summaryrefslogtreecommitdiff
path: root/contrib/setoid_ring/Field_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/setoid_ring/Field_theory.v')
-rw-r--r--contrib/setoid_ring/Field_theory.v1460
1 files changed, 1460 insertions, 0 deletions
diff --git a/contrib/setoid_ring/Field_theory.v b/contrib/setoid_ring/Field_theory.v
new file mode 100644
index 00000000..f810859c
--- /dev/null
+++ b/contrib/setoid_ring/Field_theory.v
@@ -0,0 +1,1460 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Ring.
+Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List.
+Require Import ZArith_base.
+Set Implicit Arguments.
+
+Section MakeFieldPol.
+
+(* Field elements *)
+ Variable R:Type.
+ Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
+ Variable (rdiv : R -> R -> R) (rinv : R -> R).
+ Variable req : R -> R -> Prop.
+
+ Notation "0" := rO. Notation "1" := rI.
+ Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
+ Notation "x - y " := (rsub x y). Notation "x / y" := (rdiv x y).
+ Notation "- x" := (ropp x). Notation "/ x" := (rinv x).
+ Notation "x == y" := (req x y) (at level 70, no associativity).
+
+ (* Equality properties *)
+ Variable Rsth : Setoid_Theory R req.
+ Variable Reqe : ring_eq_ext radd rmul ropp req.
+ Variable SRinv_ext : forall p q, p == q -> / p == / q.
+
+ (* Field properties *)
+ Record almost_field_theory : Prop := mk_afield {
+ AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req;
+ AF_1_neq_0 : ~ 1 == 0;
+ AFdiv_def : forall p q, p / q == p * / q;
+ AFinv_l : forall p, ~ p == 0 -> / p * p == 1
+ }.
+
+Section AlmostField.
+
+ Variable AFth : almost_field_theory.
+ Let ARth := AFth.(AF_AR).
+ Let rI_neq_rO := AFth.(AF_1_neq_0).
+ Let rdiv_def := AFth.(AFdiv_def).
+ Let rinv_l := AFth.(AFinv_l).
+
+ (* Coefficients *)
+ Variable C: Type.
+ Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
+ Variable ceqb : C->C->bool.
+ Variable phi : C -> R.
+
+ Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
+ cO cI cadd cmul csub copp ceqb phi.
+
+Lemma ceqb_rect : forall c1 c2 (A:Type) (x y:A) (P:A->Type),
+ (phi c1 == phi c2 -> P x) -> P y -> P (if ceqb c1 c2 then x else y).
+Proof.
+intros.
+generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
+case (ceqb c1 c2); auto.
+Qed.
+
+
+ (* C notations *)
+ Notation "x +! y" := (cadd x y) (at level 50).
+ Notation "x *! y " := (cmul x y) (at level 40).
+ Notation "x -! y " := (csub x y) (at level 50).
+ Notation "-! x" := (copp x) (at level 35).
+ Notation " x ?=! y" := (ceqb x y) (at level 70, no associativity).
+ Notation "[ x ]" := (phi x) (at level 0).
+
+
+ (* Usefull tactics *)
+ Add Setoid R req Rsth as R_set1.
+ Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
+ Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Add Morphism rinv : rinv_ext. exact SRinv_ext. Qed.
+
+Let eq_trans := Setoid.Seq_trans _ _ Rsth.
+Let eq_sym := Setoid.Seq_sym _ _ Rsth.
+Let eq_refl := Setoid.Seq_refl _ _ Rsth.
+
+Hint Resolve eq_refl rdiv_def rinv_l rI_neq_rO CRmorph.(morph1) .
+Hint Resolve (Rmul_ext Reqe) (Rmul_ext Reqe) (Radd_ext Reqe)
+ (ARsub_ext Rsth Reqe ARth) (Ropp_ext Reqe) SRinv_ext.
+Hint Resolve (ARadd_0_l ARth) (ARadd_comm ARth) (ARadd_assoc ARth)
+ (ARmul_1_l ARth) (ARmul_0_l ARth)
+ (ARmul_comm ARth) (ARmul_assoc ARth) (ARdistr_l ARth)
+ (ARopp_mul_l ARth) (ARopp_add ARth)
+ (ARsub_def ARth) .
+
+Notation NPEeval := (PEeval rO radd rmul rsub ropp phi).
+Notation Nnorm := (norm cO cI cadd cmul csub copp ceqb).
+Notation NPphi_dev := (Pphi_dev rO rI radd rmul cO cI ceqb phi).
+
+(* add abstract semi-ring to help with some proofs *)
+Add Ring Rring : (ARth_SRth ARth).
+
+
+(* additional ring properties *)
+
+Lemma rsub_0_l : forall r, 0 - r == - r.
+intros; rewrite (ARsub_def ARth) in |- *; ring.
+Qed.
+
+Lemma rsub_0_r : forall r, r - 0 == r.
+intros; rewrite (ARsub_def ARth) in |- *.
+rewrite (ARopp_zero Rsth Reqe ARth) in |- *; ring.
+Qed.
+
+(***************************************************************************
+
+ Properties of division
+
+ ***************************************************************************)
+
+Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p.
+intros p q H.
+rewrite rdiv_def in |- *.
+transitivity (/ q * q * p); [ ring | idtac ].
+rewrite rinv_l in |- *; auto.
+Qed.
+Hint Resolve rdiv_simpl .
+
+Theorem SRdiv_ext:
+ forall p1 p2, p1 == p2 -> forall q1 q2, q1 == q2 -> p1 / q1 == p2 / q2.
+intros p1 p2 H q1 q2 H0.
+transitivity (p1 * / q1); auto.
+transitivity (p2 * / q2); auto.
+Qed.
+Hint Resolve SRdiv_ext .
+
+ Add Morphism rdiv : rdiv_ext. exact SRdiv_ext. Qed.
+
+Lemma rmul_reg_l : forall p q1 q2,
+ ~ p == 0 -> p * q1 == p * q2 -> q1 == q2.
+intros.
+rewrite <- (@rdiv_simpl q1 p) in |- *; trivial.
+rewrite <- (@rdiv_simpl q2 p) in |- *; trivial.
+repeat rewrite rdiv_def in |- *.
+repeat rewrite (ARmul_assoc ARth) in |- *.
+auto.
+Qed.
+
+Theorem field_is_integral_domain : forall r1 r2,
+ ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0.
+Proof.
+red in |- *; intros.
+apply H0.
+transitivity (1 * r2); auto.
+transitivity (/ r1 * r1 * r2); auto.
+rewrite <- (ARmul_assoc ARth) in |- *.
+rewrite H1 in |- *.
+apply ARmul_0_r with (1 := Rsth) (2 := ARth).
+Qed.
+
+Theorem ropp_neq_0 : forall r,
+ ~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0.
+intros.
+setoid_replace (- r) with (- (1) * r).
+ apply field_is_integral_domain; trivial.
+ rewrite <- (ARopp_mul_l ARth) in |- *.
+ rewrite (ARmul_1_l ARth) in |- *.
+ reflexivity.
+Qed.
+
+Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1.
+intros.
+rewrite (AFdiv_def AFth) in |- *.
+rewrite (ARmul_comm ARth) in |- *.
+apply (AFinv_l AFth).
+trivial.
+Qed.
+
+Theorem rdiv1: forall r, r == r / 1.
