summaryrefslogtreecommitdiff
path: root/kernel/reduction.ml
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /kernel/reduction.ml
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'kernel/reduction.ml')
-rw-r--r--kernel/reduction.ml412
1 files changed, 412 insertions, 0 deletions
diff --git a/kernel/reduction.ml b/kernel/reduction.ml
new file mode 100644
index 00000000..5428a40d
--- /dev/null
+++ b/kernel/reduction.ml
@@ -0,0 +1,412 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: reduction.ml,v 1.91.2.1 2004/07/16 19:30:26 herbelin Exp $ *)
+
+open Util
+open Names
+open Term
+open Univ
+open Declarations
+open Environ
+open Closure
+open Esubst
+
+let rec is_empty_stack = function
+ [] -> true
+ | Zupdate _::s -> is_empty_stack s
+ | Zshift _::s -> is_empty_stack s
+ | _ -> false
+
+(* Compute the lift to be performed on a term placed in a given stack *)
+let el_stack el stk =
+ let n =
+ List.fold_left
+ (fun i z ->
+ match z with
+ Zshift n -> i+n
+ | _ -> i)
+ 0
+ stk in
+ el_shft n el
+
+let compare_stack_shape stk1 stk2 =
+ let rec compare_rec bal stk1 stk2 =
+ match (stk1,stk2) with
+ ([],[]) -> bal=0
+ | ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2
+ | (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2
+ | (Zapp l1::s1, _) -> compare_rec (bal+List.length l1) s1 stk2
+ | (_, Zapp l2::s2) -> compare_rec (bal-List.length l2) stk1 s2
+ | (Zcase(c1,_,_)::s1, Zcase(c2,_,_)::s2) ->
+ bal=0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2
+ | (Zfix(_,a1)::s1, Zfix(_,a2)::s2) ->
+ bal=0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
+ | (_,_) -> false in
+ compare_rec 0 stk1 stk2
+
+let pure_stack lfts stk =
+ let rec pure_rec lfts stk =
+ match stk with
+ [] -> (lfts,[])
+ | zi::s ->
+ (match (zi,pure_rec lfts s) with
+ (Zupdate _,lpstk) -> lpstk
+ | (Zshift n,(l,pstk)) -> (el_shft n l, pstk)
+ | (Zapp a1,(l,Zapp a2::pstk)) ->
+ (l,Zapp (List.map (fun t -> (l,t)) a1 @ a2)::pstk)
+ | (Zapp a, (l,pstk)) ->
+ (l,Zapp (List.map (fun t -> (l,t)) a)::pstk)
+ | (Zfix(fx,a),(l,pstk)) ->
+ let (lfx,pa) = pure_rec l a in
+ (l, Zfix((lfx,fx),pa)::pstk)
+ | (Zcase(ci,p,br),(l,pstk)) ->
+ (l,Zcase(ci,(l,p),Array.map (fun t -> (l,t)) br)::pstk)) in
+ snd (pure_rec lfts stk)
+
+(****************************************************************************)
+(* Reduction Functions *)
+(****************************************************************************)
+
+let nf_betaiota t =
+ norm_val (create_clos_infos betaiota empty_env) (inject t)
+
+let whd_betaiotazeta env x =
+ match kind_of_term x with
+ | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _|
+ Prod _|Lambda _|Fix _|CoFix _) -> x
+ | _ -> whd_val (create_clos_infos betaiotazeta env) (inject x)
+
+let whd_betadeltaiota env t =
+ match kind_of_term t with
+ | (Sort _|Meta _|Evar _|Ind _|Construct _|
+ Prod _|Lambda _|Fix _|CoFix _) -> t
+ | _ -> whd_val (create_clos_infos betadeltaiota env) (inject t)
+
+let whd_betadeltaiota_nolet env t =
+ match kind_of_term t with
+ | (Sort _|Meta _|Evar _|Ind _|Construct _|
+ Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t
+ | _ -> whd_val (create_clos_infos betadeltaiotanolet env) (inject t)
+
+(* Beta *)
+
+let beta_appvect c v =
