summaryrefslogtreecommitdiff
path: root/powerpc/Selection.v
blob: f1c5a73b10a10016bc32cf8569ff02db09208d98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Instruction selection *)

(** The instruction selection pass recognizes opportunities for using
  combined arithmetic and logical operations and addressing modes
  offered by the target processor.  For instance, the expression [x + 1]
  can take advantage of the "immediate add" instruction of the processor,
  and on the PowerPC, the expression [(x >> 6) & 0xFF] can be turned
  into a "rotate and mask" instruction.

  Instruction selection proceeds by bottom-up rewriting over expressions.
  The source language is Cminor and the target language is CminorSel. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Globalenvs.
Require Cminor.
Require Import Op.
Require Import CminorSel.

Infix ":::" := Econs (at level 60, right associativity) : selection_scope.

Open Local Scope selection_scope.

(** * Lifting of let-bound variables *)

(** Some of the instruction functions generate [Elet] constructs to
  share the evaluation of a subexpression.  Owing to the use of de
  Bruijn indices for let-bound variables, we need to shift de Bruijn
  indices when an expression [b] is put in a [Elet a b] context. *)

Fixpoint lift_expr (p: nat) (a: expr) {struct a}: expr :=
  match a with
  | Evar id => Evar id
  | Eop op bl => Eop op (lift_exprlist p bl)
  | Eload chunk addr bl => Eload chunk addr (lift_exprlist p bl)
  | Econdition b c d =>
      Econdition (lift_condexpr p b) (lift_expr p c) (lift_expr p d)
  | Elet b c => Elet (lift_expr p b) (lift_expr (S p) c)
  | Eletvar n =>
      if le_gt_dec p n then Eletvar (S n) else Eletvar n
  end

with lift_condexpr (p: nat) (a: condexpr) {struct a}: condexpr :=
  match a with
  | CEtrue => CEtrue
  | CEfalse => CEfalse
  | CEcond cond bl => CEcond cond (lift_exprlist p bl)
  | CEcondition b c d =>
      CEcondition (lift_condexpr p b) (lift_condexpr p c) (lift_condexpr p d)
  end

with lift_exprlist (p: nat) (a: exprlist) {struct a}: exprlist :=
  match a with
  | Enil => Enil
  | Econs b cl => Econs (lift_expr p b) (lift_exprlist p cl)
  end.

Definition lift (a: expr): expr := lift_expr O a.

(** * Smart constructors for operators *)

(** This section defines functions for building CminorSel expressions
  and statements, especially expressions consisting of operator
  applications.  These functions examine their arguments to choose
  cheaper forms of operators whenever possible.

  For instance, [add e1 e2] will return a CminorSel expression semantically
  equivalent to [Eop Oadd (e1 ::: e2 ::: Enil)], but will use a
  [Oaddimm] operator if one of the arguments is an integer constant,
  or suppress the addition altogether if one of the arguments is the
  null integer.  In passing, we perform operator reassociation
  ([(e + c1) * c2] becomes [(e * c2) + (c1 * c2)]) and a small amount
  of constant propagation.
*)

(** ** Integer logical negation *)

(** The natural way to write smart constructors is by pattern-matching
  on their arguments, recognizing cases where cheaper operators
  or combined operators are applicable.  For instance, integer logical
  negation has three special cases (not-and, not-or and not-xor),
  along with a default case that uses not-or over its arguments and itself.
  This is written naively as follows:
<<
Definition notint (e: expr) :=
  match e with
  | Eop Oand (t1:::t2:::Enil) => Eop Onand (t1:::t2:::Enil)
  | Eop Oor (t1:::t2:::Enil) => Eop Onor (t1:::t2:::Enil)
  | Eop Oxor (t1:::t2:::Enil) => Eop Onxor (t1:::t2:::Enil)
  | _ => Elet(e, Eop Onor (Eletvar O ::: Eletvar O ::: Enil)
  end.
>>
  However, Coq expands complex pattern-matchings like the above into
  elementary matchings over all constructors of an inductive type,
  resulting in much duplication of the final catch-all case.
  Such duplications generate huge executable code and duplicate
  cases in the correctness proofs.

