1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness of instruction selection *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Cminor.
Require Import Op.
Require Import CminorSel.
Require Import Selection.
Open Local Scope selection_scope.
Section CMCONSTR.
Variable ge: genv.
Variable sp: val.
Variable e: env.
Variable m: mem.
(** * Lifting of let-bound variables *)
Inductive insert_lenv: letenv -> nat -> val -> letenv -> Prop :=
| insert_lenv_0:
forall le v,
insert_lenv le O v (v :: le)
| insert_lenv_S:
forall le p w le' v,
insert_lenv le p w le' ->
insert_lenv (v :: le) (S p) w (v :: le').
Lemma insert_lenv_lookup1:
forall le p w le',
insert_lenv le p w le' ->
forall n v,
nth_error le n = Some v -> (p > n)%nat ->
nth_error le' n = Some v.
Proof.
induction 1; intros.
omegaContradiction.
destruct n; simpl; simpl in H0. auto.
apply IHinsert_lenv. auto. omega.
Qed.
Lemma insert_lenv_lookup2:
forall le p w le',
insert_lenv le p w le' ->
forall n v,
nth_error le n = Some v -> (p <= n)%nat ->
nth_error le' (S n) = Some v.
Proof.
induction 1; intros.
simpl. assumption.
simpl. destruct n. omegaContradiction.
apply IHinsert_lenv. exact H0. omega.
Qed.
Hint Resolve eval_Evar eval_Eop eval_Eload eval_Econdition
eval_Elet eval_Eletvar
eval_CEtrue eval_CEfalse eval_CEcond
eval_CEcondition eval_Enil eval_Econs: evalexpr.
Lemma eval_lift_expr:
forall w le a v,
eval_expr ge sp e m le a v ->
forall p le', insert_lenv le p w le' ->
eval_expr ge sp e m le' (lift_expr p a) v.
Proof.
intro w.
apply (eval_expr_ind3 ge sp e m
(fun le a v =>
forall p le', insert_lenv le p w le' ->
eval_expr ge sp e m le' (lift_expr p a) v)
(fun le a v =>
forall p le', insert_lenv le p w le' ->
eval_condexpr ge sp e m le' (lift_condexpr p a) v)
(fun le al vl =>
forall p le', insert_lenv le p w le' ->
eval_exprlist ge sp e m le' (lift_exprlist p al) vl));
simpl; intros; eauto with evalexpr.
destruct v1; eapply eval_Econdition;
eauto with evalexpr; simpl; eauto with evalexpr.
eapply eval_Elet. eauto. apply H2. apply insert_lenv_S; auto.
case (le_gt_dec p n); intro.
apply eval_Eletvar. eapply insert_lenv_lookup2; eauto.
apply eval_Eletvar. eapply insert_lenv_lookup1; eauto.
destruct vb1; eapply eval_CEcondition;
eauto with evalexpr; simpl; eauto with evalexpr.
Qed.
Lemma eval_lift:
forall le a v w,
eval_expr ge sp e m le a v ->
eval_expr ge sp e m (w::le) (lift a) v.
Proof.
intros. unfold lift. eapply eval_lift_expr.
eexact H. apply insert_lenv_0.
Qed.
Hint Resolve eval_lift: evalexpr.
(** * Useful lemmas and tactics *)
(** The following are trivial lemmas and custom tactics that help
perform backward (inversion) and forward reasoning over the evaluation
of operator applications. *)
Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
Ltac TrivialOp cstr := unfold cstr; intros; EvalOp.
Ltac InvEval1 :=
match goal with
| [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] =>
inv H; InvEval1
| _ =>
idtac
end.
Ltac InvEval2 :=
match goal with
| [ H: (eval_operation _ _ _ nil = Some _) |- _ ] =>
simpl in H; inv H
| [ H: (eval_operation _ _ _ (_ :: nil) = Some _) |- _ ] =>
simpl in H; FuncInv
| [ H: (eval_operation _ _ _ (_ :: _ :: nil) = Some _) |- _ ] =>
simpl in H; FuncInv
| [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) = Some _) |- _ ] =>
simpl in H; FuncInv
| _ =>
idtac
end.
Ltac InvEval := InvEval1; InvEval2; InvEval2.
(** * Correctness of the smart constructors *)
(** We now show that the code generated by "smart constructor" functions
such as [Selection.notint] behaves as expected. Continuing the
[notint] example, we show that if the expression [e]
evaluates to some integer value [Vint n], then [Selection.notint e]
evaluates to a value [Vint (Int.not n)] which is indeed the integer
negation of the value of [e].
All proofs follow a common pattern:
- Reasoning by case over the result of the classification functions
(such as [add_match] for integer addition), gathering additional
information on the shape of the argument expressions in the non-default
cases.
- Inversion of the evaluations of the arguments, exploiting the additional
information thus gathered.
- Equational reasoning over the arithmetic operations performed,
using the lemmas from the [Int] and [Float] modules.
- Construction of an evaluation derivation for the expression returned
by the smart constructor.
*)
Theorem eval_notint:
forall le a x,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le (notint a) (Vint (Int.not x)).
Proof.
unfold notint; intros until x; case (notint_match a); intros; InvEval.
EvalOp. simpl. congruence.
EvalOp. simpl. congruence.
EvalOp. simpl. congruence.
eapply eval_Elet. eexact H.
eapply eval_Eop.
eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
apply eval_Enil.
simpl. rewrite Int.or_idem. auto.
Qed.
Lemma eval_notbool_base:
forall le a v b,
eval_expr ge sp e m le a v ->
Val.bool_of_val v b ->
eval_expr ge sp e m le (notbool_base a) (Val.of_bool (negb b)).
Proof.
TrivialOp notbool_base. simpl.
inv H0.
rewrite Int.eq_false; auto.
rewrite Int.eq_true; auto.
reflexivity.
Qed.
Hint Resolve Val.bool_of_true_val Val.bool_of_false_val
Val.bool_of_true_val_inv Val.bool_of_false_val_inv: valboolof.
Theorem eval_notbool:
forall le a v b,
eval_expr ge sp e m le a v ->
Val.bool_of_val v b ->
eval_expr ge sp e m le (notbool a) (Val.of_bool (negb b)).
