summaryrefslogtreecommitdiff
path: root/test/spass/small_problem.dfg
blob: f0b1a6d1b1445e428f61f4c967ca992470793085 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
%------------------------------------------------------------------------------
% File     : SET002+4 : TPTP v3.1.0. Released v2.2.0.
% Domain   : Set Theory (Naive)
% Problem  : Idempotency of union
% Version  : [Pas99] axioms.
% English  :

% Refs     : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source   : [Pas99]
% Names    :

% Status   : Theorem
% Rating   : 0.36 v3.1.0, 0.56 v2.7.0, 0.33 v2.6.0, 0.57 v2.5.0, 0.50 v2.4.0, 0.25 v2.3.0, 0.00 v2.2.1
% Syntax   : Number of formulae    :   12 (   2 unit)
%            Number of atoms       :   30 (   3 equality)
%            Maximal formula depth :    7 (   5 average)
%            Number of connectives :   20 (   2 ~  ;   2  |;   4  &)
%                                         (  10 <=>;   2 =>;   0 <=)
%                                         (   0 <~>;   0 ~|;   0 ~&)
%            Number of predicates  :    4 (   0 propositional; 2-2 arity)
%            Number of functors    :    9 (   1 constant; 0-2 arity)
%            Number of variables   :   29 (   0 singleton;  28 !;   1 ?)
%            Maximal term depth    :    2 (   1 average)

% Comments : 
%          : tptp2X -f dfg -t rm_equality:rstfp SET002+4.p 
%------------------------------------------------------------------------------

begin_problem(TPTP_Problem).

list_of_descriptions.
name({*[ File     : SET002+4 : TPTP v3.1.0. Released v2.2.0.],[ Names    :]*}).
author({*[ Source   : [Pas99]]*}).
status(unknown).
description({*[ Refs     : [Pas99] Pastre (1999), Email to G. Sutcliffe]*}).
end_of_list.

list_of_symbols.
functions[(difference,2), (empty_set,0), (intersection,2), (power_set,1), (product,1), (singleton,1), (sum,1), (union,2), (unordered_pair,2)].
predicates[(equal_set,2), (member,2), (subset,2)].
end_of_list.

list_of_formulae(axioms).

formula(
 forall([A,B],
  equiv(
   subset(A,B),
   forall([X],
    implies(
     member(X,A),
     member(X,B))))),
subset ).

formula(
 forall([A,B],
  equiv(
   equal_set(A,B),
   and(
    subset(A,B),
    subset(B,A)))),
equal_set ).

formula(
 forall([X,A],
  equiv(
   member(X,power_set(A)),
   subset(X,A))),
power_set ).

formula(
 forall([X,A,B],
  equiv(
   member(X,intersection(A,B)),
   and(
    member(X,A),
    member(X,B)))),
intersection ).

formula(
 forall([X,A,B],
  equiv(
   member(X,union(A,B)),
   or(
    member(X,A),
    member(X,B)))),
union ).

formula(
 forall([X],
  not(
   member(X,empty_set))),
empty_set ).

formula(
 forall([B,A,E],
  equiv(
   member(B,difference(E,A)),
   and(
    member(B,E),
    not(
     member(B,A))))),
difference ).

formula(
 forall([X,A],
  equiv(
   member(X,singleton(A)),
   equal(X,A))),
singleton ).

formula(
 forall([X,A,B],
  equiv(
   member(X,unordered_pair(A,B)),
   or(
    equal(X,A),
    equal(X,B)))),
unordered_pair ).

formula(
 forall([X,A],
  equiv(
   member(X,sum(A)),
   exists([Y],
    and(
     member(Y,A),
     member(X,Y))))),
sum ).

formula(
 forall([X,A],
  equiv(
   member(X,product(A)),
   forall([Y],
    implies(
     member(Y,A),
     member(X,Y))))),
product ).

end_of_list.

%----NOTE WELL: conjecture has been negated
list_of_formulae(conjectures).

formula(  %(conjecture)
 forall([A],
  equal_set(union(A,A),A)),
thI14 ).

end_of_list.

end_problem.
%------------------------------------------------------------------------------