+intros r; transitivity (1 * (r / 1)); auto.
+Qed.
+
+Theorem rdiv2:
+ forall r1 r2 r3 r4,
+ ~ r2 == 0 ->
+ ~ r4 == 0 ->
+ r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4).
+Proof.
+intros r1 r2 r3 r4 H H0.
+assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial).
+apply rmul_reg_l with (r2 * r4); trivial.
+rewrite rdiv_simpl in |- *; trivial.
+rewrite (ARdistr_r Rsth Reqe ARth) in |- *.
+apply (Radd_ext Reqe).
+ transitivity (r2 * (r1 / r2) * r4); [ ring | auto ].
+ transitivity (r2 * (r4 * (r3 / r4))); auto.
+ transitivity (r2 * r3); auto.
+Qed.
+
+
+Theorem rdiv2b:
+ forall r1 r2 r3 r4 r5,
+ ~ (r2*r5) == 0 ->
+ ~ (r4*r5) == 0 ->
+ r1 / (r2*r5) + r3 / (r4*r5) == (r1 * r4 + r3 * r2) / (r2 * (r4 * r5)).
+Proof.
+intros r1 r2 r3 r4 r5 H H0.
+assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring).
+assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring).
+assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring).
+assert (HH4: ~ r2 * (r4 * r5) == 0)
+ by complete (repeat apply field_is_integral_domain; trivial).
+apply rmul_reg_l with (r2 * (r4 * r5)); trivial.
+rewrite rdiv_simpl in |- *; trivial.
+rewrite (ARdistr_r Rsth Reqe ARth) in |- *.
+apply (Radd_ext Reqe).
+ transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ].
+ transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ].
+Qed.
+
+Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2.
+intros r1 r2.
+transitivity (- (r1 * / r2)); auto.
+transitivity (- r1 * / r2); auto.
+Qed.
+Hint Resolve rdiv5 .
+
+Theorem rdiv3:
+ forall r1 r2 r3 r4,
+ ~ r2 == 0 ->
+ ~ r4 == 0 ->
+ r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4).
+intros r1 r2 r3 r4 H H0.
+assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
+transitivity (r1 / r2 + - (r3 / r4)); auto.
+transitivity (r1 / r2 + - r3 / r4); auto.
+transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)); auto.
+apply rdiv2; auto.
+apply SRdiv_ext; auto.
+transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto.
+Qed.
+
+
+Theorem rdiv3b:
+ forall r1 r2 r3 r4 r5,
+ ~ (r2 * r5) == 0 ->
+ ~ (r4 * r5) == 0 ->
+ r1 / (r2*r5) - r3 / (r4*r5) == (r1 * r4 - r3 * r2) / (r2 * (r4 * r5)).
+Proof.
+intros r1 r2 r3 r4 r5 H H0.
+transitivity (r1 / (r2 * r5) + - (r3 / (r4 * r5))); auto.
+transitivity (r1 / (r2 * r5) + - r3 / (r4 * r5)); auto.
+transitivity ((r1 * r4 + - r3 * r2) / (r2 * (r4 * r5))).
+apply rdiv2b; auto; try ring.
+apply (SRdiv_ext); auto.
+transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto.
+Qed.
+
+Theorem rdiv6:
+ forall r1 r2,
+ ~ r1 == 0 -> ~ r2 == 0 -> / (r1 / r2) == r2 / r1.
+intros r1 r2 H H0.
+assert (~ r1 / r2 == 0) as Hk.
+ intros H1; case H.
+ transitivity (r2 * (r1 / r2)); auto.
+ rewrite H1 in |- *; ring.
+ apply rmul_reg_l with (r1 / r2); auto.
+ transitivity (/ (r1 / r2) * (r1 / r2)); auto.
+ transitivity 1; auto.
+ repeat rewrite rdiv_def in |- *.
+ transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ].
+ repeat rewrite rinv_l in |- *; auto.
+Qed.
+Hint Resolve rdiv6 .
+
+ Theorem rdiv4:
+ forall r1 r2 r3 r4,
+ ~ r2 == 0 ->
+ ~ r4 == 0 ->
+ (r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4).
+Proof.
+intros r1 r2 r3 r4 H H0.
+assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial).
+apply rmul_reg_l with (r2 * r4); trivial.
+rewrite rdiv_simpl in |- *; trivial.
+transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ].
+repeat rewrite rdiv_simpl in |- *; trivial.
+Qed.
+
+ Theorem rdiv7:
+ forall r1 r2 r3 r4,
+ ~ r2 == 0 ->
+ ~ r3 == 0 ->
+ ~ r4 == 0 ->
+ (r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3).
+Proof.
+intros.
+rewrite (rdiv_def (r1 / r2)) in |- *.
+rewrite rdiv6 in |- *; trivial.
+apply rdiv4; trivial.
+Qed.
+
+Theorem rdiv8: forall r1 r2, ~ r2 == 0 -> r1 == 0 -> r1 / r2 == 0.
+intros r1 r2 H H0.
+transitivity (r1 * / r2); auto.
+transitivity (0 * / r2); auto.
+Qed.
+
+
+Theorem cross_product_eq : forall r1 r2 r3 r4,
+ ~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4.
+intros.
+transitivity (r1 / r2 * (r4 / r4)).
+ rewrite rdiv_r_r in |- *; trivial.
+ symmetry in |- *.
+ apply (ARmul_1_r Rsth ARth).
+ rewrite rdiv4 in |- *; trivial.
+ rewrite H1 in |- *.
+ rewrite (ARmul_comm ARth r2 r4) in |- *.
+ rewrite <- rdiv4 in |- *; trivial.
+ rewrite rdiv_r_r in |- *.
+ trivial.
+ apply (ARmul_1_r Rsth ARth).
+Qed.
+
+(***************************************************************************
+
+ Some equality test
+
+ ***************************************************************************)
+
+Fixpoint positive_eq (p1 p2 : positive) {struct p1} : bool :=
+ match p1, p2 with
+ xH, xH => true
+ | xO p3, xO p4 => positive_eq p3 p4
+ | xI p3, xI p4 => positive_eq p3 p4
+ | _, _ => false
+ end.
+
+Theorem positive_eq_correct:
+ forall p1 p2, if positive_eq p1 p2 then p1 = p2 else p1 <> p2.
+intros p1; elim p1;
+ (try (intros p2; case p2; simpl; auto; intros; discriminate)).
+intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4.
+generalize (rec p4); case (positive_eq p3 p4); auto.
+intros H1; apply f_equal with ( f := xI ); auto.
+intros H1 H2; case H1; injection H2; auto.
+intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4.
+generalize (rec p4); case (positive_eq p3 p4); auto.
+intros H1; apply f_equal with ( f := xO ); auto.
+intros H1 H2; case H1; injection H2; auto.
+Qed.
+
+(* equality test *)
+Fixpoint PExpr_eq (e1 e2 : PExpr C) {struct e1} : bool :=
+ match e1, e2 with
+ PEc c1, PEc c2 => ceqb c1 c2
+ | PEX p1, PEX p2 => positive_eq p1 p2
+ | PEadd e3 e5, PEadd e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
+ | PEsub e3 e5, PEsub e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
+ | PEmul e3 e5, PEmul e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
+ | PEopp e3, PEopp e4 => PExpr_eq e3 e4
+ | _, _ => false
+ end.