Proof.
induction a; simpl; intros; try (eapply eval_notbool_base; eauto).
destruct o; try (eapply eval_notbool_base; eauto).
destruct e0. InvEval.
inv H0. rewrite Int.eq_false; auto.
simpl; eauto with evalexpr.
rewrite Int.eq_true; simpl; eauto with evalexpr.
eapply eval_notbool_base; eauto.
inv H. eapply eval_Eop; eauto.
simpl. assert (eval_condition c vl = Some b).
generalize H6. simpl.
case (eval_condition c vl); intros.
destruct b0; inv H1; inversion H0; auto; congruence.
congruence.
rewrite (Op.eval_negate_condition _ _ H).
destruct b; reflexivity.
inv H. eapply eval_Econdition; eauto.
destruct v1; eauto.
Qed.
Theorem eval_addimm:
forall le n a x,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le (addimm n a) (Vint (Int.add x n)).
Proof.
unfold addimm; intros until x.
generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
subst n. rewrite Int.add_zero. auto.
case (addimm_match a); intros; InvEval; EvalOp; simpl.
rewrite Int.add_commut. auto.
destruct (Genv.find_symbol ge s); discriminate.
destruct sp; simpl in H1; discriminate.
subst x. rewrite Int.add_assoc. decEq; decEq; decEq. apply Int.add_commut.
Qed.
Theorem eval_addimm_ptr:
forall le n a b ofs,
eval_expr ge sp e m le a (Vptr b ofs) ->
eval_expr ge sp e m le (addimm n a) (Vptr b (Int.add ofs n)).
Proof.
unfold addimm; intros until ofs.
generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
subst n. rewrite Int.add_zero. auto.
case (addimm_match a); intros; InvEval; EvalOp; simpl.
destruct (Genv.find_symbol ge s).
rewrite Int.add_commut. congruence.
discriminate.
destruct sp; simpl in H1; try discriminate.
inv H1. simpl. decEq. decEq.
rewrite Int.add_assoc. decEq. apply Int.add_commut.
subst. rewrite (Int.add_commut n m0). rewrite Int.add_assoc. auto.
Qed.
Theorem eval_add:
forall le a b x y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (add a b) (Vint (Int.add x y)).
Proof.
intros until y.
unfold add; case (add_match a b); intros; InvEval.
rewrite Int.add_commut. apply eval_addimm. auto.
replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)).
apply eval_addimm. EvalOp.
subst x; subst y.
repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
replace (Int.add x y) with (Int.add (Int.add i y) n1).
apply eval_addimm. EvalOp.
subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
apply eval_addimm. auto.
replace (Int.add x y) with (Int.add (Int.add x i) n2).
apply eval_addimm. EvalOp.
subst y. rewrite Int.add_assoc. auto.
EvalOp.
Qed.
Theorem eval_add_ptr:
forall le a b p x y,
eval_expr ge sp e m le a (Vptr p x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (add a b) (Vptr p (Int.add x y)).
Proof.
intros until y. unfold add; case (add_match a b); intros; InvEval.
replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)).
apply eval_addimm_ptr. subst b0. EvalOp.
subst x; subst y.
repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
replace (Int.add x y) with (Int.add (Int.add i y) n1).
apply eval_addimm_ptr. subst b0. EvalOp.
subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
apply eval_addimm_ptr. auto.
replace (Int.add x y) with (Int.add (Int.add x i) n2).
apply eval_addimm_ptr. EvalOp.
subst y. rewrite Int.add_assoc. auto.
EvalOp.
Qed.
Theorem eval_add_ptr_2:
forall le a b x p y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vptr p y) ->
eval_expr ge sp e m le (add a b) (Vptr p (Int.add y x)).
Proof.
intros until y. unfold add; case (add_match a b); intros; InvEval.
apply eval_addimm_ptr. auto.
replace (Int.add y x) with (Int.add (Int.add i i0) (Int.add n1 n2)).
apply eval_addimm_ptr. subst b0. EvalOp.
subst x; subst y.
repeat rewrite Int.add_assoc. decEq.
rewrite (Int.add_commut n1 n2). apply Int.add_permut.
replace (Int.add y x) with (Int.add (Int.add y i) n1).
apply eval_addimm_ptr. EvalOp.
subst x. repeat rewrite Int.add_assoc. auto.
replace (Int.add y x) with (Int.add (Int.add i x) n2).
apply eval_addimm_ptr. EvalOp. subst b0; reflexivity.
subst y. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
EvalOp.
Qed.
Theorem eval_sub:
forall le a b x y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)).
Proof.
intros until y.
unfold sub; case (sub_match a b); intros; InvEval.
rewrite Int.sub_add_opp.
apply eval_addimm. assumption.
replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
apply eval_addimm. EvalOp.
subst x; subst y.
repeat rewrite Int.sub_add_opp.
repeat rewrite Int.add_assoc. decEq.
rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
apply eval_addimm. EvalOp.
subst x. rewrite Int.sub_add_l. auto.
replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
apply eval_addimm. EvalOp.
subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
EvalOp.
Qed.
Theorem eval_sub_ptr_int:
forall le a b p x y,
eval_expr ge sp e m le a (Vptr p x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (sub a b) (Vptr p (Int.sub x y)).
Proof.
intros until y.
unfold sub; case (sub_match a b); intros; InvEval.
rewrite Int.sub_add_opp.
apply eval_addimm_ptr. assumption.
subst b0. replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
apply eval_addimm_ptr. EvalOp.
subst x; subst y.
repeat rewrite Int.sub_add_opp.
repeat rewrite Int.add_assoc. decEq.
rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
apply eval_addimm_ptr. EvalOp.
subst x. rewrite Int.sub_add_l. auto.
replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
apply eval_addimm_ptr. EvalOp.
subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
EvalOp.
Qed.
Theorem eval_sub_ptr_ptr:
forall le a b p x y,
eval_expr ge sp e m le a (Vptr p x) ->
eval_expr ge sp e m le b (Vptr p y) ->
eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)).