  To limit this duplication, we use the following trick due to
  Yves Bertot.  We first define a dependent inductive type that
  characterizes the expressions that match each of the 4 cases of interest.
*)

Inductive notint_cases: forall (e: expr), Set :=
  | notint_case1:
      forall (t1: expr) (t2: expr),
      notint_cases (Eop Oand (t1:::t2:::Enil))
  | notint_case2:
      forall (t1: expr) (t2: expr),
      notint_cases (Eop Oor (t1:::t2:::Enil))
  | notint_case3:
      forall (t1: expr) (t2: expr),
      notint_cases (Eop Oxor (t1:::t2:::Enil))
  | notint_default:
      forall (e: expr),
      notint_cases e.

(** We then define a classification function that takes an expression
  and return the case in which it falls.  Note that the catch-all case
  [notint_default] does not state that it is mutually exclusive with
  the first three, more specific cases.  The classification function
  nonetheless chooses the specific cases in preference to the catch-all
  case. *)

Definition notint_match (e: expr) :=
  match e as z1 return notint_cases z1 with
  | Eop Oand (t1:::t2:::Enil) =>
      notint_case1 t1 t2
  | Eop Oor (t1:::t2:::Enil) =>
      notint_case2 t1 t2
  | Eop Oxor (t1:::t2:::Enil) =>
      notint_case3 t1 t2
  | e =>
      notint_default e
  end.

(** Finally, the [notint] function we need is defined by a 4-case match
  over the result of the classification function.  Thus, no duplication
  of the right-hand sides of this match occur, and the proof has only
  4 cases to consider (it proceeds by case over [notint_match e]).
  Since the default case is not obviously exclusive with the three
  specific cases, it is important that its right-hand side is
  semantically correct for all possible values of [e], which is the
  case here and for all other smart constructors. *)

Definition notint (e: expr) :=
  match notint_match e with
  | notint_case1 t1 t2 =>
      Eop Onand (t1:::t2:::Enil)
  | notint_case2 t1 t2 =>
      Eop Onor (t1:::t2:::Enil)
  | notint_case3 t1 t2 =>
      Eop Onxor (t1:::t2:::Enil)
  | notint_default e =>
      Elet e (Eop Onor (Eletvar O ::: Eletvar O ::: Enil))
  end.

(** This programming pattern will be applied systematically for the
  other smart constructors in this file. *)

(** ** Boolean negation *)

Definition notbool_base (e: expr) :=
  Eop (Ocmp (Ccompimm Ceq Int.zero)) (e ::: Enil).

Fixpoint notbool (e: expr) {struct e} : expr :=
  match e with
  | Eop (Ointconst n) Enil =>
      Eop (Ointconst (if Int.eq n Int.zero then Int.one else Int.zero)) Enil
  | Eop (Ocmp cond) args =>
      Eop (Ocmp (negate_condition cond)) args
  | Econdition e1 e2 e3 =>
      Econdition e1 (notbool e2) (notbool e3)
  | _ =>
      notbool_base e
  end.

(** ** Integer addition and pointer addition *)

(*
Definition addimm (n: int) (e: expr) :=
  if Int.eq n Int.zero then e else
  match e with
  | Eop (Ointconst m) Enil       => Eop (Ointconst(Int.add n m)) Enil
  | Eop (Oaddrsymbol s m) Enil   => Eop (Oaddrsymbol s (Int.add n m)) Enil
  | Eop (Oaddrstack m) Enil      => Eop (Oaddrstack (Int.add n m)) Enil
  | Eop (Oaddimm m) (t ::: Enil) => Eop (Oaddimm(Int.add n m)) (t ::: Enil)
  | _                            => Eop (Oaddimm n) (e ::: Enil)
  end.
*)

(** Addition of an integer constant. *)

Inductive addimm_cases: forall (e: expr), Set :=
  | addimm_case1:
      forall (m: int),
      addimm_cases (Eop (Ointconst m) Enil)
  | addimm_case2:
      forall (s: ident) (m: int),
      addimm_cases (Eop (Oaddrsymbol s m) Enil)
  | addimm_case3:
      forall (m: int),
      addimm_cases (Eop (Oaddrstack m) Enil)
  | addimm_case4:
      forall (m: int) (t: expr),
      addimm_cases (Eop (Oaddimm m) (t ::: Enil))
  | addimm_default:
      forall (e: expr),
      addimm_cases e.