+
+Theorem PExpr_eq_semi_correct:
+ forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2.
+intros l e1; elim e1.
+intros c1; intros e2; elim e2; simpl; (try (intros; discriminate)).
+intros c2; apply (morph_eq CRmorph).
+intros p1; intros e2; elim e2; simpl; (try (intros; discriminate)).
+intros p2; generalize (positive_eq_correct p1 p2); case (positive_eq p1 p2);
+ (try (intros; discriminate)); intros H; rewrite H; auto.
+intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
+intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
+ (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
+ (try (intros; discriminate)); auto.
+intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
+intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
+ (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
+ (try (intros; discriminate)); auto.
+intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
+intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
+ (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
+ (try (intros; discriminate)); auto.
+intros e3 rec e2; (case e2; simpl; (try (intros; discriminate))).
+intros e4; generalize (rec e4); case (PExpr_eq e3 e4);
+ (try (intros; discriminate)); auto.
+Qed.
+
+(* add *)
+Definition NPEadd e1 e2 :=
+ match e1, e2 with
+ PEc c1, PEc c2 => PEc (cadd c1 c2)
+ | PEc c, _ => if ceqb c cO then e2 else PEadd e1 e2
+ | _, PEc c => if ceqb c cO then e1 else PEadd e1 e2
+ | _, _ => PEadd e1 e2
+ end.
+
+Theorem NPEadd_correct:
+ forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2).
+Proof.
+intros l e1 e2.
+destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect;
+ try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;
+ try rewrite (morph0 CRmorph) in |- *; try ring.
+apply (morph_add CRmorph).
+Qed.
+
+(* mul *)
+Definition NPEmul x y :=
+ match x, y with
+ PEc c1, PEc c2 => PEc (cmul c1 c2)
+ | PEc c, _ =>
+ if ceqb c cI then y else if ceqb c cO then PEc cO else PEmul x y
+ | _, PEc c =>
+ if ceqb c cI then x else if ceqb c cO then PEc cO else PEmul x y
+ | _, _ => PEmul x y
+ end.
+
+Theorem NPEmul_correct : forall l e1 e2,
+ NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2).
+intros l e1 e2.
+destruct e1; destruct e2; simpl in |- *; try reflexivity;
+ repeat apply ceqb_rect;
+ try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;
+ try rewrite (morph0 CRmorph) in |- *;
+ try rewrite (morph1 CRmorph) in |- *;
+ try ring.
+apply (morph_mul CRmorph).
+Qed.
+
+(* sub *)
+Definition NPEsub e1 e2 :=
+ match e1, e2 with
+ PEc c1, PEc c2 => PEc (csub c1 c2)
+ | PEc c, _ => if ceqb c cO then PEopp e2 else PEsub e1 e2
+ | _, PEc c => if ceqb c cO then e1 else PEsub e1 e2
+ | _, _ => PEsub e1 e2
+ end.
+
+Theorem NPEsub_correct:
+ forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2).
+intros l e1 e2.
+destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect;
+ try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;
+ try rewrite (morph0 CRmorph) in |- *; try reflexivity;
+ try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r).
+apply (morph_sub CRmorph).
+Qed.
+
+(* opp *)
+Definition NPEopp e1 :=
+ match e1 with PEc c1 => PEc (copp c1) | _ => PEopp e1 end.
+
+Theorem NPEopp_correct:
+ forall l e1, NPEeval l (NPEopp e1) == NPEeval l (PEopp e1).
+intros l e1; case e1; simpl; auto.
+intros; apply (morph_opp CRmorph).
+Qed.
+
+(* simplification *)
+Fixpoint PExpr_simp (e : PExpr C) : PExpr C :=
+ match e with
+ PEadd e1 e2 => NPEadd (PExpr_simp e1) (PExpr_simp e2)
+ | PEmul e1 e2 => NPEmul (PExpr_simp e1) (PExpr_simp e2)
+ | PEsub e1 e2 => NPEsub (PExpr_simp e1) (PExpr_simp e2)
+ | PEopp e1 => NPEopp (PExpr_simp e1)
+ | _ => e
+ end.
+
+Theorem PExpr_simp_correct:
+ forall l e, NPEeval l (PExpr_simp e) == NPEeval l e.
+intros l e; elim e; simpl; auto.
+intros e1 He1 e2 He2.
+transitivity (NPEeval l (PEadd (PExpr_simp e1) (PExpr_simp e2))); auto.
+apply NPEadd_correct.
+simpl; auto.
+intros e1 He1 e2 He2.
+transitivity (NPEeval l (PEsub (PExpr_simp e1) (PExpr_simp e2))); auto.
+apply NPEsub_correct.
+simpl; auto.
+intros e1 He1 e2 He2.
+transitivity (NPEeval l (PEmul (PExpr_simp e1) (PExpr_simp e2))); auto.
+apply NPEmul_correct.
+simpl; auto.
+intros e1 He1.
+transitivity (NPEeval l (PEopp (PExpr_simp e1))); auto.
+apply NPEopp_correct.
+simpl; auto.
+Qed.
+
+
+(****************************************************************************
+
+ Datastructure
+
+ ***************************************************************************)
+
+(* The input: syntax of a field expression *)
+
+Inductive FExpr : Type :=
+ FEc: C -> FExpr
+ | FEX: positive -> FExpr
+ | FEadd: FExpr -> FExpr -> FExpr
+ | FEsub: FExpr -> FExpr -> FExpr
+ | FEmul: FExpr -> FExpr -> FExpr
+ | FEopp: FExpr -> FExpr
+ | FEinv: FExpr -> FExpr
+ | FEdiv: FExpr -> FExpr -> FExpr .
+
+Fixpoint FEeval (l : list R) (pe : FExpr) {struct pe} : R :=
+ match pe with
+ | FEc c => phi c
+ | FEX x => BinList.nth 0 x l
+ | FEadd x y => FEeval l x + FEeval l y
+ | FEsub x y => FEeval l x - FEeval l y
+ | FEmul x y => FEeval l x * FEeval l y
+ | FEopp x => - FEeval l x
+ | FEinv x => / FEeval l x
+ | FEdiv x y => FEeval l x / FEeval l y
+ end.
+
+(* The result of the normalisation *)
+
+Record linear : Type := mk_linear {
+ num : PExpr C;
+ denum : PExpr C;
+ condition : list (PExpr C) }.
+
+(***************************************************************************
+
+ Semantics and properties of side condition
+
+ ***************************************************************************)
+
+Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop :=
+ match le with
+ | nil => True
+ | e1 :: nil => ~ req (PEeval rO radd rmul rsub ropp phi l e1) rO
+ | e1 :: l1 => ~ req (PEeval rO radd rmul rsub ropp phi l e1) rO /\ PCond l l1
+ end.
+
+Theorem PCond_cons_inv_l :
+ forall l a l1, PCond l (a::l1) -> ~ NPEeval l a == 0.
+intros l a l1 H.
+destruct l1; simpl in H |- *; trivial.
+destruct H; trivial.
+Qed.
+
+Theorem PCond_cons_inv_r : forall l a l1, PCond l (a :: l1) -> PCond l l1.
+intros l a l1 H.
+destruct l1; simpl in H |- *; trivial.
+destruct H; trivial.
+Qed.
