); Apply H0.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite merge_mult_correct;Simpl;Rewrite merge_mult_correct;Simpl;
+ Rewrite AmultT_assoc;Rewrite assoc_mult_correct1;Rewrite H2;Simpl;
+ Rewrite <-assoc_mult_correct1 in H1;
+ Unfold 3 interp_ExprA in H1;Fold interp_ExprA in H1;
+ Rewrite (H0 lvar) in H1;
+ Rewrite (AmultT_sym (interp_ExprA lvar e3) (interp_ExprA lvar e1));
+ Rewrite <-AmultT_assoc;Rewrite H1;Rewrite AmultT_assoc;Ring.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Save.
+
+Lemma merge_plus_correct1:
+ (e1,e2,e3:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_plus (EAplus e1 e2) e3))=
+ (interp_ExprA lvar (EAplus e1 (merge_plus e2 e3))).
+Proof.
+Intros e1 e2;Generalize e1;Generalize e2;Clear e1 e2.
+Induction e2;Auto;Intros.
+Unfold 1 merge_plus;Fold merge_plus;
+ Unfold 2 interp_ExprA;Fold interp_ExprA;
+ Rewrite (H0 e e3 lvar);
+ Unfold 1 interp_ExprA;Fold interp_ExprA;
+ Unfold 5 interp_ExprA;Fold interp_ExprA;Auto.
+Save.
+
+Lemma merge_plus_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (merge_plus e1 e2))=
+ (interp_ExprA lvar (EAplus e1 e2)).
+Proof.
+Induction e1;Auto;Intros.
+Elim e0;Try Intros;Try (Simpl;Ring).
+Unfold interp_ExprA in H2;Fold interp_ExprA in H2;
+ Cut (AplusT (interp_ExprA lvar e2) (AplusT (interp_ExprA lvar e4)
+ (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e3))))=
+ (AplusT (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+Intro H3;Rewrite H3;Rewrite <-H2;Rewrite merge_plus_correct1;Simpl;Ring.
+Ring.
+Save.
+
+Lemma assoc_plus_correct:(e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (AplusT (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))=
+ (interp_ExprA lvar (assoc (EAplus e1 e2))).
+Proof.
+Induction e1;Auto;Intros.
+Rewrite <-(H e0 lvar);Simpl;Rewrite merge_plus_correct;Simpl;
+ Rewrite merge_plus_correct;Simpl;Auto.
+Save.
+
+Lemma assoc_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (assoc e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Auto;Intros.
+Elim e0;Intros.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite merge_plus_correct;Simpl;Rewrite merge_plus_correct;
+ Simpl;Rewrite AplusT_assoc;Rewrite assoc_plus_correct;Rewrite H2;
+ Simpl;Apply (r_AplusT_plus (interp_ExprA lvar (assoc e1))
+ (AplusT (interp_ExprA lvar (assoc e2))
+ (AplusT (interp_ExprA lvar e3) (interp_ExprA lvar e1)))
+ (AplusT (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e3))
+ (interp_ExprA lvar e1)));Rewrite <-AplusT_assoc;
+ Rewrite (AplusT_sym (interp_ExprA lvar (assoc e1))
+ (interp_ExprA lvar (assoc e2)));
+ Rewrite assoc_plus_correct;Rewrite H1;Simpl;Rewrite (H0 lvar);
+ Rewrite <-(AplusT_assoc (AplusT (interp_ExprA lvar e2)
+ (interp_ExprA lvar e1))
+ (interp_ExprA lvar e3) (interp_ExprA lvar e1));
+ Rewrite (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e3));
+ Rewrite (AplusT_sym (interp_ExprA lvar e1) (interp_ExprA lvar e3));
+ Rewrite <-(AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
+ (interp_ExprA lvar e1));Apply AplusT_sym.
+Unfold assoc;Fold assoc;Unfold interp_ExprA;Fold interp_ExprA;
+ Rewrite assoc_mult_correct;Rewrite (H0 lvar);Simpl;Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Simpl;Rewrite (H0 lvar);Auto.
+Unfold assoc;Fold assoc;Unfold interp_ExprA;Fold interp_ExprA;
+ Rewrite assoc_mult_correct;Simpl;Auto.
+Save.
