summaryrefslogtreecommitdiff
path: root/contrib7/extraction/test_extraction.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/extraction/test_extraction.v')
-rw-r--r--contrib7/extraction/test_extraction.v533
1 files changed, 533 insertions, 0 deletions
diff --git a/contrib7/extraction/test_extraction.v b/contrib7/extraction/test_extraction.v
new file mode 100644
index 00000000..e76b1c69
--- /dev/null
+++ b/contrib7/extraction/test_extraction.v
@@ -0,0 +1,533 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Arith.
+Require PolyList.
+
+(*** STANDARD EXAMPLES *)
+
+(** Functions. *)
+
+Definition idnat := [x:nat]x.
+Extraction idnat.
+(* let idnat x = x *)
+
+Definition id := [X:Type][x:X]x.
+Extraction id. (* let id x = x *)
+Definition id' := (id Set nat).
+Extraction id'. (* type id' = nat *)
+
+Definition test2 := [f:nat->nat][x:nat](f x).
+Extraction test2.
+(* let test2 f x = f x *)
+
+Definition test3 := [f:nat->Set->nat][x:nat](f x nat).
+Extraction test3.
+(* let test3 f x = f x __ *)
+
+Definition test4 := [f:(nat->nat)->nat][x:nat][g:nat->nat](f g).
+Extraction test4.
+(* let test4 f x g = f g *)
+
+Definition test5 := ((1),(0)).
+Extraction test5.
+(* let test5 = Pair ((S O), O) *)
+
+Definition cf := [x:nat][_:(le x O)](S x).
+Extraction NoInline cf.
+Definition test6 := (cf O (le_n O)).
+Extraction test6.
+(* let test6 = cf O *)
+
+Definition test7 := ([X:Set][x:X]x nat).
+Extraction test7.
+(* let test7 x = x *)
+
+Definition d := [X:Type]X.
+Extraction d. (* type 'x d = 'x *)
+Definition d2 := (d Set).
+Extraction d2. (* type d2 = __ d *)
+Definition d3 := [x:(d Set)]O.
+Extraction d3. (* let d3 _ = O *)
+Definition d4 := (d nat).
+Extraction d4. (* type d4 = nat d *)
+Definition d5 := ([x:(d Type)]O Type).
+Extraction d5. (* let d5 = O *)
+Definition d6 := ([x:(d Type)]x).
+Extraction d6. (* type 'x d6 = 'x *)
+
+Definition test8 := ([X:Type][x:X]x Set nat).
+Extraction test8. (* type test8 = nat *)
+
+Definition test9 := let t = nat in (id Set t).
+Extraction test9. (* type test9 = nat *)
+
+Definition test10 := ([X:Type][x:X]O Type Type).
+Extraction test10. (* let test10 = O *)
+
+Definition test11 := let n=O in let p=(S n) in (S p).
+Extraction test11. (* let test11 = S (S O) *)
+
+Definition test12 := (x:(X:Type)X->X)(x Type Type).
+Extraction test12.
+(* type test12 = (__ -> __ -> __) -> __ *)
+
+
+Definition test13 := Cases (left True True I) of (left x)=>(S O) | (right x)=>O end.
+Extraction test13. (* let test13 = S O *)
+
+
+(** example with more arguments that given by the type *)
+
+Definition test19 := (nat_rec [n:nat]nat->nat [n:nat]O [n:nat][f:nat->nat]f O O).
+Extraction test19.
+(* let test19 =
+ let rec f = function
+ | O -> (fun n0 -> O)
+ | S n0 -> f n0
+ in f O O
+*)
+
+
+(** casts *)
+
+Definition test20 := (True :: Type).
+Extraction test20.
+(* type test20 = __ *)
+
+
+(** Simple inductive type and recursor. *)
+
+Extraction nat.
+(*
+type nat =
+ | O
+ | S of nat
+*)
+
+Extraction sumbool_rect.
+(*
+let sumbool_rect f f0 = function
+ | Left -> f __
+ | Right -> f0 __
+*)
+
+(** Less simple inductive type. *)
+
+Inductive c [x:nat] : nat -> Set :=
+ refl : (c x x)
+ | trans : (y,z:nat)(c x y)->(le y z)->(c x z).
+Extraction c.