Definition addimm_match (e: expr) :=
  match e as z1 return addimm_cases z1 with
  | Eop (Ointconst m) Enil =>
      addimm_case1 m
  | Eop (Oaddrsymbol s m) Enil =>
      addimm_case2 s m
  | Eop (Oaddrstack m) Enil =>
      addimm_case3 m
  | Eop (Oaddimm m) (t ::: Enil) =>
      addimm_case4 m t
  | e =>
      addimm_default e
  end.

Definition addimm (n: int) (e: expr) :=
  if Int.eq n Int.zero then e else
  match addimm_match e with
  | addimm_case1 m =>
      Eop (Ointconst(Int.add n m)) Enil
  | addimm_case2 s m =>
      Eop (Oaddrsymbol s (Int.add n m)) Enil
  | addimm_case3 m =>
      Eop (Oaddrstack (Int.add n m)) Enil
  | addimm_case4 m t =>
      Eop (Oaddimm(Int.add n m)) (t ::: Enil)
  | addimm_default e =>
      Eop (Oaddimm n) (e ::: Enil)
  end.

(** Addition of two integer or pointer expressions. *)

(*
Definition add (e1: expr) (e2: expr) :=
  match e1, e2 with
  | Eop (Ointconst n1) Enil, t2 => addimm n1 t2
  | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
  | Eop(Oaddimm n1) (t1:::Enil)), t2 => addimm n1 (Eop Oadd (t1:::t2:::Enil))
  | t1, Eop (Ointconst n2) Enil => addimm n2 t1
  | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm n2 (Eop Oadd (t1:::t2:::Enil))
  | _, _ => Eop Oadd (e1:::e2:::Enil)
  end.
*)

Inductive add_cases: forall (e1: expr) (e2: expr), Set :=
  | add_case1:
      forall (n1: int) (t2: expr),
      add_cases (Eop (Ointconst n1) Enil) (t2)
  | add_case2:
      forall (n1: int) (t1: expr) (n2: int) (t2: expr),
      add_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
  | add_case3:
      forall (n1: int) (t1: expr) (t2: expr),
      add_cases (Eop(Oaddimm n1) (t1:::Enil)) (t2)
  | add_case4:
      forall (t1: expr) (n2: int),
      add_cases (t1) (Eop (Ointconst n2) Enil)
  | add_case5:
      forall (t1: expr) (n2: int) (t2: expr),
      add_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
  | add_default:
      forall (e1: expr) (e2: expr),
      add_cases e1 e2.

Definition add_match_aux (e1: expr) (e2: expr) :=
  match e2 as z2 return add_cases e1 z2 with
  | Eop (Ointconst n2) Enil =>
      add_case4 e1 n2
  | Eop (Oaddimm n2) (t2:::Enil) =>
      add_case5 e1 n2 t2
  | e2 =>
      add_default e1 e2
  end.

Definition add_match (e1: expr) (e2: expr) :=
  match e1 as z1, e2 as z2 return add_cases z1 z2 with
  | Eop (Ointconst n1) Enil, t2 =>
      add_case1 n1 t2
  | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
      add_case2 n1 t1 n2 t2
  | Eop(Oaddimm n1) (t1:::Enil), t2 =>
      add_case3 n1 t1 t2
  | e1, e2 =>
      add_match_aux e1 e2
  end.

Definition add (e1: expr) (e2: expr) :=
  match add_match e1 e2 with
  | add_case1 n1 t2 =>
      addimm n1 t2
  | add_case2 n1 t1 n2 t2 =>
      addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
  | add_case3 n1 t1 t2 =>
      addimm n1 (Eop Oadd (t1:::t2:::Enil))
  | add_case4 t1 n2 =>
      addimm n2 t1
  | add_case5 t1 n2 t2 =>
      addimm n2 (Eop Oadd (t1:::t2:::Enil))
  | add_default e1 e2 =>
      Eop Oadd (e1:::e2:::Enil)
  end.