+
+Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1.
+intros l l1 l2; elim l1; simpl app in |- *.
+ simpl in |- *; auto.
+ destruct l0; simpl in *.
+ destruct l2; firstorder.
+ firstorder.
+Qed.
+
+Theorem PCond_app_inv_r: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l2.
+intros l l1 l2; elim l1; simpl app; auto.
+intros a l0 H H0; apply H; apply PCond_cons_inv_r with ( 1 := H0 ).
+Qed.
+
+(* An unsatisfiable condition: issued when a division by zero is detected *)
+Definition absurd_PCond := cons (PEc cO) nil.
+
+Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
+unfold absurd_PCond in |- *; simpl in |- *.
+red in |- *; intros.
+apply H.
+apply (morph0 CRmorph).
+Qed.
+
+(***************************************************************************
+
+ Normalisation
+
+ ***************************************************************************)
+
+
+Fixpoint isIn (e1 e2: PExpr C) {struct e2}: option (PExpr C) :=
+ match e2 with
+ | PEmul e3 e4 =>
+ match isIn e1 e3 with
+ Some e5 => Some (NPEmul e5 e4)
+ | None => match isIn e1 e4 with
+ | Some e5 => Some (NPEmul e3 e5)
+ | None => None
+ end
+ end
+ | _ =>
+ if PExpr_eq e1 e2 then Some (PEc cI) else None
+ end.
+
+Theorem isIn_correct: forall l e1 e2,
+ match isIn e1 e2 with
+ (Some e3) => NPEeval l e2 == NPEeval l (NPEmul e1 e3)
+ | _ => True
+ end.
+Proof.
+intros l e1 e2; elim e2; simpl; auto.
+ intros c;
+ generalize (PExpr_eq_semi_correct l e1 (PEc c));
+ case (PExpr_eq e1 (PEc c)); simpl; auto; intros H.
+ rewrite NPEmul_correct; simpl; auto.
+ rewrite H; auto; simpl.
+ rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto.
+ intros p;
+ generalize (PExpr_eq_semi_correct l e1 (PEX C p));
+ case (PExpr_eq e1 (PEX C p)); simpl; auto; intros H.
+ rewrite NPEmul_correct; simpl; auto.
+ rewrite H; auto; simpl.
+ rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto.
+ intros p Hrec p1 Hrec1.
+ generalize (PExpr_eq_semi_correct l e1 (PEadd p p1));
+ case (PExpr_eq e1 (PEadd p p1)); simpl; auto; intros H.
+ rewrite NPEmul_correct; simpl; auto.
+ rewrite H; auto; simpl.
+ rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto.
+ intros p Hrec p1 Hrec1.
+ generalize (PExpr_eq_semi_correct l e1 (PEsub p p1));
+ case (PExpr_eq e1 (PEsub p p1)); simpl; auto; intros H.
+ rewrite NPEmul_correct; simpl; auto.
+ rewrite H; auto; simpl.
+ rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto.
+ intros p; case (isIn e1 p).
+ intros p2 Hrec p1 Hrec1.
+ rewrite Hrec; auto; simpl.
+ repeat (rewrite NPEmul_correct; simpl; auto).
+ intros _ p1; case (isIn e1 p1); auto.
+ intros p2 H; rewrite H.
+ repeat (rewrite NPEmul_correct; simpl; auto).
+ ring.
+ intros p;
+ generalize (PExpr_eq_semi_correct l e1 (PEopp p));
+ case (PExpr_eq e1 (PEopp p)); simpl; auto; intros H.
+ rewrite NPEmul_correct; simpl; auto.
+ rewrite H; auto; simpl.
+ rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto.
+Qed.
+
+Record rsplit : Type := mk_rsplit {
+ rsplit_left : PExpr C;
+ rsplit_common : PExpr C;
+ rsplit_right : PExpr C}.
+
+(* Stupid name clash *)
+Let left := rsplit_left.
+Let right := rsplit_right.
+Let common := rsplit_common.
+
+Fixpoint split (e1 e2: PExpr C) {struct e1}: rsplit :=
+ match e1 with
+ | PEmul e3 e4 =>
+ let r1 := split e3 e2 in
+ let r2 := split e4 (right r1) in
+ mk_rsplit (NPEmul (left r1) (left r2))
+ (NPEmul (common r1) (common r2))
+ (right r2)
+ | _ =>
+ match isIn e1 e2 with
+ Some e3 => mk_rsplit (PEc cI) e1 e3
+ | None => mk_rsplit e1 (PEc cI) e2
+ end
+ end.
+
+Theorem split_correct: forall l e1 e2,
+ NPEeval l e1 == NPEeval l (NPEmul (left (split e1 e2))
+ (common (split e1 e2)))
+/\
+ NPEeval l e2 == NPEeval l (NPEmul (right (split e1 e2))
+ (common (split e1 e2))).
+Proof.
+intros l e1; elim e1; simpl; auto.
+ intros c e2; generalize (isIn_correct l (PEc c) e2);
+ case (isIn (PEc c) e2); auto; intros p;
+ [intros Hp1; rewrite Hp1 | idtac];
+ simpl left; simpl common; simpl right; auto;
+ repeat rewrite NPEmul_correct; simpl; split;
+ try rewrite (morph1 CRmorph); ring.
+ intros p e2; generalize (isIn_correct l (PEX C p) e2);
+ case (isIn (PEX C p) e2); auto; intros p1;
+ [intros Hp1; rewrite Hp1 | idtac];
+ simpl left; simpl common; simpl right; auto;
+ repeat rewrite NPEmul_correct; simpl; split;
+ try rewrite (morph1 CRmorph); ring.
+ intros p1 _ p2 _ e2; generalize (isIn_correct l (PEadd p1 p2) e2);
+ case (isIn (PEadd p1 p2) e2); auto; intros p;
+ [intros Hp1; rewrite Hp1 | idtac];
+ simpl left; simpl common; simpl right; auto;
+ repeat rewrite NPEmul_correct; simpl; split;
+ try rewrite (morph1 CRmorph); ring.
+ intros p1 _ p2 _ e2; generalize (isIn_correct l (PEsub p1 p2) e2);
+ case (isIn (PEsub p1 p2) e2); auto; intros p;
+ [intros Hp1; rewrite Hp1 | idtac];
+ simpl left; simpl common; simpl right; auto;
+ repeat rewrite NPEmul_correct; simpl; split;
+ try rewrite (morph1 CRmorph); ring.
+ intros p1 Hp1 p2 Hp2 e2.
+ repeat rewrite NPEmul_correct; simpl; split.
+ case (Hp1 e2); case (Hp2 (right (split p1 e2))).
+ intros tmp1 _ tmp2 _; rewrite tmp1; rewrite tmp2.
+ repeat rewrite NPEmul_correct; simpl.
+ ring.
+ case (Hp1 e2); case (Hp2 (right (split p1 e2))).
+ intros _ tmp1 _ tmp2; rewrite tmp2;
+ repeat rewrite NPEmul_correct; simpl.
+ rewrite tmp1.
+ repeat rewrite NPEmul_correct; simpl.
+ ring.
+ intros p _ e2; generalize (isIn_correct l (PEopp p) e2);
+ case (isIn (PEopp p) e2); auto; intros p1;
+ [intros Hp1; rewrite Hp1 | idtac];
+ simpl left; simpl common; simpl right; auto;
+ repeat rewrite NPEmul_correct; simpl; split;
+ try rewrite (morph1 CRmorph); ring.