+(*
+type c =
+ | Refl
+ | Trans of nat * nat * c
+*)
+
+Definition Ensemble := [U:Type]U->Prop.
+Definition Empty_set := [U:Type][x:U]False.
+Definition Add := [U:Type][A:(Ensemble U)][x:U][y:U](A y) \/ x==y.
+
+Inductive Finite [U:Type] : (Ensemble U) -> Set :=
+ Empty_is_finite: (Finite U (Empty_set U))
+ | Union_is_finite:
+ (A: (Ensemble U)) (Finite U A) ->
+ (x: U) ~ (A x) -> (Finite U (Add U A x)).
+Extraction Finite.
+(*
+type 'u finite =
+ | Empty_is_finite
+ | Union_is_finite of 'u finite * 'u
+*)
+
+
+(** Mutual Inductive *)
+
+Inductive tree : Set :=
+ Node : nat -> forest -> tree
+with forest : Set :=
+ | Leaf : nat -> forest
+ | Cons : tree -> forest -> forest .
+
+Extraction tree.
+(*
+type tree =
+ | Node of nat * forest
+and forest =
+ | Leaf of nat
+ | Cons of tree * forest
+*)
+
+Fixpoint tree_size [t:tree] : nat :=
+ Cases t of (Node a f) => (S (forest_size f)) end
+with forest_size [f:forest] : nat :=
+ Cases f of
+ | (Leaf b) => (S O)
+ | (Cons t f') => (plus (tree_size t) (forest_size f'))
+ end.
+
+Extraction tree_size.
+(*
+let rec tree_size = function
+ | Node (a, f) -> S (forest_size f)
+and forest_size = function
+ | Leaf b -> S O
+ | Cons (t, f') -> plus (tree_size t) (forest_size f')
+*)
+
+
+(** Eta-expansions of inductive constructor *)
+
+Inductive titi : Set := tata : nat->nat->nat->nat->titi.
+Definition test14 := (tata O).
+Extraction test14.
+(* let test14 x x0 x1 = Tata (O, x, x0, x1) *)
+Definition test15 := (tata O (S O)).
+Extraction test15.
+(* let test15 x x0 = Tata (O, (S O), x, x0) *)
+
+Inductive eta : Set := eta_c : nat->Prop->nat->Prop->eta.
+Extraction eta_c.
+(*
+type eta =
+ | Eta_c of nat * nat
+*)
+Definition test16 := (eta_c O).
+Extraction test16.
+(* let test16 x = Eta_c (O, x) *)
+Definition test17 := (eta_c O True).
+Extraction test17.
+(* let test17 x = Eta_c (O, x) *)
+Definition test18 := (eta_c O True O).
+Extraction test18.
+(* let test18 _ = Eta_c (O, O) *)
+
+
+(** Example of singleton inductive type *)
+
+Inductive bidon [A:Prop;B:Type] : Set := tb : (x:A)(y:B)(bidon A B).
+Definition fbidon := [A,B:Type][f:A->B->(bidon True nat)][x:A][y:B](f x y).
+Extraction bidon.
+(* type 'b bidon = 'b *)
+Extraction tb.
+(* tb : singleton inductive constructor *)
+Extraction fbidon.
+(* let fbidon f x y =
+ f x y
+*)
+
+Definition fbidon2 := (fbidon True nat (tb True nat)).
+Extraction fbidon2. (* let fbidon2 y = y *)
+Extraction NoInline fbidon.
+Extraction fbidon2.
+(* let fbidon2 y = fbidon (fun _ x -> x) __ y *)
+
+(* NB: first argument of fbidon2 has type [True], so it disappears. *)
+
+(** mutual inductive on many sorts *)
+
+Inductive
+ test_0 : Prop := ctest0 : test_0
+with
+ test_1 : Set := ctest1 : test_0-> test_1.
+Extraction test_0.
+(* test0 : logical inductive *)
+Extraction test_1.
+(*
+type test1 =
+ | Ctest1
+*)
+
+(** logical singleton *)
+
+Extraction eq.
+(* eq : logical inductive *)
+Extraction eq_rect.
+(* let eq_rect x f y =
+ f
+*)
+
+(** No more propagation of type parameters. Obj.t instead. *)
+
+Inductive tp1 : Set :=
+ T : (C:Set)(c:C)tp2 -> tp1 with tp2 : Set := T' : tp1->tp2.
