summaryrefslogtreecommitdiff
path: root/contrib7/extraction/test_extraction.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/extraction/test_extraction.v')
-rw-r--r--contrib7/extraction/test_extraction.v533
1 files changed, 0 insertions, 533 deletions
diff --git a/contrib7/extraction/test_extraction.v b/contrib7/extraction/test_extraction.v
deleted file mode 100644
index e76b1c69..00000000
--- a/contrib7/extraction/test_extraction.v
+++ /dev/null
@@ -1,533 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Arith.
-Require PolyList.
-
-(*** STANDARD EXAMPLES *)
-
-(** Functions. *)
-
-Definition idnat := [x:nat]x.
-Extraction idnat.
-(* let idnat x = x *)
-
-Definition id := [X:Type][x:X]x.
-Extraction id. (* let id x = x *)
-Definition id' := (id Set nat).
-Extraction id'. (* type id' = nat *)
-
-Definition test2 := [f:nat->nat][x:nat](f x).
-Extraction test2.
-(* let test2 f x = f x *)
-
-Definition test3 := [f:nat->Set->nat][x:nat](f x nat).
-Extraction test3.
-(* let test3 f x = f x __ *)
-
-Definition test4 := [f:(nat->nat)->nat][x:nat][g:nat->nat](f g).
-Extraction test4.
-(* let test4 f x g = f g *)
-
-Definition test5 := ((1),(0)).
-Extraction test5.
-(* let test5 = Pair ((S O), O) *)
-
-Definition cf := [x:nat][_:(le x O)](S x).
-Extraction NoInline cf.
-Definition test6 := (cf O (le_n O)).
-Extraction test6.
-(* let test6 = cf O *)
-
-Definition test7 := ([X:Set][x:X]x nat).
-Extraction test7.
-(* let test7 x = x *)
-
-Definition d := [X:Type]X.
-Extraction d. (* type 'x d = 'x *)
-Definition d2 := (d Set).
-Extraction d2. (* type d2 = __ d *)
-Definition d3 := [x:(d Set)]O.
-Extraction d3. (* let d3 _ = O *)
-Definition d4 := (d nat).
-Extraction d4. (* type d4 = nat d *)
-Definition d5 := ([x:(d Type)]O Type).
-Extraction d5. (* let d5 = O *)
-Definition d6 := ([x:(d Type)]x).
-Extraction d6. (* type 'x d6 = 'x *)
-
-Definition test8 := ([X:Type][x:X]x Set nat).
-Extraction test8. (* type test8 = nat *)
-
-Definition test9 := let t = nat in (id Set t).
-Extraction test9. (* type test9 = nat *)
-
-Definition test10 := ([X:Type][x:X]O Type Type).
-Extraction test10. (* let test10 = O *)
-
-Definition test11 := let n=O in let p=(S n) in (S p).
-Extraction test11. (* let test11 = S (S O) *)
-
-Definition test12 := (x:(X:Type)X->X)(x Type Type).
-Extraction test12.
-(* type test12 = (__ -> __ -> __) -> __ *)
-
-
-Definition test13 := Cases (left True True I) of (left x)=>(S O) | (right x)=>O end.
-Extraction test13. (* let test13 = S O *)
-
-
-(** example with more arguments that given by the type *)
-
-Definition test19 := (nat_rec [n:nat]nat->nat [n:nat]O [n:nat][f:nat->nat]f O O).
-Extraction test19.
-(* let test19 =
- let rec f = function
- | O -> (fun n0 -> O)
- | S n0 -> f n0
- in f O O
-*)
-
-
-(** casts *)
-
-Definition test20 := (True :: Type).
-Extraction test20.
-(* type test20 = __ *)
-
-
-(** Simple inductive type and recursor. *)
-
-Extraction nat.
-(*
-type nat =
- | O
- | S of nat
-*)
-
-Extraction sumbool_rect.
-(*
-let sumbool_rect f f0 = function
- | Left -> f __
- | Right -> f0 __
-*)
-
-(** Less simple inductive type. *)
-
-Inductive c [x:nat] : nat -> Set :=
- refl : (c x x)
- | trans : (y,z:nat)(c x y)->(le y z)->(c x z).
-Extraction c.