+Qed.
+
+
+Theorem split_correct_l: forall l e1 e2,
+ NPEeval l e1 == NPEeval l (NPEmul (left (split e1 e2))
+ (common (split e1 e2))).
+Proof.
+intros l e1 e2; case (split_correct l e1 e2); auto.
+Qed.
+
+Theorem split_correct_r: forall l e1 e2,
+ NPEeval l e2 == NPEeval l (NPEmul (right (split e1 e2))
+ (common (split e1 e2))).
+Proof.
+intros l e1 e2; case (split_correct l e1 e2); auto.
+Qed.
+
+Fixpoint Fnorm (e : FExpr) : linear :=
+ match e with
+ | FEc c => mk_linear (PEc c) (PEc cI) nil
+ | FEX x => mk_linear (PEX C x) (PEc cI) nil
+ | FEadd e1 e2 =>
+ let x := Fnorm e1 in
+ let y := Fnorm e2 in
+ let s := split (denum x) (denum y) in
+ mk_linear
+ (NPEadd (NPEmul (num x) (right s)) (NPEmul (num y) (left s)))
+ (NPEmul (left s) (NPEmul (right s) (common s)))
+ (condition x ++ condition y)
+
+ | FEsub e1 e2 =>
+ let x := Fnorm e1 in
+ let y := Fnorm e2 in
+ let s := split (denum x) (denum y) in
+ mk_linear
+ (NPEsub (NPEmul (num x) (right s)) (NPEmul (num y) (left s)))
+ (NPEmul (left s) (NPEmul (right s) (common s)))
+ (condition x ++ condition y)
+ | FEmul e1 e2 =>
+ let x := Fnorm e1 in
+ let y := Fnorm e2 in
+ mk_linear (NPEmul (num x) (num y))
+ (NPEmul (denum x) (denum y))
+ (condition x ++ condition y)
+ | FEopp e1 =>
+ let x := Fnorm e1 in
+ mk_linear (NPEopp (num x)) (denum x) (condition x)
+ | FEinv e1 =>
+ let x := Fnorm e1 in
+ mk_linear (denum x) (num x) (num x :: condition x)
+ | FEdiv e1 e2 =>
+ let x := Fnorm e1 in
+ let y := Fnorm e2 in
+ mk_linear (NPEmul (num x) (denum y))
+ (NPEmul (denum x) (num y))
+ (num y :: condition x ++ condition y)
+ end.
+
+
+(* Example *)
+(*
+Eval compute
+ in (Fnorm
+ (FEdiv
+ (FEc cI)
+ (FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))).
+*)
+
+Theorem Pcond_Fnorm:
+ forall l e,
+ PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0.
+intros l e; elim e.
+ simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO.
+ simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO.
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl condition in Hcond.
+ simpl denum in |- *.
+ rewrite NPEmul_correct in |- *.
+ simpl in |- *.
+ apply field_is_integral_domain.
+ intros HH; case Hrec1; auto.
+ apply PCond_app_inv_l with (1 := Hcond).
+ rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ intros HH; case Hrec2; auto.
+ apply PCond_app_inv_r with (1 := Hcond).
+ rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl condition in Hcond.
+ simpl denum in |- *.
+ rewrite NPEmul_correct in |- *.
+ simpl in |- *.
+ apply field_is_integral_domain.
+ intros HH; case Hrec1; auto.
+ apply PCond_app_inv_l with (1 := Hcond).
+ rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
+ rewrite NPEmul_correct; simpl; rewrite HH; ring.
+ intros HH; case Hrec2; auto.
+ apply PCond_app_inv_r with (1 := Hcond).
+ rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl condition in Hcond.
+ simpl denum in |- *.
+ rewrite NPEmul_correct in |- *.
+ simpl in |- *.
+ apply field_is_integral_domain.
+ apply Hrec1.
+ apply PCond_app_inv_l with (1 := Hcond).
+ apply Hrec2.
+ apply PCond_app_inv_r with (1 := Hcond).
+ intros e1 Hrec1 Hcond.
+ simpl condition in Hcond.
+ simpl denum in |- *.
+ auto.
+ intros e1 Hrec1 Hcond.
+ simpl condition in Hcond.
+ simpl denum in |- *.
+ apply PCond_cons_inv_l with (1:=Hcond).
+ intros e1 Hrec1 e2 Hrec2 Hcond.
+ simpl condition in Hcond.
+ simpl denum in |- *.
+ rewrite NPEmul_correct in |- *.
+ simpl in |- *.
+ apply field_is_integral_domain.
+ apply Hrec1.
+ specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1.
+ apply PCond_app_inv_l with (1 := Hcond1).
+ apply PCond_cons_inv_l with (1:=Hcond).
+Qed.
+Hint Resolve Pcond_Fnorm.
+
+
+(***************************************************************************
+
+ Main theorem
+
+ ***************************************************************************)
+
+Theorem Fnorm_FEeval_PEeval:
+ forall l fe,
+ PCond l (condition (Fnorm fe)) ->
+ FEeval l fe == NPEeval l (num (Fnorm fe)) / NPEeval l (denum (Fnorm fe)).
+Proof.
+intros l fe; elim fe; simpl.
+intros c H; rewrite CRmorph.(morph1); apply rdiv1.
+intros p H; rewrite CRmorph.(morph1); apply rdiv1.
+intros e1 He1 e2 He2 HH.
+assert (HH1: PCond l (condition (Fnorm e1))).
+apply PCond_app_inv_l with ( 1 := HH ).
+assert (HH2: PCond l (condition (Fnorm e2))).
+apply PCond_app_inv_r with ( 1 := HH ).
+rewrite (He1 HH1); rewrite (He2 HH2).
+rewrite NPEadd_correct; simpl.
+repeat rewrite NPEmul_correct; simpl.
+generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
+ (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
+repeat rewrite NPEmul_correct; simpl.
+intros U1 U2; rewrite U1; rewrite U2.
+apply rdiv2b; auto.
+ rewrite <- U1; auto.
+ rewrite <- U2; auto.
+
+intros e1 He1 e2 He2 HH.
+assert (HH1: PCond l (condition (Fnorm e1))).
+apply PCond_app_inv_l with ( 1 := HH ).
+assert (HH2: PCond l (condition (Fnorm e2))).
+apply PCond_app_inv_r with ( 1 := HH ).
+rewrite (He1 HH1); rewrite (He2 HH2).
+rewrite NPEsub_correct; simpl.
+repeat rewrite NPEmul_correct; simpl.
+generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
+ (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
+repeat rewrite NPEmul_correct; simpl.
+intros U1 U2; rewrite U1; rewrite U2.
+apply rdiv3b; auto.
+ rewrite <- U1; auto.
+ rewrite <- U2; auto.
+
+intros e1 He1 e2 He2 HH.
+assert (HH1: PCond l (condition (Fnorm e1))).
+apply PCond_app_inv_l with ( 1 := HH ).
+assert (HH2: PCond l (condition (Fnorm e2))).
+apply PCond_app_inv_r with ( 1 := HH ).
+rewrite (He1 HH1); rewrite (He2 HH2).
+repeat rewrite NPEmul_correct; simpl.