Proof.
intros until y.
unfold sub; case (sub_match a b); intros; InvEval.
replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
apply eval_addimm. EvalOp.
simpl; unfold eq_block. subst b0; subst b1; rewrite zeq_true. auto.
subst x; subst y.
repeat rewrite Int.sub_add_opp.
repeat rewrite Int.add_assoc. decEq.
rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
apply eval_addimm. EvalOp.
simpl. unfold eq_block. rewrite zeq_true. auto.
subst x. rewrite Int.sub_add_l. auto.
subst b0. replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
apply eval_addimm. EvalOp.
simpl. unfold eq_block. rewrite zeq_true. auto.
subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
EvalOp. simpl. unfold eq_block. rewrite zeq_true. auto.
Qed.
Lemma eval_rolm:
forall le a amount mask x,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le (rolm a amount mask) (Vint (Int.rolm x amount mask)).
Proof.
intros until x. unfold rolm; case (rolm_match a); intros; InvEval.
eauto with evalexpr.
case (Int.is_rlw_mask (Int.and (Int.rol mask1 amount) mask)).
EvalOp. simpl. subst x.
decEq. decEq.
replace (Int.and (Int.add amount1 amount) (Int.repr 31))
with (Int.modu (Int.add amount1 amount) (Int.repr 32)).
symmetry. apply Int.rolm_rolm.
change (Int.repr 31) with (Int.sub (Int.repr 32) Int.one).
apply Int.modu_and with (Int.repr 5). reflexivity.
EvalOp. econstructor. EvalOp. simpl. rewrite H. reflexivity. constructor. auto.
EvalOp.
Qed.
Theorem eval_shlimm:
forall le a n x,
eval_expr ge sp e m le a (Vint x) ->
Int.ltu n (Int.repr 32) = true ->
eval_expr ge sp e m le (shlimm a n) (Vint (Int.shl x n)).
Proof.
intros. unfold shlimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
subst n. rewrite Int.shl_zero. auto.
rewrite H0.
replace (Int.shl x n) with (Int.rolm x n (Int.shl Int.mone n)).
apply eval_rolm. auto. symmetry. apply Int.shl_rolm. exact H0.
Qed.
Theorem eval_shruimm:
forall le a n x,
eval_expr ge sp e m le a (Vint x) ->
Int.ltu n (Int.repr 32) = true ->
eval_expr ge sp e m le (shruimm a n) (Vint (Int.shru x n)).
Proof.
intros. unfold shruimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
subst n. rewrite Int.shru_zero. auto.
rewrite H0.
replace (Int.shru x n) with (Int.rolm x (Int.sub (Int.repr 32) n) (Int.shru Int.mone n)).
apply eval_rolm. auto. symmetry. apply Int.shru_rolm. exact H0.
Qed.
Lemma eval_mulimm_base:
forall le a n x,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le (mulimm_base n a) (Vint (Int.mul x n)).
Proof.
intros; unfold mulimm_base.
generalize (Int.one_bits_decomp n).
generalize (Int.one_bits_range n).
change (Z_of_nat wordsize) with 32.
destruct (Int.one_bits n).
intros. EvalOp.
destruct l.
intros. rewrite H1. simpl.
rewrite Int.add_zero. rewrite <- Int.shl_mul.
apply eval_shlimm. auto. auto with coqlib.
destruct l.
intros. apply eval_Elet with (Vint x). auto.
rewrite H1. simpl. rewrite Int.add_zero.
rewrite Int.mul_add_distr_r.
rewrite <- Int.shl_mul.
rewrite <- Int.shl_mul.
EvalOp. eapply eval_Econs.
apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
auto with coqlib.
eapply eval_Econs.
apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
auto with coqlib.
auto with evalexpr.
reflexivity.
intros. EvalOp.
Qed.
Theorem eval_mulimm:
forall le a n x,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le (mulimm n a) (Vint (Int.mul x n)).
Proof.
intros until x; unfold mulimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
subst n. rewrite Int.mul_zero.
intro. eapply eval_Elet; eauto with evalexpr.
generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intro.
subst n. rewrite Int.mul_one. auto.
case (mulimm_match a); intros; InvEval.
EvalOp. rewrite Int.mul_commut. reflexivity.
replace (Int.mul x n) with (Int.add (Int.mul i n) (Int.mul n n2)).
apply eval_addimm. apply eval_mulimm_base. auto.
subst x. rewrite Int.mul_add_distr_l. decEq. apply Int.mul_commut.
apply eval_mulimm_base. assumption.
Qed.
Theorem eval_mul:
forall le a b x y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (mul a b) (Vint (Int.mul x y)).
Proof.
intros until y.
unfold mul; case (mul_match a b); intros; InvEval.
rewrite Int.mul_commut. apply eval_mulimm. auto.
apply eval_mulimm. auto.
EvalOp.
Qed.
Theorem eval_divs:
forall le a b x y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
y <> Int.zero ->
eval_expr ge sp e m le (divs a b) (Vint (Int.divs x y)).
Proof.
TrivialOp divs. simpl.
predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
Qed.
Lemma eval_mod_aux:
forall divop semdivop,
(forall sp x y,
y <> Int.zero ->
eval_operation ge sp divop (Vint x :: Vint y :: nil) =
Some (Vint (semdivop x y))) ->
forall le a b x y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
y <> Int.zero ->
eval_expr ge sp e m le (mod_aux divop a b)
(Vint (Int.sub x (Int.mul (semdivop x y) y))).
Proof.
intros; unfold mod_aux.
eapply eval_Elet. eexact H0. eapply eval_Elet.
apply eval_lift. eexact H1.
eapply eval_Eop. eapply eval_Econs.
eapply eval_Eletvar. simpl; reflexivity.
eapply eval_Econs. eapply eval_Eop.
eapply eval_Econs. eapply eval_Eop.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
apply eval_Enil.
apply H. assumption.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
apply eval_Enil.
simpl; reflexivity. apply eval_Enil.
reflexivity.
Qed.
Theorem eval_mods:
forall le a b x y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
y <> Int.zero ->
eval_expr ge sp e m le (mods a b) (Vint (Int.mods x y)).
