summaryrefslogtreecommitdiff
path: root/contrib/micromega/RingMicromega.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/micromega/RingMicromega.v')
-rw-r--r--contrib/micromega/RingMicromega.v779
1 files changed, 0 insertions, 779 deletions
diff --git a/contrib/micromega/RingMicromega.v b/contrib/micromega/RingMicromega.v
deleted file mode 100644
index 6885b82c..00000000
--- a/contrib/micromega/RingMicromega.v
+++ /dev/null
@@ -1,779 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* Evgeny Makarov, INRIA, 2007 *)
-(************************************************************************)
-
-Require Import NArith.
-Require Import Relation_Definitions.
-Require Import Setoid.
-(*****)
-Require Import Env.
-Require Import EnvRing.
-(*****)
-Require Import List.
-Require Import Bool.
-Require Import OrderedRing.
-Require Import Refl.
-
-
-Set Implicit Arguments.
-
-Import OrderedRingSyntax.
-
-Section Micromega.
-
-(* Assume we have a strict(ly?) ordered ring *)
-
-Variable R : Type.
-Variables rO rI : R.
-Variables rplus rtimes rminus: R -> R -> R.
-Variable ropp : R -> R.
-Variables req rle rlt : R -> R -> Prop.
-
-Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
-
-Notation "0" := rO.
-Notation "1" := rI.
-Notation "x + y" := (rplus x y).
-Notation "x * y " := (rtimes x y).
-Notation "x - y " := (rminus x y).
-Notation "- x" := (ropp x).
-Notation "x == y" := (req x y).
-Notation "x ~= y" := (~ req x y).
-Notation "x <= y" := (rle x y).
-Notation "x < y" := (rlt x y).
-
-(* Assume we have a type of coefficients C and a morphism from C to R *)
-
-Variable C : Type.
-Variables cO cI : C.
-Variables cplus ctimes cminus: C -> C -> C.
-Variable copp : C -> C.
-Variables ceqb cleb : C -> C -> bool.
-Variable phi : C -> R.
-
-(* Power coefficients *)
-Variable E : Set. (* the type of exponents *)
-Variable pow_phi : N -> E.
-Variable rpow : R -> E -> R.
-
-Notation "[ x ]" := (phi x).
-Notation "x [=] y" := (ceqb x y).
-Notation "x [<=] y" := (cleb x y).
-
-(* Let's collect all hypotheses in addition to the ordered ring axioms into
-one structure *)
-
-Record SORaddon := mk_SOR_addon {
- SORrm : ring_morph 0 1 rplus rtimes rminus ropp req cO cI cplus ctimes cminus copp ceqb phi;
- SORpower : power_theory rI rtimes req pow_phi rpow;
- SORcneqb_morph : forall x y : C, x [=] y = false -> [x] ~= [y];
- SORcleb_morph : forall x y : C, x [<=] y = true -> [x] <= [y]
-}.
-
-Variable addon : SORaddon.
-
-Add Relation R req
- reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _ )
- symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _ )
- transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _ )
-as micomega_sor_setoid.
-
-Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
-Proof.
-exact sor.(SORplus_wd).
-Qed.
-Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
-Proof.
-exact sor.(SORtimes_wd).
-Qed.
-Add Morphism ropp with signature req ==> req as ropp_morph.
-Proof.
-exact sor.(SORopp_wd).
-Qed.
-Add Morphism rle with signature req ==> req ==> iff as rle_morph.
-Proof.
- exact sor.(SORle_wd).
-Qed.
-Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
-Proof.
- exact sor.(SORlt_wd).
-Qed.
-
-Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
-Proof.
- exact (rminus_morph sor). (* We already proved that minus is a morphism in OrderedRing.v *)
-Qed.
-
-Definition cneqb (x y : C) := negb (ceqb x y).
-Definition cltb (x y : C) := (cleb x y) && (cneqb x y).
-
-Notation "x [~=] y" := (cneqb x y).
-Notation "x [<] y" := (cltb x y).
-
-Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption.
-Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption.
-Ltac le_elim H := rewrite (Rle_lt_eq sor) in H; destruct H as [H | H].
-
-Lemma cleb_sound : forall x y : C, x [<=] y = true -> [x] <= [y].
-Proof.
- exact addon.(SORcleb_morph).