(** ** Integer and pointer subtraction *)

(*
Definition sub (e1: expr) (e2: expr) :=
  match e1, e2 with
  | t1, Eop (Ointconst n2) Enil => addimm (Int.neg n2) t1
  | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm 
(intsub n1 n2) (Eop Osub (t1:::t2:::Enil))
  | Eop (Oaddimm n1) (t1:::Enil), t2 => addimm n1 (Eop Osub (t1:::t2:::Rni
l))
  | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.neg n2) (Eop Osub (t1:::
:t2:::Enil))
  | _, _ => Eop Osub (e1:::e2:::Enil)
  end.
*)

Inductive sub_cases: forall (e1: expr) (e2: expr), Set :=
  | sub_case1:
      forall (t1: expr) (n2: int),
      sub_cases (t1) (Eop (Ointconst n2) Enil)
  | sub_case2:
      forall (n1: int) (t1: expr) (n2: int) (t2: expr),
      sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
  | sub_case3:
      forall (n1: int) (t1: expr) (t2: expr),
      sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (t2)
  | sub_case4:
      forall (t1: expr) (n2: int) (t2: expr),
      sub_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
  | sub_default:
      forall (e1: expr) (e2: expr),
      sub_cases e1 e2.

Definition sub_match_aux (e1: expr) (e2: expr) :=
  match e1 as z1 return sub_cases z1 e2 with
  | Eop (Oaddimm n1) (t1:::Enil) =>
      sub_case3 n1 t1 e2
  | e1 =>
      sub_default e1 e2
  end.

Definition sub_match (e1: expr) (e2: expr) :=
  match e2 as z2, e1 as z1 return sub_cases z1 z2 with
  | Eop (Ointconst n2) Enil, t1 =>
      sub_case1 t1 n2
  | Eop (Oaddimm n2) (t2:::Enil), Eop (Oaddimm n1) (t1:::Enil) =>
      sub_case2 n1 t1 n2 t2
  | Eop (Oaddimm n2) (t2:::Enil), t1 =>
      sub_case4 t1 n2 t2
  | e2, e1 =>
      sub_match_aux e1 e2
  end.

Definition sub (e1: expr) (e2: expr) :=
  match sub_match e1 e2 with
  | sub_case1 t1 n2 =>
      addimm (Int.neg n2) t1
  | sub_case2 n1 t1 n2 t2 =>
      addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
  | sub_case3 n1 t1 t2 =>
      addimm n1 (Eop Osub (t1:::t2:::Enil))
  | sub_case4 t1 n2 t2 =>
      addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
  | sub_default e1 e2 =>
      Eop Osub (e1:::e2:::Enil)
  end.

(** ** Rotates and immediate shifts *)

(*
Definition rolm (e1: expr) :=
  match e1 with
  | Eop (Ointconst n1) Enil =>
      Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
  | Eop (Orolm amount1 mask1) (t1:::Enil) =>
      let amount := Int.and (Int.add amount1 amount2) Ox1Fl in
      let mask := Int.and (Int.rol mask1 amount2) mask2 in
      if Int.is_rlw_mask mask
      then Eop (Orolm amount mask) (t1:::Enil)
      else Eop (Orolm amount2 mask2) (e1:::Enil)
  | _ => Eop (Orolm amount2 mask2) (e1:::Enil)
  end
*)

Inductive rolm_cases: forall (e1: expr), Set :=
  | rolm_case1:
      forall (n1: int),
      rolm_cases (Eop (Ointconst n1) Enil)
  | rolm_case2:
      forall (amount1: int) (mask1: int) (t1: expr),
      rolm_cases (Eop (Orolm amount1 mask1) (t1:::Enil))
  | rolm_default:
      forall (e1: expr),
      rolm_cases e1.

Definition rolm_match (e1: expr) :=
  match e1 as z1 return rolm_cases z1 with
  | Eop (Ointconst n1) Enil =>
      rolm_case1 n1
  | Eop (Orolm amount1 mask1) (t1:::Enil) =>
      rolm_case2 amount1 mask1 t1
  | e1 =>
      rolm_default e1
  end.