Proof.
intros; unfold mods.
rewrite Int.mods_divs.
eapply eval_mod_aux; eauto.
intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
contradiction. auto.
Qed.
Lemma eval_divu_base:
forall le a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
y <> Int.zero ->
eval_expr ge sp e m le (Eop Odivu (a ::: b ::: Enil)) (Vint (Int.divu x y)).
Proof.
intros. EvalOp. simpl.
predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
Qed.
Theorem eval_divu:
forall le a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
y <> Int.zero ->
eval_expr ge sp e m le (divu a b) (Vint (Int.divu x y)).
Proof.
intros until y.
unfold divu; case (divu_match b); intros; InvEval.
caseEq (Int.is_power2 y).
intros. rewrite (Int.divu_pow2 x y i H0).
apply eval_shruimm. auto.
apply Int.is_power2_range with y. auto.
intros. apply eval_divu_base. auto. EvalOp. auto.
eapply eval_divu_base; eauto.
Qed.
Theorem eval_modu:
forall le a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
y <> Int.zero ->
eval_expr ge sp e m le (modu a b) (Vint (Int.modu x y)).
Proof.
intros until y; unfold modu; case (divu_match b); intros; InvEval.
caseEq (Int.is_power2 y).
intros. rewrite (Int.modu_and x y i H0).
rewrite <- Int.rolm_zero. apply eval_rolm. auto.
intro. rewrite Int.modu_divu. eapply eval_mod_aux.
intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
contradiction. auto.
auto. EvalOp. auto. auto.
rewrite Int.modu_divu. eapply eval_mod_aux.
intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
contradiction. auto. auto. auto. auto. auto.
Qed.
Theorem eval_andimm:
forall le n a x,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le (andimm n a) (Vint (Int.and x n)).
Proof.
intros. unfold andimm. case (Int.is_rlw_mask n).
rewrite <- Int.rolm_zero. apply eval_rolm; auto.
EvalOp.
Qed.
Theorem eval_and:
forall le a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (and a b) (Vint (Int.and x y)).
Proof.
intros until y; unfold and; case (mul_match a b); intros; InvEval.
rewrite Int.and_commut. apply eval_andimm; auto.
apply eval_andimm; auto.
EvalOp.
Qed.
Remark eval_same_expr:
forall a1 a2 le v1 v2,
same_expr_pure a1 a2 = true ->
eval_expr ge sp e m le a1 v1 ->
eval_expr ge sp e m le a2 v2 ->
a1 = a2 /\ v1 = v2.
Proof.
intros until v2.
destruct a1; simpl; try (intros; discriminate).
destruct a2; simpl; try (intros; discriminate).
case (ident_eq i i0); intros.
subst i0. inversion H0. inversion H1. split. auto. congruence.
discriminate.
Qed.
Lemma eval_or:
forall le a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (or a b) (Vint (Int.or x y)).
Proof.
intros until y; unfold or; case (or_match a b); intros; InvEval.
caseEq (Int.eq amount1 amount2
&& Int.is_rlw_mask (Int.or mask1 mask2)
&& same_expr_pure t1 t2); intro.
destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H4).
generalize (Int.eq_spec amount1 amount2). rewrite H6. intro. subst amount2.
exploit eval_same_expr; eauto. intros [EQ1 EQ2]. inv EQ1. inv EQ2.
simpl. EvalOp. simpl. rewrite Int.or_rolm. auto.
simpl. apply eval_Eop with (Vint x :: Vint y :: nil).
econstructor. EvalOp. simpl. congruence.
econstructor. EvalOp. simpl. congruence. constructor. auto.
EvalOp.
Qed.
Theorem eval_shl:
forall le a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
Int.ltu y (Int.repr 32) = true ->
eval_expr ge sp e m le (shl a b) (Vint (Int.shl x y)).
Proof.
intros until y; unfold shl; case (shift_match b); intros.
InvEval. apply eval_shlimm; auto.
EvalOp. simpl. rewrite H1. auto.
Qed.
Theorem eval_shru:
forall le a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
Int.ltu y (Int.repr 32) = true ->
eval_expr ge sp e m le (shru a b) (Vint (Int.shru x y)).
Proof.
intros until y; unfold shru; case (shift_match b); intros.
InvEval. apply eval_shruimm; auto.
EvalOp. simpl. rewrite H1. auto.
Qed.
Theorem eval_addf:
forall le a x b y,
eval_expr ge sp e m le a (Vfloat x) ->
eval_expr ge sp e m le b (Vfloat y) ->
eval_expr ge sp e m le (addf a b) (Vfloat (Float.add x y)).
Proof.
intros until y; unfold addf.
destruct (use_fused_mul tt).
case (addf_match a b); intros; InvEval.
EvalOp. simpl. congruence.
EvalOp. simpl. rewrite Float.addf_commut. congruence.
EvalOp.
intros. EvalOp.
Qed.
Theorem eval_subf:
forall le a x b y,
eval_expr ge sp e m le a (Vfloat x) ->
eval_expr ge sp e m le b (Vfloat y) ->
eval_expr ge sp e m le (subf a b) (Vfloat (Float.sub x y)).
Proof.
intros until y; unfold subf.
destruct (use_fused_mul tt).
case (subf_match a b); intros.
InvEval. EvalOp. simpl. congruence.
EvalOp.
intros. EvalOp.
Qed.
Lemma loadv_cast:
forall chunk addr v,
loadv chunk m addr = Some v ->
match chunk with
| Mint8signed => loadv chunk m addr = Some(Val.sign_ext 8 v)
| Mint8unsigned => loadv chunk m addr = Some(Val.zero_ext 8 v)
| Mint16signed => loadv chunk m addr = Some(Val.sign_ext 16 v)
| Mint16unsigned => loadv chunk m addr = Some(Val.zero_ext 16 v)
| Mfloat32 => loadv chunk m addr = Some(Val.singleoffloat v)
| _ => True
end.