-Qed.
-
-Lemma cneqb_sound : forall x y : C, x [~=] y = true -> [x] ~= [y].
-Proof.
-intros x y H1. apply addon.(SORcneqb_morph). unfold cneqb, negb in H1.
-destruct (ceqb x y); now try discriminate.
-Qed.
-
-Lemma cltb_sound : forall x y : C, x [<] y = true -> [x] < [y].
-Proof.
-intros x y H. unfold cltb in H. apply andb_prop in H. destruct H as [H1 H2].
-apply cleb_sound in H1. apply cneqb_sound in H2. apply <- (Rlt_le_neq sor). now split.
-Qed.
-
-(* Begin Micromega *)
-
-Definition PExprC := PExpr C. (* arbitrary expressions built from +, *, - *)
-Definition PolC := Pol C. (* polynomials in generalized Horner form, defined in Ring_polynom or EnvRing *)
-(*****)
-(*Definition Env := Env R. (* For interpreting PExprC *)*)
-Definition PolEnv := Env R. (* For interpreting PolC *)
-(*****)
-(*Definition Env := list R.
-Definition PolEnv := list R.*)
-(*****)
-
-(* What benefit do we get, in the case of EnvRing, from defining eval_pexpr
-explicitely below and not through PEeval, as the following lemma says? The
-function eval_pexpr seems to be a straightforward special case of PEeval
-when the environment (i.e., the second last argument of PEeval) of type
-off_map (which is (option positive * t)) is (None, env). *)
-
-(*****)
-Fixpoint eval_pexpr (l : PolEnv) (pe : PExprC) {struct pe} : R :=
-match pe with
-| PEc c => phi c
-| PEX j => l j
-| PEadd pe1 pe2 => (eval_pexpr l pe1) + (eval_pexpr l pe2)
-| PEsub pe1 pe2 => (eval_pexpr l pe1) - (eval_pexpr l pe2)
-| PEmul pe1 pe2 => (eval_pexpr l pe1) * (eval_pexpr l pe2)
-| PEopp pe1 => - (eval_pexpr l pe1)
-| PEpow pe1 n => rpow (eval_pexpr l pe1) (pow_phi n)
-end.
-
-
-Lemma eval_pexpr_simpl : forall (l : PolEnv) (pe : PExprC),
- eval_pexpr l pe =
- match pe with
- | PEc c => phi c
- | PEX j => l j
- | PEadd pe1 pe2 => (eval_pexpr l pe1) + (eval_pexpr l pe2)
- | PEsub pe1 pe2 => (eval_pexpr l pe1) - (eval_pexpr l pe2)
- | PEmul pe1 pe2 => (eval_pexpr l pe1) * (eval_pexpr l pe2)
- | PEopp pe1 => - (eval_pexpr l pe1)
- | PEpow pe1 n => rpow (eval_pexpr l pe1) (pow_phi n)
- end.
-Proof.
- intros ; destruct pe ; reflexivity.
-Qed.
-
-
-
-Lemma eval_pexpr_PEeval : forall (env : PolEnv) (pe : PExprC),
- eval_pexpr env pe =
- PEeval rplus rtimes rminus ropp phi pow_phi rpow env pe.
-Proof.
-induction pe; simpl; intros.
-reflexivity.
-reflexivity.
-rewrite <- IHpe1; rewrite <- IHpe2; reflexivity.
-rewrite <- IHpe1; rewrite <- IHpe2; reflexivity.
-rewrite <- IHpe1; rewrite <- IHpe2; reflexivity.
-rewrite <- IHpe; reflexivity.
-rewrite <- IHpe; reflexivity.
-Qed.
-(*****)
-(*Definition eval_pexpr : Env -> PExprC -> R :=
- PEeval 0 rplus rtimes rminus ropp phi pow_phi rpow.*)
-(*****)
-
-Inductive Op1 : Set := (* relations with 0 *)
-| Equal (* == 0 *)
-| NonEqual (* ~= 0 *)
-| Strict (* > 0 *)
-| NonStrict (* >= 0 *).
-
-Definition NFormula := (PExprC * Op1)%type. (* normalized formula *)
-
-Definition eval_op1 (o : Op1) : R -> Prop :=
-match o with
-| Equal => fun x => x == 0
-| NonEqual => fun x : R => x ~= 0
-| Strict => fun x : R => 0 < x
-| NonStrict => fun x : R => 0 <= x
-end.