Definition rolm (e1: expr) (amount2 mask2: int) :=
  match rolm_match e1 with
  | rolm_case1 n1 =>
      Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
  | rolm_case2 amount1 mask1 t1 =>
      let amount := Int.and (Int.add amount1 amount2) (Int.repr 31) in
      let mask := Int.and (Int.rol mask1 amount2) mask2 in
      if Int.is_rlw_mask mask
      then Eop (Orolm amount mask) (t1:::Enil)
      else Eop (Orolm amount2 mask2) (e1:::Enil)
  | rolm_default e1 =>
      Eop (Orolm amount2 mask2) (e1:::Enil)
  end.

Definition shlimm (e1: expr) (n2: int) :=
  if Int.eq n2 Int.zero then
    e1
  else if Int.ltu n2 (Int.repr 32) then
    rolm e1 n2 (Int.shl Int.mone n2)
  else
    Eop Oshl (e1:::Eop (Ointconst n2) Enil:::Enil).

Definition shruimm (e1: expr) (n2: int) :=
  if Int.eq n2 Int.zero then
    e1
  else if Int.ltu n2 (Int.repr 32) then
    rolm e1 (Int.sub (Int.repr 32) n2) (Int.shru Int.mone n2)
  else
    Eop Oshru (e1:::Eop (Ointconst n2) Enil:::Enil).

(** ** Integer multiply *)

Definition mulimm_base (n1: int) (e2: expr) :=
  match Int.one_bits n1 with
  | i :: nil =>
      shlimm e2 i
  | i :: j :: nil =>
      Elet e2
        (Eop Oadd (shlimm (Eletvar 0) i :::
                   shlimm (Eletvar 0) j ::: Enil))
  | _ =>
      Eop (Omulimm n1) (e2:::Enil)
  end.

(*
Definition mulimm (n1: int) (e2: expr) :=
  if Int.eq n1 Int.zero then 
    Elet e2 (Eop (Ointconst Int.zero) Enil)
  else if Int.eq n1 Int.one then
    e2
  else match e2 with
  | Eop (Ointconst n2) Enil => Eop (Ointconst(intmul n1 n2)) Enil
  | Eop (Oaddimm n2) (t2:::Enil) => addimm (intmul n1 n2) (mulimm_base n1 t2)
  | _ => mulimm_base n1 e2
  end.
*)

Inductive mulimm_cases: forall (e2: expr), Set :=
  | mulimm_case1:
      forall (n2: int),
      mulimm_cases (Eop (Ointconst n2) Enil)
  | mulimm_case2:
      forall (n2: int) (t2: expr),
      mulimm_cases (Eop (Oaddimm n2) (t2:::Enil))
  | mulimm_default:
      forall (e2: expr),
      mulimm_cases e2.

Definition mulimm_match (e2: expr) :=
  match e2 as z1 return mulimm_cases z1 with
  | Eop (Ointconst n2) Enil =>
      mulimm_case1 n2
  | Eop (Oaddimm n2) (t2:::Enil) =>
      mulimm_case2 n2 t2
  | e2 =>
      mulimm_default e2
  end.

Definition mulimm (n1: int) (e2: expr) :=
  if Int.eq n1 Int.zero then 
    Elet e2 (Eop (Ointconst Int.zero) Enil)
  else if Int.eq n1 Int.one then
    e2
  else match mulimm_match e2 with
  | mulimm_case1 n2 =>
      Eop (Ointconst(Int.mul n1 n2)) Enil
  | mulimm_case2 n2 t2 =>
      addimm (Int.mul n1 n2) (mulimm_base n1 t2)
  | mulimm_default e2 =>
      mulimm_base n1 e2
  end.

(*
Definition mul (e1: expr) (e2: expr) :=
  match e1, e2 with
  | Eop (Ointconst n1) Enil, t2 => mulimm n1 t2
  | t1, Eop (Ointconst n2) Enil => mulimm n2 t1
  | _, _ => Eop Omul (e1:::e2:::Enil)
  end.
*)

Inductive mul_cases: forall (e1: expr) (e2: expr), Set :=
  | mul_case1:
      forall (n1: int) (t2: expr),
      mul_cases (Eop (Ointconst n1) Enil) (t2)
  | mul_case2:
      forall (t1: expr) (n2: int),
      mul_cases (t1) (Eop (Ointconst n2) Enil)
  | mul_default:
      forall (e1: expr) (e2: expr),
      mul_cases e1 e2.