+Extraction tp1.
+(*
+type tp1 =
+ | T of __ * tp2
+and tp2 =
+ | T' of tp1
+*)
+
+Inductive tp1bis : Set :=
+ Tbis : tp2bis -> tp1bis
+with tp2bis : Set := T'bis : (C:Set)(c:C)tp1bis->tp2bis.
+Extraction tp1bis.
+(*
+type tp1bis =
+ | Tbis of tp2bis
+and tp2bis =
+ | T'bis of __ * tp1bis
+*)
+
+
+(** Strange inductive type. *)
+
+Inductive Truc : Set->Set :=
+ chose : (A:Set)(Truc A)
+ | machin : (A:Set)A->(Truc bool)->(Truc A).
+Extraction Truc.
+(*
+type 'x truc =
+ | Chose
+ | Machin of 'x * bool truc
+*)
+
+
+(** Dependant type over Type *)
+
+Definition test24:= (sigT Set [a:Set](option a)).
+Extraction test24.
+(* type test24 = (__, __ option) sigT *)
+
+
+(** Coq term non strongly-normalizable after extraction *)
+
+Require Gt.
+Definition loop :=
+ [Ax:(Acc nat gt O)]
+ (Fix F {F [a:nat;b:(Acc nat gt a)] : nat :=
+ (F (S a) (Acc_inv nat gt a b (S a) (gt_Sn_n a)))}
+ O Ax).
+Extraction loop.
+(* let loop _ =
+ let rec f a =
+ f (S a)
+ in f O
+*)
+
+(*** EXAMPLES NEEDING OBJ.MAGIC *)
+
+(** False conversion of type: *)
+
+Lemma oups : (H:(nat==(list nat)))nat -> nat.
+Intros.
+Generalize H0;Intros.
+Rewrite H in H1.
+Case H1.
+Exact H0.
+Intros.
+Exact n.
+Qed.
+Extraction oups.
+(*
+let oups h0 =
+ match Obj.magic h0 with
+ | Nil -> h0
+ | Cons0 (n, l) -> n
+*)
+
+
+(** hybrids *)
+
+Definition horibilis := [b:bool]<[b:bool]if b then Type else nat>if b then Set else O.
+Extraction horibilis.
+(*
+let horibilis = function
+ | True -> Obj.magic __
+ | False -> Obj.magic O
+*)
+
+Definition PropSet := [b:bool]if b then Prop else Set.
+Extraction PropSet. (* type propSet = __ *)
+
+Definition natbool := [b:bool]if b then nat else bool.
+Extraction natbool. (* type natbool = __ *)
+
+Definition zerotrue := [b:bool]<natbool>if b then O else true.
+Extraction zerotrue.
+(*
+let zerotrue = function
+ | True -> Obj.magic O
+ | False -> Obj.magic True
+*)
+
+Definition natProp := [b:bool]<[_:bool]Type>if b then nat else Prop.
+
+Definition natTrue := [b:bool]<[_:bool]Type>if b then nat else True.
+
+Definition zeroTrue := [b:bool]<natProp>if b then O else True.
+Extraction zeroTrue.
+(*
+let zeroTrue = function
+ | True -> Obj.magic O
+ | False -> Obj.magic __
+*)
+
+Definition natTrue2 := [b:bool]<[_:bool]Type>if b then nat else True.
+
+Definition zeroprop := [b:bool]<natTrue>if b then O else I.
+Extraction zeroprop.
+(*
+let zeroprop = function
+ | True -> Obj.magic O
+ | False -> Obj.magic __
+*)
+
+(** polymorphic f applied several times *)
+
+Definition test21 := (id nat O, id bool true).
+Extraction test21.
+(* let test21 = Pair ((id O), (id True)) *)
+
+(** ok *)
+
+Definition test22 := ([f:(X:Type)X->X](f nat O, f bool true) [X:Type][x:X]x).
+Extraction test22.
+(* let test22 =
+ let f = fun x -> x in Pair ((f O), (f True)) *)
+
+(* still ok via optim beta -> let *)
+
+Definition test23 := [f:(X:Type)X->X](f nat O, f bool true).
+Extraction test23.