+apply rdiv4; auto.
+
+intros e1 He1 HH.
+rewrite NPEopp_correct; simpl; rewrite (He1 HH); apply rdiv5; auto.
+
+intros e1 He1 HH.
+assert (HH1: PCond l (condition (Fnorm e1))).
+apply PCond_cons_inv_r with ( 1 := HH ).
+rewrite (He1 HH1); apply rdiv6; auto.
+apply PCond_cons_inv_l with ( 1 := HH ).
+
+intros e1 He1 e2 He2 HH.
+assert (HH1: PCond l (condition (Fnorm e1))).
+apply PCond_app_inv_l with (condition (Fnorm e2)).
+apply PCond_cons_inv_r with ( 1 := HH ).
+assert (HH2: PCond l (condition (Fnorm e2))).
+apply PCond_app_inv_r with (condition (Fnorm e1)).
+apply PCond_cons_inv_r with ( 1 := HH ).
+rewrite (He1 HH1); rewrite (He2 HH2).
+repeat rewrite NPEmul_correct;simpl.
+apply rdiv7; auto.
+apply PCond_cons_inv_l with ( 1 := HH ).
+Qed.
+
+Theorem Fnorm_crossproduct:
+ forall l fe1 fe2,
+ let nfe1 := Fnorm fe1 in
+ let nfe2 := Fnorm fe2 in
+ NPEeval l (PEmul (num nfe1) (denum nfe2)) ==
+ NPEeval l (PEmul (num nfe2) (denum nfe1)) ->
+ PCond l (condition nfe1 ++ condition nfe2) ->
+ FEeval l fe1 == FEeval l fe2.
+intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2.
+rewrite Fnorm_FEeval_PEeval in |- *.
+ apply PCond_app_inv_l with (1 := Hcond).
+ rewrite Fnorm_FEeval_PEeval in |- *.
+ apply PCond_app_inv_r with (1 := Hcond).
+ apply cross_product_eq; trivial.
+ apply Pcond_Fnorm.
+ apply PCond_app_inv_l with (1 := Hcond).
+ apply Pcond_Fnorm.
+ apply PCond_app_inv_r with (1 := Hcond).
+Qed.
+
+(* Correctness lemmas of reflexive tactics *)
+
+Theorem Fnorm_correct:
+ forall l fe,
+ Peq ceqb (Nnorm (num (Fnorm fe))) (Pc cO) = true ->
+ PCond l (condition (Fnorm fe)) -> FEeval l fe == 0.
+intros l fe H H1;
+ apply eq_trans with (1 := Fnorm_FEeval_PEeval l fe H1).
+apply rdiv8; auto.
+transitivity (NPEeval l (PEc cO)); auto.
+apply (ring_correct Rsth Reqe ARth CRmorph); auto.
+simpl; apply (morph0 CRmorph); auto.
+Qed.
+
+(* simplify a field expression into a fraction *)
+(* TODO: simplify when den is constant... *)
+Definition display_linear l num den :=
+ NPphi_dev l num / NPphi_dev l den.
+
+Theorem Pphi_dev_div_ok:
+ forall l fe nfe,
+ Fnorm fe = nfe ->
+ PCond l (condition nfe) ->
+ FEeval l fe == display_linear l (Nnorm (num nfe)) (Nnorm (denum nfe)).
+Proof.
+ intros l fe nfe eq_nfe H; subst nfe.
+ apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H).
+ unfold display_linear; apply SRdiv_ext;
+ apply (Pphi_dev_ok Rsth Reqe ARth CRmorph); reflexivity.
+Qed.
+
+(* solving a field equation *)
+Theorem Field_correct :
+ forall l fe1 fe2,
+ forall nfe1, Fnorm fe1 = nfe1 ->
+ forall nfe2, Fnorm fe2 = nfe2 ->
+ Peq ceqb (Nnorm (PEmul (num nfe1) (denum nfe2)))
+ (Nnorm (PEmul (num nfe2) (denum nfe1))) = true ->
+ PCond l (condition nfe1 ++ condition nfe2) ->
+ FEeval l fe1 == FEeval l fe2.
+Proof.
+intros l fe1 fe2 nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2.
+apply Fnorm_crossproduct; trivial.
+apply (ring_correct Rsth Reqe ARth CRmorph); trivial.
+Qed.
+
+(* simplify a field equation : generate the crossproduct and simplify
+ polynomials *)
+Theorem Field_simplify_eq_old_correct :
+ forall l fe1 fe2 nfe1 nfe2,
+ Fnorm fe1 = nfe1 ->
+ Fnorm fe2 = nfe2 ->
+ NPphi_dev l (Nnorm (PEmul (num nfe1) (denum nfe2))) ==
+ NPphi_dev l (Nnorm (PEmul (num nfe2) (denum nfe1))) ->
+ PCond l (condition nfe1 ++ condition nfe2) ->
+ FEeval l fe1 == FEeval l fe2.
+Proof.
+intros l fe1 fe2 nfe1 nfe2 eq1 eq2 Hcrossprod Hcond; subst nfe1 nfe2.
+apply Fnorm_crossproduct; trivial.
+rewrite (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in |- *.
+rewrite (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in |- *.
+trivial.
+Qed.
+
+Theorem Field_simplify_eq_correct :
+ forall l fe1 fe2,
+ forall nfe1, Fnorm fe1 = nfe1 ->
+ forall nfe2, Fnorm fe2 = nfe2 ->
+ forall den, split (denum nfe1) (denum nfe2) = den ->
+ NPphi_dev l (Nnorm (PEmul (num nfe1) (right den))) ==
+ NPphi_dev l (Nnorm (PEmul (num nfe2) (left den))) ->
+ PCond l (condition nfe1 ++ condition nfe2) ->
+ FEeval l fe1 == FEeval l fe2.
+Proof.
+intros l fe1 fe2 nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
+ subst nfe1 nfe2 den.
+apply Fnorm_crossproduct; trivial.
+simpl in |- *.
+elim (split_correct l (denum (Fnorm fe1)) (denum (Fnorm fe2))); intros.
+rewrite H in |- *.
+rewrite H0 in |- *.
+clear H H0.
+rewrite NPEmul_correct in |- *.
+rewrite NPEmul_correct in |- *.
+simpl in |- *.
+repeat rewrite (ARmul_assoc ARth) in |- *.
+rewrite <- (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in Hcrossprod.
+rewrite <- (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in Hcrossprod.
+simpl in Hcrossprod.
+rewrite Hcrossprod in |- *.
+reflexivity.
+Qed.
+
+Section Fcons_impl.
+
+Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C).
+
+Hypothesis PCond_fcons_inv : forall l a l1,
+ PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+
+Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) :=
+ match l with
+ | nil => m
+ | cons a l1 => Fcons a (Fapp l1 m)
+ end.
+
+Lemma fcons_correct : forall l l1,
+ PCond l (Fapp l1 nil) -> PCond l l1.
+induction l1; simpl in |- *; intros.
+ trivial.
+ elim PCond_fcons_inv with (1 := H); intros.
+ destruct l1; auto.
+Qed.
+
+End Fcons_impl.
+
+Section Fcons_simpl.
+
+(* Some general simpifications of the condition: eliminate duplicates,
+ split multiplications *)
+
+Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
+ match l with
+ nil => cons e nil
+ | cons a l1 => if PExpr_eq e a then l else cons a (Fcons e l1)
+ end.