Definition mul_match_aux (e1: expr) (e2: expr) :=
  match e2 as z2 return mul_cases e1 z2 with
  | Eop (Ointconst n2) Enil =>
      mul_case2 e1 n2
  | e2 =>
      mul_default e1 e2
  end.

Definition mul_match (e1: expr) (e2: expr) :=
  match e1 as z1 return mul_cases z1 e2 with
  | Eop (Ointconst n1) Enil =>
      mul_case1 n1 e2
  | e1 =>
      mul_match_aux e1 e2
  end.

Definition mul (e1: expr) (e2: expr) :=
  match mul_match e1 e2 with
  | mul_case1 n1 t2 =>
      mulimm n1 t2
  | mul_case2 t1 n2 =>
      mulimm n2 t1
  | mul_default e1 e2 =>
      Eop Omul (e1:::e2:::Enil)
  end.

(** ** Integer division and modulus *)

Definition divs (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil).

Definition mod_aux (divop: operation) (e1 e2: expr) :=
  Elet e1
    (Elet (lift e2)
      (Eop Osub (Eletvar 1 :::
                 Eop Omul (Eop divop (Eletvar 1 ::: Eletvar 0 ::: Enil) :::
                           Eletvar 0 :::
                           Enil) :::
                 Enil))).

Definition mods := mod_aux Odiv.

Inductive divu_cases: forall (e2: expr), Set :=
  | divu_case1:
      forall (n2: int),
      divu_cases (Eop (Ointconst n2) Enil)
  | divu_default:
      forall (e2: expr),
      divu_cases e2.

Definition divu_match (e2: expr) :=
  match e2 as z1 return divu_cases z1 with
  | Eop (Ointconst n2) Enil =>
      divu_case1 n2
  | e2 =>
      divu_default e2
  end.

Definition divu (e1: expr) (e2: expr) :=
  match divu_match e2 with
  | divu_case1 n2 =>
      match Int.is_power2 n2 with
      | Some l2 => shruimm e1 l2
      | None    => Eop Odivu (e1:::e2:::Enil)
      end
  | divu_default e2 =>
      Eop Odivu (e1:::e2:::Enil)
  end.

Definition modu (e1: expr) (e2: expr) :=
  match divu_match e2 with
  | divu_case1 n2 =>
      match Int.is_power2 n2 with
      | Some l2 => rolm e1 Int.zero (Int.sub n2 Int.one)
      | None    => mod_aux Odivu e1 e2
      end
  | divu_default e2 =>
      mod_aux Odivu e1 e2
  end.

(** ** Bitwise and, or, xor *)

Definition andimm (n1: int) (e2: expr) :=
  if Int.is_rlw_mask n1
  then rolm e2 Int.zero n1
  else Eop (Oandimm n1) (e2:::Enil).

Definition and (e1: expr) (e2: expr) :=
  match mul_match e1 e2 with
  | mul_case1 n1 t2 =>
      andimm n1 t2
  | mul_case2 t1 n2 =>
      andimm n2 t1
  | mul_default e1 e2 =>
      Eop Oand (e1:::e2:::Enil)
  end.

Definition same_expr_pure (e1 e2: expr) :=
  match e1, e2 with
  | Evar v1, Evar v2 => if ident_eq v1 v2 then true else false
  | _, _ => false
  end.

Inductive or_cases: forall (e1: expr) (e2: expr), Set :=
  | or_case1:
      forall (amount1: int) (mask1: int) (t1: expr)
             (amount2: int) (mask2: int) (t2: expr),
      or_cases (Eop (Orolm amount1  mask1) (t1:::Enil)) 
               (Eop (Orolm amount2 mask2) (t2:::Enil))
  | or_default:
      forall (e1: expr) (e2: expr),
      or_cases e1 e2.

Definition or_match (e1: expr) (e2: expr) :=
  match e1 as z1, e2 as z2 return or_cases z1 z2 with
  | Eop (Orolm amount1  mask1) (t1:::Enil),
    Eop (Orolm amount2 mask2) (t2:::Enil) =>
      or_case1 amount1 mask1 t1 amount2 mask2 t2
  | e1, e2 =>
      or_default e1 e2
  end.