-(*
-type c =
- | Refl
- | Trans of nat * nat * c
-*)
-
-Definition Ensemble := [U:Type]U->Prop.
-Definition Empty_set := [U:Type][x:U]False.
-Definition Add := [U:Type][A:(Ensemble U)][x:U][y:U](A y) \/ x==y.
-
-Inductive Finite [U:Type] : (Ensemble U) -> Set :=
- Empty_is_finite: (Finite U (Empty_set U))
- | Union_is_finite:
- (A: (Ensemble U)) (Finite U A) ->
- (x: U) ~ (A x) -> (Finite U (Add U A x)).
-Extraction Finite.
-(*
-type 'u finite =
- | Empty_is_finite
- | Union_is_finite of 'u finite * 'u
-*)
-
-
-(** Mutual Inductive *)
-
-Inductive tree : Set :=
- Node : nat -> forest -> tree
-with forest : Set :=
- | Leaf : nat -> forest
- | Cons : tree -> forest -> forest .
-
-Extraction tree.
-(*
-type tree =
- | Node of nat * forest
-and forest =
- | Leaf of nat
- | Cons of tree * forest
-*)
-
-Fixpoint tree_size [t:tree] : nat :=
- Cases t of (Node a f) => (S (forest_size f)) end
-with forest_size [f:forest] : nat :=
- Cases f of
- | (Leaf b) => (S O)
- | (Cons t f') => (plus (tree_size t) (forest_size f'))
- end.
-
-Extraction tree_size.
-(*
-let rec tree_size = function
- | Node (a, f) -> S (forest_size f)
-and forest_size = function
- | Leaf b -> S O
- | Cons (t, f') -> plus (tree_size t) (forest_size f')
-*)
-
-
-(** Eta-expansions of inductive constructor *)
-
-Inductive titi : Set := tata : nat->nat->nat->nat->titi.
-Definition test14 := (tata O).
-Extraction test14.
-(* let test14 x x0 x1 = Tata (O, x, x0, x1) *)
-Definition test15 := (tata O (S O)).
-Extraction test15.
-(* let test15 x x0 = Tata (O, (S O), x, x0) *)
-
-Inductive eta : Set := eta_c : nat->Prop->nat->Prop->eta.
-Extraction eta_c.
-(*
-type eta =
- | Eta_c of nat * nat
-*)
-Definition test16 := (eta_c O).
-Extraction test16.
-(* let test16 x = Eta_c (O, x) *)
-Definition test17 := (eta_c O True).
-Extraction test17.
-(* let test17 x = Eta_c (O, x) *)
-Definition test18 := (eta_c O True O).
-Extraction test18.
-(* let test18 _ = Eta_c (O, O) *)
-
-
-(** Example of singleton inductive type *)
-
-Inductive bidon [A:Prop;B:Type] : Set := tb : (x:A)(y:B)(bidon A B).
-Definition fbidon := [A,B:Type][f:A->B->(bidon True nat)][x:A][y:B](f x y).
-Extraction bidon.
-(* type 'b bidon = 'b *)
-Extraction tb.
-(* tb : singleton inductive constructor *)
-Extraction fbidon.
-(* let fbidon f x y =
- f x y
-*)
-
-Definition fbidon2 := (fbidon True nat (tb True nat)).
-Extraction fbidon2. (* let fbidon2 y = y *)
-Extraction NoInline fbidon.
-Extraction fbidon2.
-(* let fbidon2 y = fbidon (fun _ x -> x) __ y *)
-
-(* NB: first argument of fbidon2 has type [True], so it disappears. *)
-
-(** mutual inductive on many sorts *)
-
-Inductive
- test_0 : Prop := ctest0 : test_0
-with
- test_1 : Set := ctest1 : test_0-> test_1.
-Extraction test_0.
-(* test0 : logical inductive *)
-Extraction test_1.
-(*
-type test1 =
- | Ctest1
-*)
-
-(** logical singleton *)
-
-Extraction eq.
-(* eq : logical inductive *)
-Extraction eq_rect.
-(* let eq_rect x f y =
- f
-*)
-
-(** No more propagation of type parameters. Obj.t instead. *)
-
-Inductive tp1 : Set :=
- T : (C:Set)(c:C)tp2 -> tp1 with tp2 : Set := T' : tp1->tp2.