+ let rec stacklam env t stack =
+ match (decomp_stack stack,kind_of_term t) with
+ | Some (h,stacktl), Lambda (_,_,c) -> stacklam (h::env) c stacktl
+ | _ -> app_stack (substl env t, stack) in
+ stacklam [] c (append_stack v empty_stack)
+
+(********************************************************************)
+(* Conversion *)
+(********************************************************************)
+
+(* Conversion utility functions *)
+type 'a conversion_function = env -> 'a -> 'a -> Univ.constraints
+
+exception NotConvertible
+exception NotConvertibleVect of int
+
+let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv =
+ let rec cmp_rec pstk1 pstk2 cuniv =
+ match (pstk1,pstk2) with
+ | (z1::s1, z2::s2) ->
+ let c1 = cmp_rec s1 s2 cuniv in
+ (match (z1,z2) with
+ | (Zapp a1,Zapp a2) -> List.fold_right2 f a1 a2 c1
+ | (Zfix(fx1,a1),Zfix(fx2,a2)) ->
+ let c2 = f fx1 fx2 c1 in
+ cmp_rec a1 a2 c2
+ | (Zcase(ci1,p1,br1),Zcase(ci2,p2,br2)) ->
+ if not (fmind ci1.ci_ind ci2.ci_ind) then
+ raise NotConvertible;
+ let c2 = f p1 p2 c1 in
+ array_fold_right2 f br1 br2 c2
+ | _ -> assert false)
+ | _ -> cuniv in
+ if compare_stack_shape stk1 stk2 then
+ cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv
+ else raise NotConvertible
+
+(* Convertibility of sorts *)
+
+type conv_pb =
+ | CONV
+ | CUMUL
+
+let sort_cmp pb s0 s1 cuniv =
+ match (s0,s1) with
+ | (Prop c1, Prop c2) -> if c1 = c2 then cuniv else raise NotConvertible
+ | (Prop c1, Type u) ->
+ (match pb with
+ CUMUL -> cuniv
+ | _ -> raise NotConvertible)
+ | (Type u1, Type u2) ->
+ (match pb with
+ | CONV -> enforce_eq u1 u2 cuniv
+ | CUMUL -> enforce_geq u2 u1 cuniv)
+ | (_, _) -> raise NotConvertible
+
+
+let conv_sort env s0 s1 = sort_cmp CONV s0 s1 Constraint.empty
+
+let conv_sort_leq env s0 s1 = sort_cmp CUMUL s0 s1 Constraint.empty
+
+
+(* Conversion between [lft1]term1 and [lft2]term2 *)
+let rec ccnv cv_pb infos lft1 lft2 term1 term2 cuniv =
+ Util.check_for_interrupt ();
+ eqappr cv_pb infos
+ (lft1, whd_stack infos term1 [])
+ (lft2, whd_stack infos term2 [])
+ cuniv
+
+(* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *)
+and eqappr cv_pb infos appr1 appr2 cuniv =
+ let (lft1,(hd1,v1)) = appr1 in
+ let (lft2,(hd2,v2)) = appr2 in
+ let el1 = el_stack lft1 v1 in
+ let el2 = el_stack lft2 v2 in
+ match (fterm_of hd1, fterm_of hd2) with
+ (* case of leaves *)
+ | (FAtom a1, FAtom a2) ->
+ (match kind_of_term a1, kind_of_term a2 with
+ | (Sort s1, Sort s2) ->
+ assert (is_empty_stack v1 && is_empty_stack v2);
+ sort_cmp cv_pb s1 s2 cuniv
+ | (Meta n, Meta m) ->
+ if n=m
+ then convert_stacks infos lft1 lft2 v1 v2 cuniv
+ else raise NotConvertible
+ | _ -> raise NotConvertible)
+ | (FEvar (ev1,args1), FEvar (ev2,args2)) ->
+ if ev1=ev2 then
+ let u1 = convert_stacks infos lft1 lft2 v1 v2 cuniv in
+ convert_vect infos el1 el2 args1 args2 u1
+ else raise NotConvertible
+
+ (* 2 index known to be bound to no constant *)
+ | (FRel n, FRel m) ->
+ if reloc_rel n el1 = reloc_rel m el2
+ then convert_stacks infos lft1 lft2 v1 v2 cuniv
+ else raise NotConvertible
+
+ (* 2 constants, 2 local defined vars or 2 defined rels *)
+ | (FFlex fl1, FFlex fl2) ->
+ (try (* try first intensional equality *)