+(* let test23 f = Pair ((Obj.magic f __ O), (Obj.magic f __ True)) *)
+
+(* problem: fun f -> (f 0, f true) not legal in ocaml *)
+(* solution: magic ... *)
+
+
+(** Dummy constant __ can be applied.... *)
+
+Definition f : (X:Type)(nat->X)->(X->bool)->bool :=
+ [X:Type;x:nat->X;y:X->bool](y (x O)).
+Extraction f.
+(* let f x y =
+ y (x O)
+*)
+
+Definition f_prop := (f (O=O) [_](refl_equal ? O) [_]true).
+Extraction NoInline f.
+Extraction f_prop.
+(* let f_prop =
+ f (Obj.magic __) (fun _ -> True)
+*)
+
+Definition f_arity := (f Set [_:nat]nat [_:Set]true).
+Extraction f_arity.
+(* let f_arity =
+ f (Obj.magic __) (fun _ -> True)
+*)
+
+Definition f_normal := (f nat [x]x [x](Cases x of O => true | _ => false end)).
+Extraction f_normal.
+(* let f_normal =
+ f (fun x -> x) (fun x -> match x with
+ | O -> True
+ | S n -> False)
+*)
+
+
+(* inductive with magic needed *)
+
+Inductive Boite : Set :=
+ boite : (b:bool)(if b then nat else nat*nat)->Boite.
+Extraction Boite.
+(*
+type boite =
+ | Boite of bool * __
+*)
+
+
+Definition boite1 := (boite true O).
+Extraction boite1.
+(* let boite1 = Boite (True, (Obj.magic O)) *)
+
+Definition boite2 := (boite false (O,O)).
+Extraction boite2.
+(* let boite2 = Boite (False, (Obj.magic (Pair (O, O)))) *)
+
+Definition test_boite := [B:Boite]<nat>Cases B of
+ (boite true n) => n
+| (boite false n) => (plus (fst ? ? n) (snd ? ? n))
+end.
+Extraction test_boite.
+(*
+let test_boite = function
+ | Boite (b0, n) ->
+ (match b0 with
+ | True -> Obj.magic n
+ | False -> plus (fst (Obj.magic n)) (snd (Obj.magic n)))
+*)
+
+(* singleton inductive with magic needed *)
+
+Inductive Box : Set :=
+ box : (A:Set)A -> Box.
+Extraction Box.
+(* type box = __ *)
+
+Definition box1 := (box nat O).
+Extraction box1. (* let box1 = Obj.magic O *)
+
+(* applied constant, magic needed *)
+
+Definition idzarb := [b:bool][x:(if b then nat else bool)]x.
+Definition zarb := (idzarb true O).
+Extraction NoInline idzarb.
+Extraction zarb.
+(* let zarb = Obj.magic idzarb True (Obj.magic O) *)
+
+(** function of variable arity. *)
+(** Fun n = nat -> nat -> ... -> nat *)
+
+Fixpoint Fun [n:nat] : Set :=
+ Cases n of
+ O => nat
+ | (S n) => nat -> (Fun n)
+ end.
+
+Fixpoint Const [k,n:nat] : (Fun n) :=
+ <Fun>Cases n of
+ O => k
+ | (S n) => [p:nat](Const k n)
+ end.
+
+Fixpoint proj [k,n:nat] : (Fun n) :=
+ <Fun>Cases n of
+ O => O (* ou assert false ....*)
+ | (S n) => Cases k of
+ O => [x](Const x n)
+ | (S k) => [x](proj k n)
+ end
+ end.
+
+Definition test_proj := (proj (2) (4) (0) (1) (2) (3)).
+
+Eval Compute in test_proj.
+
+Recursive Extraction test_proj.
+
+
+
+(*** TO SUM UP: ***)
+
+
+Extraction "test_extraction.ml"
+ idnat id id' test2 test3 test4 test5 test6 test7
+ d d2 d3 d4 d5 d6 test8 id id' test9 test10 test11
+ test12 test13 test19 test20
+ nat sumbool_rect c Finite tree tree_size
+ test14 test15 eta_c test16 test17 test18 bidon tb fbidon fbidon2
+ fbidon2 test_0 test_1 eq eq_rect tp1 tp1bis Truc oups test24 loop
+ horibilis PropSet natbool zerotrue zeroTrue zeroprop test21 test22
+ test23 f f_prop f_arity f_normal
+ Boite boite1 boite2 test_boite
+ Box box1 zarb test_proj.
+
+