Proof.
intros. rewrite H. destruct addr; simpl in H; try discriminate.
exploit Mem.load_inv; eauto.
set (v' := (getN (pred_size_chunk chunk) (Int.signed i) (contents (blocks m b)))).
intros [A B]. subst v. destruct chunk; auto; destruct v'; simpl; auto.
rewrite Int.sign_ext_idem; auto. compute; auto.
rewrite Int.zero_ext_idem; auto. compute; auto.
rewrite Int.sign_ext_idem; auto. compute; auto.
rewrite Int.zero_ext_idem; auto. compute; auto.
rewrite Float.singleoffloat_idem; auto.
Qed.
Theorem eval_cast8signed:
forall le a v,
eval_expr ge sp e m le a v ->
eval_expr ge sp e m le (cast8signed a) (Val.sign_ext 8 v).
Proof.
intros until v; unfold cast8signed; case (cast8signed_match a); intros; InvEval.
EvalOp. simpl. subst v. destruct v1; simpl; auto.
rewrite Int.sign_ext_idem. reflexivity. compute; auto.
inv H. econstructor; eauto. apply (loadv_cast _ _ _ H7).
EvalOp.
Qed.
Theorem eval_cast8unsigned:
forall le a v,
eval_expr ge sp e m le a v ->
eval_expr ge sp e m le (cast8unsigned a) (Val.zero_ext 8 v).
Proof.
intros until v; unfold cast8unsigned; case (cast8unsigned_match a); intros; InvEval.
EvalOp. simpl. subst v. destruct v1; simpl; auto.
rewrite Int.zero_ext_idem. reflexivity. compute; auto.
inv H. econstructor; eauto. apply (loadv_cast _ _ _ H7).
EvalOp.
Qed.
Theorem eval_cast16signed:
forall le a v,
eval_expr ge sp e m le a v ->
eval_expr ge sp e m le (cast16signed a) (Val.sign_ext 16 v).
Proof.
intros until v; unfold cast16signed; case (cast16signed_match a); intros; InvEval.
EvalOp. simpl. subst v. destruct v1; simpl; auto.
rewrite Int.sign_ext_idem. reflexivity. compute; auto.
inv H. econstructor; eauto. apply (loadv_cast _ _ _ H7).
EvalOp.
Qed.
Theorem eval_cast16unsigned:
forall le a v,
eval_expr ge sp e m le a v ->
eval_expr ge sp e m le (cast16unsigned a) (Val.zero_ext 16 v).
Proof.
intros until v; unfold cast16unsigned; case (cast16unsigned_match a); intros; InvEval.
EvalOp. simpl. subst v. destruct v1; simpl; auto.
rewrite Int.zero_ext_idem. reflexivity. compute; auto.
inv H. econstructor; eauto. apply (loadv_cast _ _ _ H7).
EvalOp.
Qed.
Theorem eval_singleoffloat:
forall le a v,
eval_expr ge sp e m le a v ->
eval_expr ge sp e m le (singleoffloat a) (Val.singleoffloat v).
Proof.
intros until v; unfold singleoffloat; case (singleoffloat_match a); intros; InvEval.
EvalOp. simpl. subst v. destruct v1; simpl; auto. rewrite Float.singleoffloat_idem. reflexivity.
inv H. econstructor; eauto. apply (loadv_cast _ _ _ H7).
EvalOp.
Qed.
Theorem eval_comp_int:
forall le c a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (comp c a b) (Val.of_bool(Int.cmp c x y)).
Proof.
intros until y.
unfold comp; case (comp_match a b); intros; InvEval.
EvalOp. simpl. rewrite Int.swap_cmp. destruct (Int.cmp c x y); reflexivity.
EvalOp. simpl. destruct (Int.cmp c x y); reflexivity.
EvalOp. simpl. destruct (Int.cmp c x y); reflexivity.
Qed.
Remark eval_compare_null_transf:
forall c x v,
Cminor.eval_compare_null c x = Some v ->
match eval_compare_null c x with
| Some true => Some Vtrue
| Some false => Some Vfalse
| None => None (A:=val)
end = Some v.
Proof.
unfold Cminor.eval_compare_null, eval_compare_null; intros.
destruct (Int.eq x Int.zero); try discriminate.
destruct c; try discriminate; auto.
Qed.
Theorem eval_comp_ptr_int:
forall le c a x1 x2 b y v,
eval_expr ge sp e m le a (Vptr x1 x2) ->
eval_expr ge sp e m le b (Vint y) ->
Cminor.eval_compare_null c y = Some v ->
eval_expr ge sp e m le (comp c a b) v.
Proof.
intros until v.
unfold comp; case (comp_match a b); intros; InvEval.
EvalOp. simpl. apply eval_compare_null_transf; auto.
EvalOp. simpl. apply eval_compare_null_transf; auto.
Qed.
Remark eval_compare_null_swap:
forall c x,
Cminor.eval_compare_null (swap_comparison c) x =
Cminor.eval_compare_null c x.
Proof.
intros. unfold Cminor.eval_compare_null.
destruct (Int.eq x Int.zero). destruct c; auto. auto.
Qed.
Theorem eval_comp_int_ptr:
forall le c a x b y1 y2 v,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vptr y1 y2) ->
Cminor.eval_compare_null c x = Some v ->
eval_expr ge sp e m le (comp c a b) v.
Proof.
intros until v.
unfold comp; case (comp_match a b); intros; InvEval.
EvalOp. simpl. apply eval_compare_null_transf.
rewrite eval_compare_null_swap; auto.
EvalOp. simpl. apply eval_compare_null_transf. auto.
Qed.
Theorem eval_comp_ptr_ptr:
forall le c a x1 x2 b y1 y2,
eval_expr ge sp e m le a (Vptr x1 x2) ->
eval_expr ge sp e m le b (Vptr y1 y2) ->
x1 = y1 ->
eval_expr ge sp e m le (comp c a b) (Val.of_bool(Int.cmp c x2 y2)).
Proof.
intros until y2.
unfold comp; case (comp_match a b); intros; InvEval.
EvalOp. simpl. subst y1. rewrite dec_eq_true.
destruct (Int.cmp c x2 y2); reflexivity.
Qed.
Theorem eval_comp_ptr_ptr_2:
forall le c a x1 x2 b y1 y2 v,
eval_expr ge sp e m le a (Vptr x1 x2) ->
eval_expr ge sp e m le b (Vptr y1 y2) ->
x1 <> y1 ->
Cminor.eval_compare_mismatch c = Some v ->
eval_expr ge sp e m le (comp c a b) v.