+
+(**** Distribution *****)
+
+Fixpoint distrib_EAopp [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e2) => (EAplus (distrib_EAopp e1) (distrib_EAopp e2))
+ | (EAmult e1 e2) => (EAmult (distrib_EAopp e1) (distrib_EAopp e2))
+ | (EAopp e) => (EAmult (EAopp EAone) (distrib_EAopp e))
+ | e => e
+ end.
+
+Definition distrib_mult_right :=
+ Fix distrib_mult_right {distrib_mult_right [e1:ExprA]:ExprA->ExprA:=
+ [e2:ExprA]Cases e1 of
+ | (EAplus t1 t2) =>
+ (EAplus (distrib_mult_right t1 e2) (distrib_mult_right t2 e2))
+ | _ => (EAmult e1 e2)
+ end}.
+
+Fixpoint distrib_mult_left [e1:ExprA] : ExprA->ExprA :=
+ [e2:ExprA]
+ Cases e1 of
+ | (EAplus t1 t2) =>
+ (EAplus (distrib_mult_left t1 e2) (distrib_mult_left t2 e2))
+ | _ => (distrib_mult_right e2 e1)
+ end.
+
+Fixpoint distrib_main [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAmult e1 e2) => (distrib_mult_left (distrib_main e1) (distrib_main e2))
+ | (EAplus e1 e2) => (EAplus (distrib_main e1) (distrib_main e2))
+ | (EAopp e) => (EAopp (distrib_main e))
+ | _ => e
+ end.
+
+Definition distrib [e:ExprA] : ExprA := (distrib_main (distrib_EAopp e)).
+
+Lemma distrib_mult_right_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (distrib_mult_right e1 e2))=
+ (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)).
+Proof.
+Induction e1;Try Intros;Simpl;Auto.
+Rewrite AmultT_sym;Rewrite AmultT_AplusT_distr;
+ Rewrite (H e2 lvar);Rewrite (H0 e2 lvar);Ring.
+Save.
+
+Lemma distrib_mult_left_correct:
+ (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (distrib_mult_left e1 e2))=
+ (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)).
+Proof.
+Induction e1;Try Intros;Simpl.
+Rewrite AmultT_Ol;Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_Or.
+Rewrite distrib_mult_right_correct;Simpl;
+ Apply AmultT_sym.
+Rewrite AmultT_sym;
+ Rewrite (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
+ (interp_ExprA lvar e0));
+ Rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e));
+ Rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e0));
+ Rewrite (H e2 lvar);Rewrite (H0 e2 lvar);Auto.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
+Save.
+
+Lemma distrib_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (distrib e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Intros;Auto.
+Simpl;Rewrite <- (H lvar);Rewrite <- (H0 lvar); Unfold distrib;Simpl;Auto.
+Simpl;Rewrite <- (H lvar);Rewrite <- (H0 lvar); Unfold distrib;Simpl;
+ Apply distrib_mult_left_correct.
+Simpl;Fold AoppT;Rewrite <- (H lvar);Unfold distrib;Simpl;
+ Rewrite distrib_mult_right_correct;
+ Simpl;Fold AoppT;Ring.
+Save.
+
+(**** Multiplication by the inverse product ****)
+
+Lemma mult_eq:
+ (e1,e2,a:ExprA)(lvar:(listT (prodT AT nat)))
+ ~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (EAmult a e1))=(interp_ExprA lvar (EAmult a e2))->
+ (interp_ExprA lvar e1)=(interp_ExprA lvar e2).
+Proof.
+ Simpl;Intros;
+ Apply (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e2));Assumption.
+Save.
+
+Fixpoint multiply_aux [a,e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e2) =>
+ (EAplus (EAmult a e1) (multiply_aux a e2))
+ | _ => (EAmult a e)
+ end.
+
+Definition multiply [e:ExprA] : ExprA :=
+ Cases e of
+ | (EAmult a e1) => (multiply_aux a e1)
+ | _ => e
+ end.
+
+Lemma multiply_aux_correct:
+ (a,e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (multiply_aux a e))=
+ (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
+Proof.
+Induction e;Simpl;Intros;Try (Rewrite merge_mult_correct);Auto.
+ Simpl;Rewrite (H0 lvar);Ring.
+Save.
+
+Lemma multiply_correct:
+ (e:ExprA)(lvar:(listT (prodT AT nat)))
+ (interp_ExprA lvar (multiply e))=(interp_ExprA lvar e).
+Proof.
+ Induction e;Simpl;Auto.