+
+Theorem PFcons_fcons_inv:
+ forall l a l1, PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+intros l a l1; elim l1; simpl Fcons; auto.
+simpl; auto.
+intros a0 l0.
+generalize (PExpr_eq_semi_correct l a a0); case (PExpr_eq a a0).
+intros H H0 H1; split; auto.
+rewrite H; auto.
+generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
+intros H H0 H1;
+ assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)).
+split.
+generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
+apply H0.
+generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto.
+generalize Hp; case l0; simpl; intuition.
+Qed.
+
+(* equality of normal forms rather than syntactic equality *)
+Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
+ match l with
+ nil => cons e nil
+ | cons a l1 =>
+ if Peq ceqb (Nnorm e) (Nnorm a) then l else cons a (Fcons0 e l1)
+ end.
+
+Theorem PFcons0_fcons_inv:
+ forall l a l1, PCond l (Fcons0 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+intros l a l1; elim l1; simpl Fcons0; auto.
+simpl; auto.
+intros a0 l0.
+generalize (ring_correct Rsth Reqe ARth CRmorph l a a0);
+ case (Peq ceqb (Nnorm a) (Nnorm a0)).
+intros H H0 H1; split; auto.
+rewrite H; auto.
+generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
+intros H H0 H1;
+ assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)).
+split.
+generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
+apply H0.
+generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto.
+generalize Hp; case l0; simpl; intuition.
+Qed.
+
+Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
+ match e with
+ PEmul e1 e2 => Fcons00 e1 (Fcons00 e2 l)
+ | _ => Fcons0 e l
+ end.
+
+Theorem PFcons00_fcons_inv:
+ forall l a l1, PCond l (Fcons00 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
+ intros p H p0 H0 l1 H1.
+ simpl in H1.
+ case (H _ H1); intros H2 H3.
+ case (H0 _ H3); intros H4 H5; split; auto.
+ simpl in |- *.
+ apply field_is_integral_domain; trivial.
+Qed.
+
+
+Definition Pcond_simpl_gen :=
+ fcons_correct _ PFcons00_fcons_inv.
+
+
+(* Specific case when the equality test of coefs is complete w.r.t. the
+ field equality: non-zero coefs can be eliminated, and opposite can
+ be simplified (if -1 <> 0) *)
+
+Hypothesis ceqb_complete : forall c1 c2, phi c1 == phi c2 -> ceqb c1 c2 = true.
+
+Lemma ceqb_rect_complete : forall c1 c2 (A:Type) (x y:A) (P:A->Type),
+ (phi c1 == phi c2 -> P x) ->
+ (~ phi c1 == phi c2 -> P y) ->
+ P (if ceqb c1 c2 then x else y).
+Proof.
+intros.
+generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
+generalize (@ceqb_complete c1 c2).
+case (c1 ?=! c2); auto; intros.
+apply X0.
+red in |- *; intro.
+absurd (false = true); auto; discriminate.
+Qed.
+
+Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
+ match e with
+ PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l)
+ | PEopp e => if ceqb (copp cI) cO then absurd_PCond else Fcons1 e l
+ | PEc c => if ceqb c cO then absurd_PCond else l
+ | _ => Fcons0 e l
+ end.
+
+Theorem PFcons1_fcons_inv:
+ forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
+ simpl in |- *; intros c l1.
+ apply ceqb_rect_complete; intros.
+ elim (@absurd_PCond_bottom l H0).
+ split; trivial.
+ rewrite <- (morph0 CRmorph) in |- *; trivial.
+ intros p H p0 H0 l1 H1.
+ simpl in H1.
+ case (H _ H1); intros H2 H3.
+ case (H0 _ H3); intros H4 H5; split; auto.
+ simpl in |- *.
+ apply field_is_integral_domain; trivial.
+ simpl in |- *; intros p H l1.
+ apply ceqb_rect_complete; intros.
+ elim (@absurd_PCond_bottom l H1).
+ destruct (H _ H1).
+ split; trivial.
+ apply ropp_neq_0; trivial.
+ rewrite (morph_opp CRmorph) in H0.
+ rewrite (morph1 CRmorph) in H0.
+ rewrite (morph0 CRmorph) in H0.
+ trivial.
+Qed.
+
+Definition Fcons2 e l := Fcons1 (PExpr_simp e) l.
+
+Theorem PFcons2_fcons_inv:
+ forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
+unfold Fcons2 in |- *; intros l a l1 H; split;
+ case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto.
+intros H1 H2 H3; case H1.
+transitivity (NPEeval l a); trivial.
+apply PExpr_simp_correct.
+Qed.
+
+Definition Pcond_simpl_complete :=
+ fcons_correct _ PFcons2_fcons_inv.
+
+End Fcons_simpl.
+
+Let Mpc := MPcond_map cO cI cadd cmul csub copp ceqb.
+Let Mp := MPcond_dev rO rI radd rmul req cO cI ceqb phi.
+Let Subst := PNSubstL cO cI cadd cmul ceqb.
+
+(* simplification + rewriting *)
+Theorem Field_subst_correct :
+forall l ul fe m n,
+ PCond l (Fapp Fcons00 (condition (Fnorm fe)) nil) ->
+ Mp (Mpc ul) l ->
+ Peq ceqb (Subst (Nnorm (num (Fnorm fe))) (Mpc ul) m n) (Pc cO) = true ->
+ FEeval l fe == 0.
+intros l ul fe m n H H1 H2.
+assert (H3 := (Pcond_simpl_gen _ _ H)).
+apply eq_trans with (1 := Fnorm_FEeval_PEeval l fe
+ (Pcond_simpl_gen _ _ H)).
+apply rdiv8; auto.
+rewrite (PNSubstL_dev_ok Rsth Reqe ARth CRmorph m n
+ _ (num (Fnorm fe)) l H1).
+rewrite <-(Ring_polynom.Pphi_Pphi_dev Rsth Reqe ARth CRmorph).
+rewrite (fun x => Peq_ok Rsth Reqe CRmorph x (Pc cO)); auto.
+simpl; apply (morph0 CRmorph); auto.
+Qed.
+
+
+End AlmostField.
+
+Section FieldAndSemiField.
+
+ Record field_theory : Prop := mk_field {
+ F_R : ring_theory rO rI radd rmul rsub ropp req;
+ F_1_neq_0 : ~ 1 == 0;
+ Fdiv_def : forall p q, p / q == p * / q;
+ Finv_l : forall p, ~ p == 0 -> / p * p == 1
+ }.
+
+ Definition F2AF f :=
+ mk_afield
+ (Rth_ARth Rsth Reqe f.(F_R)) f.(F_1_neq_0) f.(Fdiv_def) f.(Finv_l).
+
+ Record semi_field_theory : Prop := mk_sfield {
+ SF_SR : semi_ring_theory rO rI radd rmul req;
+ SF_1_neq_0 : ~ 1 == 0;
+ SFdiv_def : forall p q, p / q == p * / q;
+ SFinv_l : forall p, ~ p == 0 -> / p * p == 1
+ }.
+
+End FieldAndSemiField.
+
+End MakeFieldPol.