-Extraction tp1.
-(*
-type tp1 =
- | T of __ * tp2
-and tp2 =
- | T' of tp1
-*)
-
-Inductive tp1bis : Set :=
- Tbis : tp2bis -> tp1bis
-with tp2bis : Set := T'bis : (C:Set)(c:C)tp1bis->tp2bis.
-Extraction tp1bis.
-(*
-type tp1bis =
- | Tbis of tp2bis
-and tp2bis =
- | T'bis of __ * tp1bis
-*)
-
-
-(** Strange inductive type. *)
-
-Inductive Truc : Set->Set :=
- chose : (A:Set)(Truc A)
- | machin : (A:Set)A->(Truc bool)->(Truc A).
-Extraction Truc.
-(*
-type 'x truc =
- | Chose
- | Machin of 'x * bool truc
-*)
-
-
-(** Dependant type over Type *)
-
-Definition test24:= (sigT Set [a:Set](option a)).
-Extraction test24.
-(* type test24 = (__, __ option) sigT *)
-
-
-(** Coq term non strongly-normalizable after extraction *)
-
-Require Gt.
-Definition loop :=
- [Ax:(Acc nat gt O)]
- (Fix F {F [a:nat;b:(Acc nat gt a)] : nat :=
- (F (S a) (Acc_inv nat gt a b (S a) (gt_Sn_n a)))}
- O Ax).
-Extraction loop.
-(* let loop _ =
- let rec f a =
- f (S a)
- in f O
-*)
-
-(*** EXAMPLES NEEDING OBJ.MAGIC *)
-
-(** False conversion of type: *)
-
-Lemma oups : (H:(nat==(list nat)))nat -> nat.
-Intros.
-Generalize H0;Intros.
-Rewrite H in H1.
-Case H1.
-Exact H0.
-Intros.
-Exact n.
-Qed.
-Extraction oups.
-(*
-let oups h0 =
- match Obj.magic h0 with
- | Nil -> h0
- | Cons0 (n, l) -> n
-*)
-
-
-(** hybrids *)
-
-Definition horibilis := [b:bool]<[b:bool]if b then Type else nat>if b then Set else O.
-Extraction horibilis.
-(*
-let horibilis = function
- | True -> Obj.magic __
- | False -> Obj.magic O
-*)
-
-Definition PropSet := [b:bool]if b then Prop else Set.
-Extraction PropSet. (* type propSet = __ *)
-
-Definition natbool := [b:bool]if b then nat else bool.
-Extraction natbool. (* type natbool = __ *)
-
-Definition zerotrue := [b:bool]<natbool>if b then O else true.
-Extraction zerotrue.
-(*
-let zerotrue = function
- | True -> Obj.magic O
- | False -> Obj.magic True
-*)
-
-Definition natProp := [b:bool]<[_:bool]Type>if b then nat else Prop.
-
-Definition natTrue := [b:bool]<[_:bool]Type>if b then nat else True.
-
-Definition zeroTrue := [b:bool]<natProp>if b then O else True.
-Extraction zeroTrue.
-(*
-let zeroTrue = function
- | True -> Obj.magic O
- | False -> Obj.magic __
-*)
-
-Definition natTrue2 := [b:bool]<[_:bool]Type>if b then nat else True.
-
-Definition zeroprop := [b:bool]<natTrue>if b then O else I.
-Extraction zeroprop.
-(*
-let zeroprop = function
- | True -> Obj.magic O
- | False -> Obj.magic __
-*)
-
-(** polymorphic f applied several times *)
-
-Definition test21 := (id nat O, id bool true).
-Extraction test21.
-(* let test21 = Pair ((id O), (id True)) *)
-
-(** ok *)
-
-Definition test22 := ([f:(X:Type)X->X](f nat O, f bool true) [X:Type][x:X]x).
-Extraction test22.
-(* let test22 =
- let f = fun x -> x in Pair ((f O), (f True)) *)
-
-(* still ok via optim beta -> let *)
-
-Definition test23 := [f:(X:Type)X->X](f nat O, f bool true).
-Extraction test23.