+ if fl1 = fl2
+ then convert_stacks infos lft1 lft2 v1 v2 cuniv
+ else raise NotConvertible
+ with NotConvertible ->
+ (* else the oracle tells which constant is to be expanded *)
+ let (app1,app2) =
+ if Conv_oracle.oracle_order fl1 fl2 then
+ match unfold_reference infos fl1 with
+ | Some def1 -> ((lft1, whd_stack infos def1 v1), appr2)
+ | None ->
+ (match unfold_reference infos fl2 with
+ | Some def2 -> (appr1, (lft2, whd_stack infos def2 v2))
+ | None -> raise NotConvertible)
+ else
+ match unfold_reference infos fl2 with
+ | Some def2 -> (appr1, (lft2, whd_stack infos def2 v2))
+ | None ->
+ (match unfold_reference infos fl1 with
+ | Some def1 -> ((lft1, whd_stack infos def1 v1), appr2)
+ | None -> raise NotConvertible) in
+ eqappr cv_pb infos app1 app2 cuniv)
+
+ (* only one constant, defined var or defined rel *)
+ | (FFlex fl1, _) ->
+ (match unfold_reference infos fl1 with
+ | Some def1 ->
+ eqappr cv_pb infos (lft1, whd_stack infos def1 v1) appr2 cuniv
+ | None -> raise NotConvertible)
+ | (_, FFlex fl2) ->
+ (match unfold_reference infos fl2 with
+ | Some def2 ->
+ eqappr cv_pb infos appr1 (lft2, whd_stack infos def2 v2) cuniv
+ | None -> raise NotConvertible)
+
+ (* other constructors *)
+ | (FLambda _, FLambda _) ->
+ let (_,ty1,bd1) = destFLambda mk_clos hd1 in
+ let (_,ty2,bd2) = destFLambda mk_clos hd2 in
+ let u1 = ccnv CONV infos el1 el2 ty1 ty2 cuniv in
+ ccnv CONV infos (el_lift el1) (el_lift el2) bd1 bd2 u1
+
+ | (FProd (_,c1,c2), FProd (_,c'1,c'2)) ->
+ assert (is_empty_stack v1 && is_empty_stack v2);
+ (* Luo's system *)
+ let u1 = ccnv CONV infos el1 el2 c1 c'1 cuniv in
+ ccnv cv_pb infos (el_lift el1) (el_lift el2) c2 c'2 u1
+
+ (* Inductive types: MutInd MutConstruct Fix Cofix *)
+
+ | (FInd (kn1,i1), FInd (kn2,i2)) ->
+ if i1 = i2 && mind_equiv infos kn1 kn2
+ then
+ convert_stacks infos lft1 lft2 v1 v2 cuniv
+ else raise NotConvertible
+
+ | (FConstruct ((kn1,i1),j1), FConstruct ((kn2,i2),j2)) ->
+ if i1 = i2 && j1 = j2 && mind_equiv infos kn1 kn2
+ then
+ convert_stacks infos lft1 lft2 v1 v2 cuniv
+ else raise NotConvertible
+
+ | (FFix ((op1,(_,tys1,cl1)),e1), FFix((op2,(_,tys2,cl2)),e2)) ->
+ if op1 = op2
+ then
+ let n = Array.length cl1 in
+ let fty1 = Array.map (mk_clos e1) tys1 in
+ let fty2 = Array.map (mk_clos e2) tys2 in
+ let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
+ let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
+ let u1 = convert_vect infos el1 el2 fty1 fty2 cuniv in
+ let u2 =
+ convert_vect infos
+ (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in
+ convert_stacks infos lft1 lft2 v1 v2 u2
+ else raise NotConvertible
+
+ | (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) ->
+ if op1 = op2
+ then
+ let n = Array.length cl1 in
+ let fty1 = Array.map (mk_clos e1) tys1 in
+ let fty2 = Array.map (mk_clos e2) tys2 in
+ let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
+ let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
+ let u1 = convert_vect infos el1 el2 fty1 fty2 cuniv in
+ let u2 =
+ convert_vect infos
+ (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in
+ convert_stacks infos lft1 lft2 v1 v2 u2
+ else raise NotConvertible
+