+
+ Definition SF2AF R (rO rI:R) radd rmul rdiv rinv req Rsth
+ (sf:semi_field_theory rO rI radd rmul rdiv rinv req) :=
+ mk_afield _ _
+ (SRth_ARth Rsth sf.(SF_SR))
+ sf.(SF_1_neq_0)
+ sf.(SFdiv_def)
+ sf.(SFinv_l).
+
+
+Section Complete.
+ Variable R : Type.
+ Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
+ Variable (rdiv : R -> R -> R) (rinv : R -> R).
+ Variable req : R -> R -> Prop.
+ Notation "0" := rO. Notation "1" := rI.
+ Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
+ Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
+ Notation "x / y " := (rdiv x y). Notation "/ x" := (rinv x).
+ Notation "x == y" := (req x y) (at level 70, no associativity).
+ Variable Rsth : Setoid_Theory R req.
+ Add Setoid R req Rsth as R_setoid3.
+ Variable Reqe : ring_eq_ext radd rmul ropp req.
+ Add Morphism radd : radd_ext3. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext3. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext3. exact (Ropp_ext Reqe). Qed.
+
+Section AlmostField.
+
+ Variable AFth : almost_field_theory rO rI radd rmul rsub ropp rdiv rinv req.
+ Let ARth := AFth.(AF_AR).
+ Let rI_neq_rO := AFth.(AF_1_neq_0).
+ Let rdiv_def := AFth.(AFdiv_def).
+ Let rinv_l := AFth.(AFinv_l).
+
+Hypothesis S_inj : forall x y, 1+x==1+y -> x==y.
+
+Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
+
+Lemma add_inj_r : forall p x y,
+ gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y.
+intros p x y.
+elim p using Pind; simpl in |- *; intros.
+ apply S_inj; trivial.
+ apply H.
+ apply S_inj.
+ repeat rewrite (ARadd_assoc ARth) in |- *.
+ rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth) in |- *; trivial.
+Qed.
+
+Lemma gen_phiPOS_inj : forall x y,
+ gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y ->
+ x = y.
+intros x y.
+repeat rewrite <- (same_gen Rsth Reqe ARth) in |- *.
+ElimPcompare x y; intro.
+ intros.
+ apply Pcompare_Eq_eq; trivial.
+ intro.
+ elim gen_phiPOS_not_0 with (y - x)%positive.
+ apply add_inj_r with x.
+ symmetry in |- *.
+ rewrite (ARadd_0_r Rsth ARth) in |- *.
+ rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *.
+ rewrite Pplus_minus in |- *; trivial.
+ change Eq with (CompOpp Eq) in |- *.
+ rewrite <- Pcompare_antisym in |- *; trivial.
+ rewrite H in |- *; trivial.
+ intro.
+ elim gen_phiPOS_not_0 with (x - y)%positive.
+ apply add_inj_r with y.
+ rewrite (ARadd_0_r Rsth ARth) in |- *.
+ rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *.
+ rewrite Pplus_minus in |- *; trivial.
+Qed.
+
+
+Lemma gen_phiN_inj : forall x y,
+ gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
+ x = y.
+destruct x; destruct y; simpl in |- *; intros; trivial.
+ elim gen_phiPOS_not_0 with p.
+ symmetry in |- *.
+ rewrite (same_gen Rsth Reqe ARth) in |- *; trivial.
+ elim gen_phiPOS_not_0 with p.
+ rewrite (same_gen Rsth Reqe ARth) in |- *; trivial.
+ rewrite gen_phiPOS_inj with (1 := H) in |- *; trivial.
+Qed.
+
+Lemma gen_phiN_complete : forall x y,
+ gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
+ Neq_bool x y = true.
+intros.
+ replace y with x.
+ unfold Neq_bool in |- *.
+ rewrite Ncompare_refl in |- *; trivial.
+ apply gen_phiN_inj; trivial.
+Qed.
+
+End AlmostField.
+
+Section Field.
+
+ Variable Fth : field_theory rO rI radd rmul rsub ropp rdiv rinv req.
+ Let Rth := Fth.(F_R).
+ Let rI_neq_rO := Fth.(F_1_neq_0).
+ Let rdiv_def := Fth.(Fdiv_def).
+ Let rinv_l := Fth.(Finv_l).
+ Let AFth := F2AF Rsth Reqe Fth.
+ Let ARth := Rth_ARth Rsth Reqe Rth.
+
+Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y.
+intros.
+transitivity (x + (1 + - (1))).
+ rewrite (Ropp_def Rth) in |- *.
+ symmetry in |- *.
+ apply (ARadd_0_r Rsth ARth).
+ transitivity (y + (1 + - (1))).
+ repeat rewrite <- (ARplus_assoc ARth) in |- *.
+ repeat rewrite (ARadd_assoc ARth) in |- *.
+ apply (Radd_ext Reqe).
+ repeat rewrite <- (ARadd_comm ARth 1) in |- *.
+ trivial.
+ reflexivity.
+ rewrite (Ropp_def Rth) in |- *.
+ apply (ARadd_0_r Rsth ARth).
+Qed.
+
+
+ Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
+
+Let gen_phiPOS_inject :=
+ gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0.
+
+Lemma gen_phiPOS_discr_sgn : forall x y,
+ ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y.
+red in |- *; intros.
+apply gen_phiPOS_not_0 with (y + x)%positive.
+rewrite (ARgen_phiPOS_add Rsth Reqe ARth) in |- *.
+transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y).
+ apply (Radd_ext Reqe); trivial.
+ reflexivity.
+ rewrite (same_gen Rsth Reqe ARth) in |- *.
+ rewrite (same_gen Rsth Reqe ARth) in |- *.
+ trivial.
+ apply (Ropp_def Rth).
+Qed.
+
+Lemma gen_phiZ_inj : forall x y,
+ gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
+ x = y.
+destruct x; destruct y; simpl in |- *; intros.
+ trivial.
+ elim gen_phiPOS_not_0 with p.
+ rewrite (same_gen Rsth Reqe ARth) in |- *.
+ symmetry in |- *; trivial.
+ elim gen_phiPOS_not_0 with p.
+ rewrite (same_gen Rsth Reqe ARth) in |- *.
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
+ rewrite <- H in |- *.
+ apply (ARopp_zero Rsth Reqe ARth).
+ elim gen_phiPOS_not_0 with p.
+ rewrite (same_gen Rsth Reqe ARth) in |- *.
+ trivial.
+ rewrite gen_phiPOS_inject with (1 := H) in |- *; trivial.
+ elim gen_phiPOS_discr_sgn with (1 := H).
+ elim gen_phiPOS_not_0 with p.
+ rewrite (same_gen Rsth Reqe ARth) in |- *.
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
+ rewrite H in |- *.
+ apply (ARopp_zero Rsth Reqe ARth).
+ elim gen_phiPOS_discr_sgn with p0 p.
+ symmetry in |- *; trivial.
+ replace p0 with p; trivial.
+ apply gen_phiPOS_inject.
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)) in |- *.
+ rewrite H in |- *; trivial.
+ reflexivity.
+Qed.
+
+Lemma gen_phiZ_complete : forall x y,
+ gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
+ Zeq_bool x y = true.
+intros.
+ replace y with x.
+ unfold Zeq_bool in |- *.
+ rewrite Zcompare_refl in |- *; trivial.
+ apply gen_phiZ_inj; trivial.
+Qed.
+
+End Field.
+
+End Complete.
+