Proof.
intros until y2.
unfold comp; case (comp_match a b); intros; InvEval.
EvalOp. simpl. rewrite dec_eq_false; auto.
destruct c; simpl in H2; inv H2; auto.
Qed.
Theorem eval_compu:
forall le c a x b y,
eval_expr ge sp e m le a (Vint x) ->
eval_expr ge sp e m le b (Vint y) ->
eval_expr ge sp e m le (compu c a b) (Val.of_bool(Int.cmpu c x y)).
Proof.
intros until y.
unfold compu; case (comp_match a b); intros; InvEval.
EvalOp. simpl. rewrite Int.swap_cmpu. destruct (Int.cmpu c x y); reflexivity.
EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity.
EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity.
Qed.
Theorem eval_compf:
forall le c a x b y,
eval_expr ge sp e m le a (Vfloat x) ->
eval_expr ge sp e m le b (Vfloat y) ->
eval_expr ge sp e m le (compf c a b) (Val.of_bool(Float.cmp c x y)).
Proof.
intros. unfold compf. EvalOp. simpl.
destruct (Float.cmp c x y); reflexivity.
Qed.
Lemma negate_condexpr_correct:
forall le a b,
eval_condexpr ge sp e m le a b ->
eval_condexpr ge sp e m le (negate_condexpr a) (negb b).
Proof.
induction 1; simpl.
constructor.
constructor.
econstructor. eauto. apply eval_negate_condition. auto.
econstructor. eauto. destruct vb1; auto.
Qed.
Scheme expr_ind2 := Induction for expr Sort Prop
with exprlist_ind2 := Induction for exprlist Sort Prop.
Fixpoint forall_exprlist (P: expr -> Prop) (el: exprlist) {struct el}: Prop :=
match el with
| Enil => True
| Econs e el' => P e /\ forall_exprlist P el'
end.
Lemma expr_induction_principle:
forall (P: expr -> Prop),
(forall i : ident, P (Evar i)) ->
(forall (o : operation) (e : exprlist),
forall_exprlist P e -> P (Eop o e)) ->
(forall (m : memory_chunk) (a : Op.addressing) (e : exprlist),
forall_exprlist P e -> P (Eload m a e)) ->
(forall (c : condexpr) (e : expr),
P e -> forall e0 : expr, P e0 -> P (Econdition c e e0)) ->
(forall e : expr, P e -> forall e0 : expr, P e0 -> P (Elet e e0)) ->
(forall n : nat, P (Eletvar n)) ->
forall e : expr, P e.
Proof.
intros. apply expr_ind2 with (P := P) (P0 := forall_exprlist P); auto.
simpl. auto.
intros. simpl. auto.
Qed.
Lemma eval_base_condition_of_expr:
forall le a v b,
eval_expr ge sp e m le a v ->
Val.bool_of_val v b ->
eval_condexpr ge sp e m le
(CEcond (Ccompimm Cne Int.zero) (a ::: Enil))
b.
Proof.
intros.
eapply eval_CEcond. eauto with evalexpr.
inversion H0; simpl. rewrite Int.eq_false; auto. auto. auto.
Qed.
Lemma is_compare_neq_zero_correct:
forall c v b,
is_compare_neq_zero c = true ->
eval_condition c (v :: nil) = Some b ->
Val.bool_of_val v b.
Proof.
intros.
destruct c; simpl in H; try discriminate;
destruct c; simpl in H; try discriminate;
generalize (Int.eq_spec i Int.zero); rewrite H; intro; subst i.
simpl in H0. destruct v; inv H0.
generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intros; simpl.
subst i; constructor. constructor; auto. constructor.
simpl in H0. destruct v; inv H0.
generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intros; simpl.
subst i; constructor. constructor; auto.
Qed.
Lemma is_compare_eq_zero_correct:
forall c v b,
is_compare_eq_zero c = true ->
eval_condition c (v :: nil) = Some b ->
Val.bool_of_val v (negb b).
Proof.
intros. apply is_compare_neq_zero_correct with (negate_condition c).
destruct c; simpl in H; simpl; try discriminate;
destruct c; simpl; try discriminate; auto.
apply eval_negate_condition; auto.
Qed.
Lemma eval_condition_of_expr:
forall a le v b,
eval_expr ge sp e m le a v ->
Val.bool_of_val v b ->
eval_condexpr ge sp e m le (condexpr_of_expr a) b.
Proof.
intro a0; pattern a0.
apply expr_induction_principle; simpl; intros;
try (eapply eval_base_condition_of_expr; eauto; fail).
destruct o; try (eapply eval_base_condition_of_expr; eauto; fail).
destruct e0. InvEval.
inversion H1.
rewrite Int.eq_false; auto. constructor.
subst i; rewrite Int.eq_true. constructor.
eapply eval_base_condition_of_expr; eauto.
inv H0. simpl in H7.
assert (eval_condition c vl = Some b).
destruct (eval_condition c vl); try discriminate.
destruct b0; inv H7; inversion H1; congruence.
assert (eval_condexpr ge sp e m le (CEcond c e0) b).
eapply eval_CEcond; eauto.
destruct e0; auto. destruct e1; auto.
simpl in H. destruct H.
inv H5. inv H11.
case_eq (is_compare_neq_zero c); intros.
eapply H; eauto.
apply is_compare_neq_zero_correct with c; auto.
case_eq (is_compare_eq_zero c); intros.
replace b with (negb (negb b)). apply negate_condexpr_correct.
eapply H; eauto.
apply is_compare_eq_zero_correct with c; auto.
apply negb_involutive.
auto.
inv H1. destruct v1; eauto with evalexpr.
Qed.
Lemma eval_addressing:
forall le a v b ofs,
eval_expr ge sp e m le a v ->
v = Vptr b ofs ->
match addressing a with (mode, args) =>
exists vl,
eval_exprlist ge sp e m le args vl /\
eval_addressing ge sp mode vl = Some v
end.