Definition or (e1: expr) (e2: expr) :=
  match or_match e1 e2 with
  | or_case1 amount1 mask1 t1 amount2 mask2 t2 =>
      if Int.eq amount1 amount2
      && Int.is_rlw_mask (Int.or mask1 mask2)
      && same_expr_pure t1 t2
      then Eop (Orolm amount1 (Int.or mask1 mask2)) (t1:::Enil)
      else Eop Oor (e1:::e2:::Enil)
  | or_default e1 e2 =>
      Eop Oor (e1:::e2:::Enil)
  end.

(** ** General shifts *)

Inductive shift_cases: forall (e1: expr), Set :=
  | shift_case1:
      forall (n2: int),
      shift_cases (Eop (Ointconst n2) Enil)
  | shift_default:
      forall (e1: expr),
      shift_cases e1.

Definition shift_match (e1: expr) :=
  match e1 as z1 return shift_cases z1 with
  | Eop (Ointconst n2) Enil =>
      shift_case1 n2
  | e1 =>
      shift_default e1
  end.

Definition shl (e1: expr) (e2: expr) :=
  match shift_match e2 with
  | shift_case1 n2 =>
      shlimm e1 n2
  | shift_default e2 =>
      Eop Oshl (e1:::e2:::Enil)
  end.

Definition shru (e1: expr) (e2: expr) :=
  match shift_match e2 with
  | shift_case1 n2 =>
      shruimm e1 n2
  | shift_default e2 =>
      Eop Oshru (e1:::e2:::Enil)
  end.

(** ** Floating-point arithmetic *)

Parameter use_fused_mul : unit -> bool.

(*
Definition addf (e1: expr) (e2: expr) :=
  match e1, e2 with
  | Eop Omulf (t1:::t2:::Enil), t3 => Eop Omuladdf (t1:::t2:::t3:::Enil)
  | t1, Eop Omulf (t2:::t3:::Enil) => Elet t1 (Eop Omuladdf (t2:::t3:::Rvar 0:::Enil))
  | _, _ => Eop Oaddf (e1:::e2:::Enil)
  end.
*)

Inductive addf_cases: forall (e1: expr) (e2: expr), Set :=
  | addf_case1:
      forall (t1: expr) (t2: expr) (t3: expr),
      addf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
  | addf_case2:
      forall (t1: expr) (t2: expr) (t3: expr),
      addf_cases (t1) (Eop Omulf (t2:::t3:::Enil))
  | addf_default:
      forall (e1: expr) (e2: expr),
      addf_cases e1 e2.

Definition addf_match_aux (e1: expr) (e2: expr) :=
  match e2 as z2 return addf_cases e1 z2 with
  | Eop Omulf (t2:::t3:::Enil) =>
      addf_case2 e1 t2 t3
  | e2 =>
      addf_default e1 e2
  end.

Definition addf_match (e1: expr) (e2: expr) :=
  match e1 as z1 return addf_cases z1 e2 with
  | Eop Omulf (t1:::t2:::Enil) =>
      addf_case1 t1 t2 e2
  | e1 =>
      addf_match_aux e1 e2
  end.

Definition addf (e1: expr) (e2: expr) :=
  if use_fused_mul tt then
    match addf_match e1 e2 with
    | addf_case1 t1 t2 t3 =>
        Eop Omuladdf (t1:::t2:::t3:::Enil)
    | addf_case2 t1 t2 t3 =>
        Eop Omuladdf (t2:::t3:::t1:::Enil)
    | addf_default e1 e2 =>
        Eop Oaddf (e1:::e2:::Enil)
    end
  else Eop Oaddf (e1:::e2:::Enil).

(*
Definition subf (e1: expr) (e2: expr) :=
  match e1, e2 with
  | Eop Omulfloat (t1:::t2:::Enil), t3 => Eop Omulsubf (t1:::t2:::t3:::Enil)
  | _, _ => Eop Osubf (e1:::e2:::Enil)
  end.
*)

Inductive subf_cases: forall (e1: expr) (e2: expr), Set :=
  | subf_case1:
      forall (t1: expr) (t2: expr) (t3: expr),
      subf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
  | subf_default:
      forall (e1: expr) (e2: expr),
      subf_cases e1 e2.