-
-Definition eval_nformula (env : PolEnv) (f : NFormula) : Prop :=
-let (p, op) := f in eval_op1 op (eval_pexpr env p).
-
-
-Definition OpMult (o o' : Op1) : Op1 :=
-match o with
-| Equal => Equal
-| NonStrict => NonStrict (* (OpMult NonStrict Equal) could be defined as Equal *)
-| Strict => o'
-| NonEqual => NonEqual (* does not matter what we return here; see the following lemmas *)
-end.
-
-Definition OpAdd (o o': Op1) : Op1 :=
-match o with
-| Equal => o'
-| NonStrict =>
- match o' with
- | Strict => Strict
- | _ => NonStrict
- end
-| Strict => Strict
-| NonEqual => NonEqual (* does not matter what we return here *)
-end.
-
-Lemma OpMultNonEqual :
- forall o o' : Op1, o <> NonEqual -> o' <> NonEqual -> OpMult o o' <> NonEqual.
-Proof.
-intros o o' H1 H2; destruct o; destruct o'; simpl; try discriminate;
-try (intro H; apply H1; reflexivity);
-try (intro H; apply H2; reflexivity).
-Qed.
-
-Lemma OpAdd_NonEqual :
- forall o o' : Op1, o <> NonEqual -> o' <> NonEqual -> OpAdd o o' <> NonEqual.
-Proof.
-intros o o' H1 H2; destruct o; destruct o'; simpl; try discriminate;
-try (intro H; apply H1; reflexivity);
-try (intro H; apply H2; reflexivity).
-Qed.
-
-Lemma OpMult_sound :
- forall (o o' : Op1) (x y : R), o <> NonEqual -> o' <> NonEqual ->
- eval_op1 o x -> eval_op1 o' y -> eval_op1 (OpMult o o') (x * y).
-Proof.
-unfold eval_op1; destruct o; simpl; intros o' x y H1 H2 H3 H4.
-rewrite H3; now rewrite (Rtimes_0_l sor).
-elimtype False; now apply H1.
-destruct o'.
-rewrite H4; now rewrite (Rtimes_0_r sor).
-elimtype False; now apply H2.
-now apply (Rtimes_pos_pos sor).
-apply (Rtimes_nonneg_nonneg sor); [le_less | assumption].
-destruct o'.
-rewrite H4, (Rtimes_0_r sor); le_equal.
-elimtype False; now apply H2.
-apply (Rtimes_nonneg_nonneg sor); [assumption | le_less].
-now apply (Rtimes_nonneg_nonneg sor).
-Qed.
-
-Lemma OpAdd_sound :
- forall (o o' : Op1) (e e' : R), o <> NonEqual -> o' <> NonEqual ->
- eval_op1 o e -> eval_op1 o' e' -> eval_op1 (OpAdd o o') (e + e').
-Proof.
-unfold eval_op1; destruct o; simpl; intros o' e e' H1 H2 H3 H4.
-destruct o'.
-now rewrite H3, H4, (Rplus_0_l sor).
-elimtype False; now apply H2.
-now rewrite H3, (Rplus_0_l sor).
-now rewrite H3, (Rplus_0_l sor).
-elimtype False; now apply H1.
-destruct o'.
-now rewrite H4, (Rplus_0_r sor).
-elimtype False; now apply H2.
-now apply (Rplus_pos_pos sor).
-now apply (Rplus_pos_nonneg sor).
-destruct o'.
-now rewrite H4, (Rplus_0_r sor).
-elimtype False; now apply H2.
-now apply (Rplus_nonneg_pos sor).
-now apply (Rplus_nonneg_nonneg sor).
-Qed.
-
-(* We consider a monoid whose generators are polynomials from the
-hypotheses of the form (p ~= 0). Thus it follows from the hypotheses that
-every element of the monoid (i.e., arbitrary product of generators) is ~=
-0. Therefore, the square of every element is > 0. *)
-
-Inductive Monoid (l : list NFormula) : PExprC -> Prop :=
-| M_One : Monoid l (PEc cI)
-| M_In : forall p : PExprC, In (p, NonEqual) l -> Monoid l p
-| M_Mult : forall (e1 e2 : PExprC), Monoid l e1 -> Monoid l e2 -> Monoid l (PEmul e1 e2).