-(* let test23 f = Pair ((Obj.magic f __ O), (Obj.magic f __ True)) *)
-
-(* problem: fun f -> (f 0, f true) not legal in ocaml *)
-(* solution: magic ... *)
-
-
-(** Dummy constant __ can be applied.... *)
-
-Definition f : (X:Type)(nat->X)->(X->bool)->bool :=
- [X:Type;x:nat->X;y:X->bool](y (x O)).
-Extraction f.
-(* let f x y =
- y (x O)
-*)
-
-Definition f_prop := (f (O=O) [_](refl_equal ? O) [_]true).
-Extraction NoInline f.
-Extraction f_prop.
-(* let f_prop =
- f (Obj.magic __) (fun _ -> True)
-*)
-
-Definition f_arity := (f Set [_:nat]nat [_:Set]true).
-Extraction f_arity.
-(* let f_arity =
- f (Obj.magic __) (fun _ -> True)
-*)
-
-Definition f_normal := (f nat [x]x [x](Cases x of O => true | _ => false end)).
-Extraction f_normal.
-(* let f_normal =
- f (fun x -> x) (fun x -> match x with
- | O -> True
- | S n -> False)
-*)
-
-
-(* inductive with magic needed *)
-
-Inductive Boite : Set :=
- boite : (b:bool)(if b then nat else nat*nat)->Boite.
-Extraction Boite.
-(*
-type boite =
- | Boite of bool * __
-*)
-
-
-Definition boite1 := (boite true O).
-Extraction boite1.
-(* let boite1 = Boite (True, (Obj.magic O)) *)
-
-Definition boite2 := (boite false (O,O)).
-Extraction boite2.
-(* let boite2 = Boite (False, (Obj.magic (Pair (O, O)))) *)
-
-Definition test_boite := [B:Boite]<nat>Cases B of
- (boite true n) => n
-| (boite false n) => (plus (fst ? ? n) (snd ? ? n))
-end.
-Extraction test_boite.
-(*
-let test_boite = function
- | Boite (b0, n) ->
- (match b0 with
- | True -> Obj.magic n
- | False -> plus (fst (Obj.magic n)) (snd (Obj.magic n)))
-*)
-
-(* singleton inductive with magic needed *)
-
-Inductive Box : Set :=
- box : (A:Set)A -> Box.
-Extraction Box.
-(* type box = __ *)
-
-Definition box1 := (box nat O).
-Extraction box1. (* let box1 = Obj.magic O *)
-
-(* applied constant, magic needed *)
-
-Definition idzarb := [b:bool][x:(if b then nat else bool)]x.
-Definition zarb := (idzarb true O).
-Extraction NoInline idzarb.
-Extraction zarb.
-(* let zarb = Obj.magic idzarb True (Obj.magic O) *)
-
-(** function of variable arity. *)
-(** Fun n = nat -> nat -> ... -> nat *)
-
-Fixpoint Fun [n:nat] : Set :=
- Cases n of
- O => nat
- | (S n) => nat -> (Fun n)
- end.
-
-Fixpoint Const [k,n:nat] : (Fun n) :=
- <Fun>Cases n of
- O => k
- | (S n) => [p:nat](Const k n)
- end.
-
-Fixpoint proj [k,n:nat] : (Fun n) :=
- <Fun>Cases n of
- O => O (* ou assert false ....*)
- | (S n) => Cases k of
- O => [x](Const x n)
- | (S k) => [x](proj k n)
- end
- end.
-
-Definition test_proj := (proj (2) (4) (0) (1) (2) (3)).
-
-Eval Compute in test_proj.
-
-Recursive Extraction test_proj.
-
-
-
-(*** TO SUM UP: ***)
-
-
-Extraction "test_extraction.ml"
- idnat id id' test2 test3 test4 test5 test6 test7
- d d2 d3 d4 d5 d6 test8 id id' test9 test10 test11
- test12 test13 test19 test20
- nat sumbool_rect c Finite tree tree_size
- test14 test15 eta_c test16 test17 test18 bidon tb fbidon fbidon2
- fbidon2 test_0 test_1 eq eq_rect tp1 tp1bis Truc oups test24 loop
- horibilis PropSet natbool zerotrue zeroTrue zeroprop test21 test22
- test23 f f_prop f_arity f_normal
- Boite boite1 boite2 test_boite
- Box box1 zarb test_proj.
-
-