+ | ( (FLetIn _, _) | (_, FLetIn _) | (FCases _,_) | (_,FCases _)
+ | (FApp _,_) | (_,FApp _) | (FCLOS _, _) | (_,FCLOS _)
+ | (FLIFT _, _) | (_,FLIFT _) | (FLOCKED,_) | (_,FLOCKED)) ->
+ anomaly "Unexpected term returned by fhnf"
+
+ | _ -> raise NotConvertible
+
+and convert_stacks infos lft1 lft2 stk1 stk2 cuniv =
+ compare_stacks
+ (fun (l1,t1) (l2,t2) c -> ccnv CONV infos l1 l2 t1 t2 c)
+ (fun (mind1,i1) (mind2,i2) -> i1=i2 && mind_equiv infos mind1 mind2)
+ lft1 stk1 lft2 stk2 cuniv
+
+and convert_vect infos lft1 lft2 v1 v2 cuniv =
+ let lv1 = Array.length v1 in
+ let lv2 = Array.length v2 in
+ if lv1 = lv2
+ then
+ let rec fold n univ =
+ if n >= lv1 then univ
+ else
+ let u1 = ccnv CONV infos lft1 lft2 v1.(n) v2.(n) univ in
+ fold (n+1) u1 in
+ fold 0 cuniv
+ else raise NotConvertible
+
+
+
+let fconv cv_pb env t1 t2 =
+ if eq_constr t1 t2 then
+ Constraint.empty
+ else
+ let infos = create_clos_infos betaiotazeta env in
+ ccnv cv_pb infos ELID ELID (inject t1) (inject t2)
+ Constraint.empty
+
+let conv = fconv CONV
+let conv_leq = fconv CUMUL
+
+let conv_leq_vecti env v1 v2 =
+ array_fold_left2_i
+ (fun i c t1 t2 ->
+ let c' =
+ try conv_leq env t1 t2
+ with NotConvertible -> raise (NotConvertibleVect i) in
+ Constraint.union c c')
+ Constraint.empty
+ v1
+ v2
+
+(*
+let convleqkey = Profile.declare_profile "Kernel_reduction.conv_leq";;
+let conv_leq env t1 t2 =
+ Profile.profile4 convleqkey conv_leq env t1 t2;;
+
+let convkey = Profile.declare_profile "Kernel_reduction.conv";;
+let conv env t1 t2 =
+ Profile.profile4 convleqkey conv env t1 t2;;
+*)
+
+(********************************************************************)
+(* Special-Purpose Reduction *)
+(********************************************************************)
+
+(* pseudo-reduction rule:
+ * [hnf_prod_app env s (Prod(_,B)) N --> B[N]
+ * with an HNF on the first argument to produce a product.
+ * if this does not work, then we use the string S as part of our
+ * error message. *)
+
+let hnf_prod_app env t n =
+ match kind_of_term (whd_betadeltaiota env t) with
+ | Prod (_,_,b) -> subst1 n b
+ | _ -> anomaly "hnf_prod_app: Need a product"
+
+let hnf_prod_applist env t nl =
+ List.fold_left (hnf_prod_app env) t nl
+
+(* Dealing with arities *)
+
+let dest_prod env =
+ let rec decrec env m c =
+ let t = whd_betadeltaiota env c in
+ match kind_of_term t with
+ | Prod (n,a,c0) ->
+ let d = (n,None,a) in
+ decrec (push_rel d env) (Sign.add_rel_decl d m) c0
+ | _ -> m,t
+ in
+ decrec env Sign.empty_rel_context
+
+(* The same but preserving lets *)
+let dest_prod_assum env =
+ let rec prodec_rec env l ty =
+ let rty = whd_betadeltaiota_nolet env ty in
+ match kind_of_term rty with
+ | Prod (x,t,c) ->
+ let d = (x,None,t) in
+ prodec_rec (push_rel d env) (Sign.add_rel_decl d l) c
+ | LetIn (x,b,t,c) ->
+ let d = (x,Some b,t) in
+ prodec_rec (push_rel d env) (Sign.add_rel_decl d l) c
+ | Cast (c,_) -> prodec_rec env l c
+ | _ -> l,rty
+ in
+ prodec_rec env Sign.empty_rel_context
+
+let dest_arity env c =
+ let l, c = dest_prod env c in
+ match kind_of_term c with
+ | Sort s -> l,s
+ | _ -> error "not an arity"
+
+let is_arity env c =
+ try
+ let _ = dest_arity env c in
+ true
+ with UserError _ -> false
+