-
-(* Do we really need to rely on the intermediate definition of monoid ?
- InC why the restriction NonEqual ?
- Could not we consider the IsIdeal as a IsMult ?
- The same for IsSquare ?
-*)
-
-Inductive Cone (l : list (NFormula)) : PExprC -> Op1 -> Prop :=
-| InC : forall p op, In (p, op) l -> op <> NonEqual -> Cone l p op
-| IsIdeal : forall p, Cone l p Equal -> forall p', Cone l (PEmul p p') Equal
-| IsSquare : forall p, Cone l (PEmul p p) NonStrict
-| IsMonoid : forall p, Monoid l p -> Cone l (PEmul p p) Strict
-| IsMult : forall p op q oq, Cone l p op -> Cone l q oq -> Cone l (PEmul p q) (OpMult op oq)
-| IsAdd : forall p op q oq, Cone l p op -> Cone l q oq -> Cone l (PEadd p q) (OpAdd op oq)
-| IsPos : forall c : C, cltb cO c = true -> Cone l (PEc c) Strict
-| IsZ : Cone l (PEc cO) Equal.
-
-(* As promised, if all hypotheses are true in some environment, then every
-member of the monoid is nonzero in this environment *)
-
-Lemma monoid_nonzero : forall (l : list NFormula) (env : PolEnv),
- (forall f : NFormula, In f l -> eval_nformula env f) ->
- forall p : PExprC, Monoid l p -> eval_pexpr env p ~= 0.
-Proof.
-intros l env H1 p H2. induction H2 as [| f H | e1 e2 H3 IH1 H4 IH2]; simpl.
-rewrite addon.(SORrm).(morph1). apply (Rneq_symm sor). apply (Rneq_0_1 sor).
-apply H1 in H. now simpl in H.
-simpl in IH1, IH2. apply (Rtimes_neq_0 sor). now split.
-Qed.
-
-(* If all members of a cone base are true in some environment, then every
-member of the cone is true as well *)
-
-Lemma cone_true :
- forall (l : list NFormula) (env : PolEnv),
- (forall (f : NFormula), In f l -> eval_nformula env f) ->
- forall (p : PExprC) (op : Op1), Cone l p op ->
- op <> NonEqual /\ eval_nformula env (p, op).
-Proof.
-intros l env H1 p op H2. induction H2; simpl in *.
-split. assumption. apply H1 in H. now unfold eval_nformula in H.
-split. discriminate. destruct IHCone as [_ H3]. rewrite H3. now rewrite (Rtimes_0_l sor).
-split. discriminate. apply (Rtimes_square_nonneg sor).
-split. discriminate. apply <- (Rlt_le_neq sor). split. apply (Rtimes_square_nonneg sor).
-apply (Rneq_symm sor). apply (Rtimes_neq_0 sor). split; now apply monoid_nonzero with l.
-destruct IHCone1 as [IH1 IH2]; destruct IHCone2 as [IH3 IH4].
-split. now apply OpMultNonEqual. now apply OpMult_sound.
-destruct IHCone1 as [IH1 IH2]; destruct IHCone2 as [IH3 IH4].
-split. now apply OpAdd_NonEqual. now apply OpAdd_sound.
-split. discriminate. rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
-split. discriminate. apply addon.(SORrm).(morph0).
-Qed.
-
-(* Every element of a monoid is a product of some generators; therefore,
-to determine an element we can give a list of generators' indices *)
-
-Definition MonoidMember : Set := list nat.
-
-Inductive ConeMember : Type :=
-| S_In : nat -> ConeMember
-| S_Ideal : PExprC -> ConeMember -> ConeMember
-| S_Square : PExprC -> ConeMember
-| S_Monoid : MonoidMember -> ConeMember
-| S_Mult : ConeMember -> ConeMember -> ConeMember
-| S_Add : ConeMember -> ConeMember -> ConeMember
-| S_Pos : C -> ConeMember
-| S_Z : ConeMember.
-
-Definition nformula_times (f f' : NFormula) : NFormula :=
-let (p, op) := f in
- let (p', op') := f' in
- (PEmul p p', OpMult op op').