Proof.
intros until v. unfold addressing; case (addressing_match a); intros; InvEval.
exists (@nil val). split. eauto with evalexpr. simpl. auto.
exists (@nil val). split. eauto with evalexpr. simpl. auto.
destruct (Genv.find_symbol ge s); congruence.
exists (Vint i0 :: nil). split. eauto with evalexpr.
simpl. destruct (Genv.find_symbol ge s). congruence. discriminate.
exists (Vptr b0 i :: nil). split. eauto with evalexpr.
simpl. congruence.
exists (Vint i :: Vptr b0 i0 :: nil).
split. eauto with evalexpr. simpl.
congruence.
exists (Vptr b0 i :: Vint i0 :: nil).
split. eauto with evalexpr. simpl. congruence.
exists (v :: nil). split. eauto with evalexpr.
subst v. simpl. rewrite Int.add_zero. auto.
Qed.
Lemma eval_load:
forall le a v chunk v',
eval_expr ge sp e m le a v ->
Mem.loadv chunk m v = Some v' ->
eval_expr ge sp e m le (load chunk a) v'.
Proof.
intros. generalize H0; destruct v; simpl; intro; try discriminate.
unfold load.
generalize (eval_addressing _ _ _ _ _ H (refl_equal _)).
destruct (addressing a). intros [vl [EV EQ]].
eapply eval_Eload; eauto.
Qed.
Lemma eval_store:
forall chunk a1 a2 v1 v2 f k m',
eval_expr ge sp e m nil a1 v1 ->
eval_expr ge sp e m nil a2 v2 ->
Mem.storev chunk m v1 v2 = Some m' ->
step ge (State f (store chunk a1 a2) k sp e m)
E0 (State f Sskip k sp e m').
Proof.
intros. generalize H1; destruct v1; simpl; intro; try discriminate.
unfold store.
generalize (eval_addressing _ _ _ _ _ H (refl_equal _)).
destruct (addressing a1). intros [vl [EV EQ]].
eapply step_store; eauto.
Qed.
(** * Correctness of instruction selection for operators *)
(** We now prove a semantic preservation result for the [sel_unop]
and [sel_binop] selection functions. The proof exploits
the results of the previous section. *)
Lemma eval_sel_unop:
forall le op a1 v1 v,
eval_expr ge sp e m le a1 v1 ->
eval_unop op v1 = Some v ->
eval_expr ge sp e m le (sel_unop op a1) v.
Proof.
destruct op; simpl; intros; FuncInv; try subst v.
apply eval_cast8unsigned; auto.
apply eval_cast8signed; auto.
apply eval_cast16unsigned; auto.
apply eval_cast16signed; auto.
EvalOp.
generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intro.
change true with (negb false). eapply eval_notbool; eauto. subst i; constructor.
change false with (negb true). eapply eval_notbool; eauto. constructor; auto.
change Vfalse with (Val.of_bool (negb true)).
eapply eval_notbool; eauto. constructor.
apply eval_notint; auto.
EvalOp.
EvalOp.
apply eval_singleoffloat; auto.
EvalOp.
EvalOp.
EvalOp.
EvalOp.
Qed.
Lemma eval_sel_binop:
forall le op a1 a2 v1 v2 v,
eval_expr ge sp e m le a1 v1 ->
eval_expr ge sp e m le a2 v2 ->
eval_binop op v1 v2 = Some v ->
eval_expr ge sp e m le (sel_binop op a1 a2) v.
Proof.
destruct op; simpl; intros; FuncInv; try subst v.
apply eval_add; auto.
apply eval_add_ptr_2; auto.
apply eval_add_ptr; auto.
apply eval_sub; auto.
apply eval_sub_ptr_int; auto.
destruct (eq_block b b0); inv H1.
eapply eval_sub_ptr_ptr; eauto.
apply eval_mul; eauto.
generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
apply eval_divs; eauto.
generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
apply eval_divu; eauto.
generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
apply eval_mods; eauto.
generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
apply eval_modu; eauto.
apply eval_and; auto.
apply eval_or; auto.
EvalOp.
caseEq (Int.ltu i0 (Int.repr 32)); intro; rewrite H2 in H1; inv H1.
apply eval_shl; auto.
EvalOp.
caseEq (Int.ltu i0 (Int.repr 32)); intro; rewrite H2 in H1; inv H1.
apply eval_shru; auto.
apply eval_addf; auto.
apply eval_subf; auto.
EvalOp.
EvalOp.
apply eval_comp_int; auto.
eapply eval_comp_int_ptr; eauto.
eapply eval_comp_ptr_int; eauto.
destruct (eq_block b b0); inv H1.
eapply eval_comp_ptr_ptr; eauto.
eapply eval_comp_ptr_ptr_2; eauto.
eapply eval_compu; eauto.
eapply eval_compf; eauto.
Qed.
End CMCONSTR.
(** * Semantic preservation for instruction selection. *)
Section PRESERVATION.
Variable prog: Cminor.program.
Let tprog := sel_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
(** Relationship between the global environments for the original
CminorSel program and the generated RTL program. *)
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
intros; unfold ge, tge, tprog, sel_program.
apply Genv.find_symbol_transf.
Qed.
Lemma functions_translated:
forall (v: val) (f: Cminor.fundef),
Genv.find_funct ge v = Some f ->
Genv.find_funct tge v = Some (sel_fundef f).
Proof.
intros.
exact (Genv.find_funct_transf sel_fundef H).
Qed.
Lemma function_ptr_translated:
forall (b: block) (f: Cminor.fundef),
Genv.find_funct_ptr ge b = Some f ->
Genv.find_funct_ptr tge b = Some (sel_fundef f).
Proof.
intros.
exact (Genv.find_funct_ptr_transf sel_fundef H).
Qed.
Lemma sig_function_translated:
forall f,
funsig (sel_fundef f) = Cminor.funsig f.
Proof.
intros. destruct f; reflexivity.
Qed.
(** Semantic preservation for expressions. *)
Lemma sel_expr_correct:
forall sp e m a v,
Cminor.eval_expr ge sp e m a v ->
forall le,
eval_expr tge sp e m le (sel_expr a) v.
Proof.
induction 1; intros; simpl.
(* Evar *)
constructor; auto.