+ Intros;Apply multiply_aux_correct.
+Save.
+
+(**** Permutations and simplification ****)
+
+Fixpoint monom_remove [a,m:ExprA] : ExprA :=
+ Cases m of
+ | (EAmult m0 m1) =>
+ (Cases (eqExprA m0 (EAinv a)) of
+ | (left _) => m1
+ | (right _) => (EAmult m0 (monom_remove a m1))
+ end)
+ | _ =>
+ (Cases (eqExprA m (EAinv a)) of
+ | (left _) => EAone
+ | (right _) => (EAmult a m)
+ end)
+ end.
+
+Definition monom_simplif_rem :=
+ Fix monom_simplif_rem {monom_simplif_rem/1:ExprA->ExprA->ExprA:=
+ [a,m:ExprA]
+ Cases a of
+ | (EAmult a0 a1) => (monom_simplif_rem a1 (monom_remove a0 m))
+ | _ => (monom_remove a m)
+ end}.
+
+Definition monom_simplif [a,m:ExprA] : ExprA :=
+ Cases m of
+ | (EAmult a' m') =>
+ (Cases (eqExprA a a') of
+ | (left _) => (monom_simplif_rem a m')
+ | (right _) => m
+ end)
+ | _ => m
+ end.
+
+Fixpoint inverse_simplif [a,e:ExprA] : ExprA :=
+ Cases e of
+ | (EAplus e1 e2) => (EAplus (monom_simplif a e1) (inverse_simplif a e2))
+ | _ => (monom_simplif a e)
+ end.
+
+Lemma monom_remove_correct:(e,a:ExprA)
+ (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (monom_remove a e))=
+ (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
+Proof.
+Induction e; Intros.
+Simpl;Case (eqExprA EAzero (EAinv a));Intros;[Inversion e0|Simpl;Trivial].
+Simpl;Case (eqExprA EAone (EAinv a));Intros;[Inversion e0|Simpl;Trivial].
+Simpl;Case (eqExprA (EAplus e0 e1) (EAinv a));Intros;[Inversion e2|
+ Simpl;Trivial].
+Simpl;Case (eqExprA e0 (EAinv a));Intros.
+Rewrite e2;Simpl;Fold AinvT.
+Rewrite <-(AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
+ (interp_ExprA lvar e1));
+ Rewrite AinvT_r;[Ring|Assumption].
+Simpl;Rewrite H0;Auto; Ring.
+Simpl;Fold AoppT;Case (eqExprA (EAopp e0) (EAinv a));Intros;[Inversion e1|
+ Simpl;Trivial].
+Unfold monom_remove;Case (eqExprA (EAinv e0) (EAinv a));Intros.
+Case (eqExprA e0 a);Intros.
+Rewrite e2;Simpl;Fold AinvT;Rewrite AinvT_r;Auto.
+Inversion e1;Simpl;ElimType False;Auto.
+Simpl;Trivial.
+Unfold monom_remove;Case (eqExprA (EAvar n) (EAinv a));Intros;
+ [Inversion e0|Simpl;Trivial].
+Save.
+
+Lemma monom_simplif_rem_correct:(a,e:ExprA)
+ (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (monom_simplif_rem a e))=
+ (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
+Proof.
+Induction a;Simpl;Intros; Try Rewrite monom_remove_correct;Auto.
+Elim (without_div_O_contr (interp_ExprA lvar e)
+ (interp_ExprA lvar e0) H1);Intros.
+Rewrite (H0 (monom_remove e e1) lvar H3);Rewrite monom_remove_correct;Auto.
+Ring.
+Save.
+
+Lemma monom_simplif_correct:(e,a:ExprA)
+ (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (monom_simplif a e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Intros;Auto.
+Simpl;Case (eqExprA a e0);Intros.
+Rewrite <-e2;Apply monom_simplif_rem_correct;Auto.
+Simpl;Trivial.
+Save.
+
+Lemma inverse_correct:
+ (e,a:ExprA)(lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
+ (interp_ExprA lvar (inverse_simplif a e))=(interp_ExprA lvar e).
+Proof.
+Induction e;Intros;Auto.
+Simpl;Rewrite (H0 a lvar H1); Rewrite monom_simplif_correct ; Auto.
+Unfold inverse_simplif;Rewrite monom_simplif_correct ; Auto.
+Save.
+
+End Theory_of_fields.