-
-Definition nformula_plus (f f' : NFormula) : NFormula :=
-let (p, op) := f in
- let (p', op') := f' in
- (PEadd p p', OpAdd op op').
-
-Definition nformula_times_0 (p : PExprC) (f : NFormula) : NFormula :=
-let (q, op) := f in
- match op with
- | Equal => (PEmul q p, Equal)
- | _ => f
- end.
-
-Fixpoint eval_monoid (l : list NFormula) (ns : MonoidMember) {struct ns} : PExprC :=
-match ns with
-| nil => PEc cI
-| n :: ns =>
- let p := match nth n l (PEc cI, NonEqual) with
- | (q, NonEqual) => q
- | _ => PEc cI
- end in
- PEmul p (eval_monoid l ns)
-end.
-
-Theorem eval_monoid_in_monoid :
- forall (l : list NFormula) (ns : MonoidMember), Monoid l (eval_monoid l ns).
-Proof.
-intro l; induction ns; simpl in *.
-constructor.
-apply M_Mult; [| assumption].
-destruct (nth_in_or_default a l (PEc cI, NonEqual)).
-destruct (nth a l (PEc cI, NonEqual)). destruct o; try constructor. assumption.
-rewrite e; simpl. constructor.
-Qed.
-
-(* Provides the cone member from the witness, i.e., ConeMember *)
-Fixpoint eval_cone (l : list NFormula) (cm : ConeMember) {struct cm} : NFormula :=
-match cm with
-| S_In n => match nth n l (PEc cO, Equal) with
- | (_, NonEqual) => (PEc cO, Equal)
- | f => f
- end
-| S_Ideal p cm' => nformula_times_0 p (eval_cone l cm')
-| S_Square p => (PEmul p p, NonStrict)
-| S_Monoid m => let p := eval_monoid l m in (PEmul p p, Strict)
-| S_Mult p q => nformula_times (eval_cone l p) (eval_cone l q)
-| S_Add p q => nformula_plus (eval_cone l p) (eval_cone l q)
-| S_Pos c => if cltb cO c then (PEc c, Strict) else (PEc cO, Equal)
-| S_Z => (PEc cO, Equal)
-end.
-
-Theorem eval_cone_in_cone :
- forall (l : list NFormula) (cm : ConeMember),
- let (p, op) := eval_cone l cm in Cone l p op.
-Proof.
-intros l cm; induction cm; simpl.
-destruct (nth_in_or_default n l (PEc cO, Equal)).
-destruct (nth n l (PEc cO, Equal)). destruct o; try (now apply InC). apply IsZ.
-rewrite e. apply IsZ.
-destruct (eval_cone l cm). destruct o; simpl; try assumption. now apply IsIdeal.
-apply IsSquare.
-apply IsMonoid. apply eval_monoid_in_monoid.
-destruct (eval_cone l cm1). destruct (eval_cone l cm2). unfold nformula_times. now apply IsMult.
-destruct (eval_cone l cm1). destruct (eval_cone l cm2). unfold nformula_plus. now apply IsAdd.
-case_eq (cO [<] c) ; intros ; [apply IsPos ; auto| apply IsZ].
-apply IsZ.
-Qed.
-
-(* (inconsistent_cone_member l p) means (p, op) is in the cone for some op
-(> 0, >= 0, == 0, or ~= 0) and this formula is inconsistent. This fact
-implies that l is inconsistent, as shown by the next lemma. Inconsistency
-of a formula (p, op) can be established by normalizing p and showing that
-it is a constant c for which (c, op) is false. (This is only a sufficient,
-not necessary, condition, of course.) Membership in the cone can be
-verified if we have a certificate. *)
-
-Definition inconsistent_cone_member (l : list NFormula) (p : PExprC) :=
- exists op : Op1, Cone l p op /\
- forall env : PolEnv, ~ eval_op1 op (eval_pexpr env p).
-
-(* If some element of a cone is inconsistent, then the base of the cone
-is also inconsistent *)
-
-Lemma prove_inconsistent :
- forall (l : list NFormula) (p : PExprC),
- inconsistent_cone_member l p -> forall env, make_impl (eval_nformula env) l False.
-Proof.
-intros l p H env.
-destruct H as [o [wit H]].
-apply -> make_conj_impl.
-intro H1. apply H with env.