(* Econst *)
destruct cst; simpl; simpl in H; (econstructor; [constructor|simpl;auto]).
rewrite symbols_preserved. auto.
(* Eunop *)
eapply eval_sel_unop; eauto.
(* Ebinop *)
eapply eval_sel_binop; eauto.
(* Eload *)
eapply eval_load; eauto.
(* Econdition *)
econstructor; eauto. eapply eval_condition_of_expr; eauto.
destruct b1; auto.
Qed.
Hint Resolve sel_expr_correct: evalexpr.
Lemma sel_exprlist_correct:
forall sp e m a v,
Cminor.eval_exprlist ge sp e m a v ->
forall le,
eval_exprlist tge sp e m le (sel_exprlist a) v.
Proof.
induction 1; intros; simpl; constructor; auto with evalexpr.
Qed.
Hint Resolve sel_exprlist_correct: evalexpr.
(** Semantic preservation for terminating function calls and statements. *)
Fixpoint sel_cont (k: Cminor.cont) : CminorSel.cont :=
match k with
| Cminor.Kstop => Kstop
| Cminor.Kseq s1 k1 => Kseq (sel_stmt s1) (sel_cont k1)
| Cminor.Kblock k1 => Kblock (sel_cont k1)
| Cminor.Kcall id f sp e k1 =>
Kcall id (sel_function f) sp e (sel_cont k1)
end.
Inductive match_states: Cminor.state -> CminorSel.state -> Prop :=
| match_state: forall f s k s' k' sp e m,
s' = sel_stmt s ->
k' = sel_cont k ->
match_states
(Cminor.State f s k sp e m)
(State (sel_function f) s' k' sp e m)
| match_callstate: forall f args k k' m,
k' = sel_cont k ->
match_states
(Cminor.Callstate f args k m)
(Callstate (sel_fundef f) args k' m)
| match_returnstate: forall v k k' m,
k' = sel_cont k ->
match_states
(Cminor.Returnstate v k m)
(Returnstate v k' m).
Remark call_cont_commut:
forall k, call_cont (sel_cont k) = sel_cont (Cminor.call_cont k).
Proof.
induction k; simpl; auto.
Qed.
Remark find_label_commut:
forall lbl s k,
find_label lbl (sel_stmt s) (sel_cont k) =
option_map (fun sk => (sel_stmt (fst sk), sel_cont (snd sk)))
(Cminor.find_label lbl s k).
Proof.
induction s; intros; simpl; auto.
unfold store. destruct (addressing (sel_expr e)); auto.
change (Kseq (sel_stmt s2) (sel_cont k))
with (sel_cont (Cminor.Kseq s2 k)).
rewrite IHs1. rewrite IHs2.
destruct (Cminor.find_label lbl s1 (Cminor.Kseq s2 k)); auto.
rewrite IHs1. rewrite IHs2.
destruct (Cminor.find_label lbl s1 k); auto.
change (Kseq (Sloop (sel_stmt s)) (sel_cont k))
with (sel_cont (Cminor.Kseq (Cminor.Sloop s) k)).
auto.
change (Kblock (sel_cont k))
with (sel_cont (Cminor.Kblock k)).
auto.
destruct o; auto.
destruct (ident_eq lbl l); auto.
Qed.
Lemma sel_step_correct:
forall S1 t S2, Cminor.step ge S1 t S2 ->
forall T1, match_states S1 T1 ->
exists T2, step tge T1 t T2 /\ match_states S2 T2.
Proof.
induction 1; intros T1 ME; inv ME; simpl;
try (econstructor; split; [econstructor; eauto with evalexpr | econstructor; eauto]; fail).
(* skip call *)
econstructor; split.
econstructor. destruct k; simpl in H; simpl; auto.
rewrite <- H0; reflexivity.
constructor; auto.
(* assign *)
exists (State (sel_function f) Sskip (sel_cont k) sp (PTree.set id v e) m); split.
constructor. auto with evalexpr.
constructor; auto.
(* store *)
econstructor; split.
eapply eval_store; eauto with evalexpr.
constructor; auto.
(* Scall *)
econstructor; split.
econstructor; eauto with evalexpr.
apply functions_translated; eauto.
apply sig_function_translated.
constructor; auto.
(* Stailcall *)
econstructor; split.
econstructor; eauto with evalexpr.
apply functions_translated; eauto.
apply sig_function_translated.
constructor; auto. apply call_cont_commut.
(* Sifthenelse *)
exists (State (sel_function f) (if b then sel_stmt s1 else sel_stmt s2) (sel_cont k) sp e m); split.
constructor. eapply eval_condition_of_expr; eauto with evalexpr.
constructor; auto. destruct b; auto.
(* Sreturn None *)
econstructor; split.
econstructor.
constructor; auto. apply call_cont_commut.
(* Sreturn Some *)
econstructor; split.
econstructor. simpl. eauto with evalexpr.
constructor; auto. apply call_cont_commut.
(* Sgoto *)
econstructor; split.
econstructor. simpl. rewrite call_cont_commut. rewrite find_label_commut.
rewrite H. simpl. reflexivity.
constructor; auto.
Qed.
Lemma sel_initial_states:
forall S, Cminor.initial_state prog S ->
exists R, initial_state tprog R /\ match_states S R.
Proof.
induction 1.
econstructor; split.
econstructor.
simpl. fold tge. rewrite symbols_preserved. eexact H.
apply function_ptr_translated. eauto.
rewrite <- H1. apply sig_function_translated; auto.
unfold tprog, sel_program. rewrite Genv.init_mem_transf.
constructor; auto.
Qed.
Lemma sel_final_states:
forall S R r,
match_states S R -> Cminor.final_state S r -> final_state R r.
Proof.
intros. inv H0. inv H. simpl. constructor.
Qed.
Theorem transf_program_correct:
forall (beh: program_behavior),
Cminor.exec_program prog beh -> CminorSel.exec_program tprog beh.
Proof.
unfold CminorSel.exec_program, Cminor.exec_program; intros.
eapply simulation_step_preservation; eauto.
eexact sel_initial_states.
eexact sel_final_states.
exact sel_step_correct.
Qed.
End PRESERVATION.
|