-pose proof (@cone_true l env) as H2.
-cut (forall f : NFormula, In f l -> eval_nformula env f). intro H3.
-apply (proj2 (H2 H3 p o wit)). intro. now apply make_conj_in.
-Qed.
-
-Definition normalise_pexpr : PExprC -> PolC :=
- norm_aux cO cI cplus ctimes cminus copp ceqb.
-
-(* The following definition we don't really need, hence it is commented *)
-(*Definition eval_pol : PolEnv -> PolC -> R := Pphi 0 rplus rtimes phi.*)
-
-(* roughly speaking, normalise_pexpr_correct is a proof of
- forall env p, eval_pexpr env p == eval_pol env (normalise_pexpr p) *)
-
-(*****)
-Definition normalise_pexpr_correct :=
-let Rops_wd := mk_reqe rplus rtimes ropp req
- sor.(SORplus_wd)
- sor.(SORtimes_wd)
- sor.(SORopp_wd) in
- norm_aux_spec sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt))
- addon.(SORrm) addon.(SORpower).
-(*****)
-(*Definition normalise_pexpr_correct :=
-let Rops_wd := mk_reqe rplus rtimes ropp req
- sor.(SORplus_wd)
- sor.(SORtimes_wd)
- sor.(SORopp_wd) in
- norm_aux_spec sor.(SORsetoid) Rops_wd (Rth_ARth sor.(SORsetoid) Rops_wd sor.(SORrt))
- addon.(SORrm) addon.(SORpower) nil.*)
-(*****)
-
-(* Check that a formula f is inconsistent by normalizing and comparing the
-resulting constant with 0 *)
-
-Definition check_inconsistent (f : NFormula) : bool :=
-let (e, op) := f in
- match normalise_pexpr e with
- | Pc c =>
- match op with
- | Equal => cneqb c cO
- | NonStrict => c [<] cO
- | Strict => c [<=] cO
- | NonEqual => false (* eval_cone never returns (p, NonEqual) *)
- end
- | _ => false (* not a constant *)
- end.
-
-Lemma check_inconsistent_sound :
- forall (p : PExprC) (op : Op1),
- check_inconsistent (p, op) = true -> forall env, ~ eval_op1 op (eval_pexpr env p).
-Proof.
-intros p op H1 env. unfold check_inconsistent, normalise_pexpr in H1.
-destruct op; simpl;
-(*****)
-rewrite eval_pexpr_PEeval;
-(*****)
-(*unfold eval_pexpr;*)
-(*****)
-rewrite normalise_pexpr_correct;
-destruct (norm_aux cO cI cplus ctimes cminus copp ceqb p); simpl; try discriminate H1;
-try rewrite <- addon.(SORrm).(morph0); trivial.
-now apply cneqb_sound.
-apply cleb_sound in H1. now apply -> (Rle_ngt sor).
-apply cltb_sound in H1. now apply -> (Rlt_nge sor).
-Qed.
-
-Definition check_normalised_formulas : list NFormula -> ConeMember -> bool :=
- fun l cm => check_inconsistent (eval_cone l cm).
-
-Lemma checker_nf_sound :
- forall (l : list NFormula) (cm : ConeMember),
- check_normalised_formulas l cm = true ->
- forall env : PolEnv, make_impl (eval_nformula env) l False.
-Proof.
-intros l cm H env.
-unfold check_normalised_formulas in H.
-case_eq (eval_cone l cm). intros p op H1.
-apply prove_inconsistent with p. unfold inconsistent_cone_member. exists op. split.
-pose proof (eval_cone_in_cone l cm) as H2. now rewrite H1 in H2.
-apply check_inconsistent_sound. now rewrite <- H1.
-Qed.
-
-(** Normalisation of formulae **)
-
-Inductive Op2 : Set := (* binary relations *)
-| OpEq
-| OpNEq
-| OpLe
-| OpGe
-| OpLt
-| OpGt.
-
-Definition eval_op2 (o : Op2) : R -> R -> Prop :=
-match o with
-| OpEq => req
-| OpNEq => fun x y : R => x ~= y
-| OpLe => rle
-| OpGe => fun x y : R => y <= x
-| OpLt => fun x y : R => x < y
-| OpGt => fun x y : R => y < x
-end.
-
-Record Formula : Type := {
- Flhs : PExprC;
- Fop : Op2;
- Frhs : PExprC
-}.
-
-Definition eval_formula (env : PolEnv) (f : Formula) : Prop :=
- let (lhs, op, rhs) := f in
- (eval_op2 op) (eval_pexpr env lhs) (eval_pexpr env rhs).
-
-(* We normalize Formulas by moving terms to one side *)
-
-Definition normalise (f : Formula) : NFormula :=
-let (lhs, op, rhs) := f in
- match op with
- | OpEq => (PEsub lhs rhs, Equal)
- | OpNEq => (PEsub lhs rhs, NonEqual)
- | OpLe => (PEsub rhs lhs, NonStrict)
- | OpGe => (PEsub lhs rhs, NonStrict)
- | OpGt => (PEsub lhs rhs, Strict)
- | OpLt => (PEsub rhs lhs, Strict)
- end.
-
-Definition negate (f : Formula) : NFormula :=
-let (lhs, op, rhs) := f in
- match op with
- | OpEq => (PEsub rhs lhs, NonEqual)
- | OpNEq => (PEsub rhs lhs, Equal)
- | OpLe => (PEsub lhs rhs, Strict) (* e <= e' == ~ e > e' *)
- | OpGe => (PEsub rhs lhs, Strict)
- | OpGt => (PEsub rhs lhs, NonStrict)
- | OpLt => (PEsub lhs rhs, NonStrict)
-end.
-
-Theorem normalise_sound :
- forall (env : PolEnv) (f : Formula),
- eval_formula env f -> eval_nformula env (normalise f).
-Proof.
-intros env f H; destruct f as [lhs op rhs]; simpl in *.
-destruct op; simpl in *.
-now apply <- (Rminus_eq_0 sor).
-intros H1. apply -> (Rminus_eq_0 sor) in H1. now apply H.
-now apply -> (Rle_le_minus sor).
-now apply -> (Rle_le_minus sor).
-now apply -> (Rlt_lt_minus sor).
-now apply -> (Rlt_lt_minus sor).
-Qed.
-
-Theorem negate_correct :
- forall (env : PolEnv) (f : Formula),
- eval_formula env f <-> ~ (eval_nformula env (negate f)).
-Proof.
-intros env f; destruct f as [lhs op rhs]; simpl.
-destruct op; simpl.
-symmetry. rewrite (Rminus_eq_0 sor).
-split; intro H; [symmetry; now apply -> (Req_dne sor) | symmetry in H; now apply <- (Req_dne sor)].
-rewrite (Rminus_eq_0 sor). split; intro; now apply (Rneq_symm sor).
-rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
-rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
-rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
-rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
-Qed.
-
-(** Another normalistion - this is used for cnf conversion **)
-
-Definition xnormalise (t:Formula) : list (NFormula) :=
- let (lhs,o,rhs) := t in
- match o with
- | OpEq =>
- (PEsub lhs rhs, Strict)::(PEsub rhs lhs , Strict)::nil
- | OpNEq => (PEsub lhs rhs,Equal) :: nil
- | OpGt => (PEsub rhs lhs,NonStrict) :: nil
- | OpLt => (PEsub lhs rhs,NonStrict) :: nil
- | OpGe => (PEsub rhs lhs , Strict) :: nil
- | OpLe => (PEsub lhs rhs ,Strict) :: nil
- end.
-
-Require Import Tauto.
-
-Definition cnf_normalise (t:Formula) : cnf (NFormula) :=
- List.map (fun x => x::nil) (xnormalise t).
-
-
-Add Ring SORRing : sor.(SORrt).
-
-Lemma cnf_normalise_correct : forall env t, eval_cnf (eval_nformula env) (cnf_normalise t) -> eval_formula env t.
-Proof.
- unfold cnf_normalise, xnormalise ; simpl ; intros env t.
- unfold eval_cnf.
- destruct t as [lhs o rhs]; case_eq o ; simpl;
- generalize (eval_pexpr env lhs);
- generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros.
- (**)
- apply sor.(SORle_antisymm).
- rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
- rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
- now rewrite <- (Rminus_eq_0 sor).
- rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
- rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
- rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
- rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
-Qed.
-
-Definition xnegate (t:Formula) : list (NFormula) :=
- let (lhs,o,rhs) := t in
- match o with
- | OpEq => (PEsub lhs rhs,Equal) :: nil
- | OpNEq => (PEsub lhs rhs ,Strict)::(PEsub rhs lhs,Strict)::nil
- | OpGt => (PEsub lhs rhs,Strict) :: nil
- | OpLt => (PEsub rhs lhs,Strict) :: nil
- | OpGe => (PEsub lhs rhs,NonStrict) :: nil
- | OpLe => (PEsub rhs lhs,NonStrict) :: nil
- end.
-
-Definition cnf_negate (t:Formula) : cnf (NFormula) :=
- List.map (fun x => x::nil) (xnegate t).
-
-Lemma cnf_negate_correct : forall env t, eval_cnf (eval_nformula env) (cnf_negate t) -> ~ eval_formula env t.
-Proof.
- unfold cnf_negate, xnegate ; simpl ; intros env t.
- unfold eval_cnf.
- destruct t as [lhs o rhs]; case_eq o ; simpl ;
- generalize (eval_pexpr env lhs);
- generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros ;
- intuition.
- (**)
- apply H0.
- rewrite H1 ; ring.
- (**)
- apply H1.
- apply sor.(SORle_antisymm).
- rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
- rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
- (**)
- apply H0. now rewrite (Rle_le_minus sor) in H1.
- apply H0. now rewrite (Rle_le_minus sor) in H1.
- apply H0. now rewrite (Rlt_lt_minus sor) in H1.
- apply H0. now rewrite (Rlt_lt_minus sor) in H1.
-Qed.
-
-
-Lemma eval_nformula_dec : forall env d, (eval_nformula env d) \/ ~ (eval_nformula env d).
-Proof.
- intros.
- destruct d ; simpl.
- generalize (eval_pexpr env p); intros.
- destruct o ; simpl.
- apply (Req_em sor r 0).
- destruct (Req_em sor r 0) ; tauto.
- rewrite <- (Rle_ngt sor r 0). generalize (Rle_gt_cases sor r 0). tauto.
- rewrite <- (Rlt_nge sor r 0). generalize (Rle_gt_cases sor 0 r). tauto.
-Qed.
-
-(** Some syntactic simplifications of expressions and cone elements *)
-
-
-Fixpoint simpl_expr (e:PExprC) : PExprC :=
- match e with
- | PEmul y z => let y' := simpl_expr y in let z' := simpl_expr z in
- match y' , z' with
- | PEc c , z' => if ceqb c cI then z' else PEmul y' z'
- | _ , _ => PEmul y' z'
- end
- | PEadd x y => PEadd (simpl_expr x) (simpl_expr y)
- | _ => e
- end.
-
-
-Definition simpl_cone (e:ConeMember) : ConeMember :=
- match e with
- | S_Square t => match simpl_expr t with
- | PEc c => if ceqb cO c then S_Z else S_Pos (ctimes c c)
- | x => S_Square x
- end
- | S_Mult t1 t2 =>
- match t1 , t2 with
- | S_Z , x => S_Z
- | x , S_Z => S_Z
- | S_Pos c , S_Pos c' => S_Pos (ctimes c c')
- | S_Pos p1 , S_Mult (S_Pos p2) x => S_Mult (S_Pos (ctimes p1 p2)) x
- | S_Pos p1 , S_Mult x (S_Pos p2) => S_Mult (S_Pos (ctimes p1 p2)) x
- | S_Mult (S_Pos p2) x , S_Pos p1 => S_Mult (S_Pos (ctimes p1 p2)) x
- | S_Mult x (S_Pos p2) , S_Pos p1 => S_Mult (S_Pos (ctimes p1 p2)) x
- | S_Pos x , S_Add y z => S_Add (S_Mult (S_Pos x) y) (S_Mult (S_Pos x) z)
- | S_Pos c , _ => if ceqb cI c then t2 else S_Mult t1 t2
- | _ , S_Pos c => if ceqb cI c then t1 else S_Mult t1 t2
- | _ , _ => e
- end
- | S_Add t1 t2 =>
- match t1 , t2 with
- | S_Z , x => x
- | x , S_Z => x
- | x , y => S_Add x y
- end
- | _ => e
- end.
-
-
-
-End Micromega.
-