Definition subf_match (e1: expr) (e2: expr) :=
  match e1 as z1 return subf_cases z1 e2 with
  | Eop Omulf (t1:::t2:::Enil) =>
      subf_case1 t1 t2 e2
  | e1 =>
      subf_default e1 e2
  end.

Definition subf (e1: expr) (e2: expr) :=
  if use_fused_mul tt then
    match subf_match e1 e2 with
    | subf_case1 t1 t2 t3 =>
        Eop Omulsubf (t1:::t2:::t3:::Enil)
    | subf_default e1 e2 =>
        Eop Osubf (e1:::e2:::Enil)
    end
  else Eop Osubf (e1:::e2:::Enil).

(** ** Truncations and sign extensions *)

Inductive cast8signed_cases: forall (e1: expr), Set :=
  | cast8signed_case1:
      forall (e2: expr),
      cast8signed_cases (Eop Ocast8signed (e2 ::: Enil))
  | cast8signed_default:
      forall (e1: expr),
      cast8signed_cases e1.

Definition cast8signed_match (e1: expr) :=
  match e1 as z1 return cast8signed_cases z1 with
  | Eop Ocast8signed (e2 ::: Enil) =>
      cast8signed_case1 e2
  | e1 =>
      cast8signed_default e1
  end.

Definition cast8signed (e: expr) := 
  match cast8signed_match e with
  | cast8signed_case1 e1 => e
  | cast8signed_default e1 => Eop Ocast8signed (e1 ::: Enil)
  end.

Inductive cast8unsigned_cases: forall (e1: expr), Set :=
  | cast8unsigned_case1:
      forall (e2: expr),
      cast8unsigned_cases (Eop Ocast8unsigned (e2 ::: Enil))
  | cast8unsigned_default:
      forall (e1: expr),
      cast8unsigned_cases e1.

Definition cast8unsigned_match (e1: expr) :=
  match e1 as z1 return cast8unsigned_cases z1 with
  | Eop Ocast8unsigned (e2 ::: Enil) =>
      cast8unsigned_case1 e2
  | e1 =>
      cast8unsigned_default e1
  end.

Definition cast8unsigned (e: expr) := 
  match cast8unsigned_match e with
  | cast8unsigned_case1 e1 => e
  | cast8unsigned_default e1 => Eop Ocast8unsigned (e1 ::: Enil)
  end.

Inductive cast16signed_cases: forall (e1: expr), Set :=
  | cast16signed_case1:
      forall (e2: expr),
      cast16signed_cases (Eop Ocast16signed (e2 ::: Enil))
  | cast16signed_default:
      forall (e1: expr),
      cast16signed_cases e1.

Definition cast16signed_match (e1: expr) :=
  match e1 as z1 return cast16signed_cases z1 with
  | Eop Ocast16signed (e2 ::: Enil) =>
      cast16signed_case1 e2
  | e1 =>
      cast16signed_default e1
  end.

Definition cast16signed (e: expr) := 
  match cast16signed_match e with
  | cast16signed_case1 e1 => e
  | cast16signed_default e1 => Eop Ocast16signed (e1 ::: Enil)
  end.

Inductive cast16unsigned_cases: forall (e1: expr), Set :=
  | cast16unsigned_case1:
      forall (e2: expr),
      cast16unsigned_cases (Eop Ocast16unsigned (e2 ::: Enil))
  | cast16unsigned_default:
      forall (e1: expr),
      cast16unsigned_cases e1.

Definition cast16unsigned_match (e1: expr) :=
  match e1 as z1 return cast16unsigned_cases z1 with
  | Eop Ocast16unsigned (e2 ::: Enil) =>
      cast16unsigned_case1 e2
  | e1 =>
      cast16unsigned_default e1
  end.

Definition cast16unsigned (e: expr) := 
  match cast16unsigned_match e with
  | cast16unsigned_case1 e1 => e
  | cast16unsigned_default e1 => Eop Ocast16unsigned (e1 ::: Enil)
  end.

Inductive singleoffloat_cases: forall (e1: expr), Set :=
  | singleoffloat_case1:
      forall (e2: expr),
      singleoffloat_cases (Eop Osingleoffloat (e2 ::: Enil))
  | singleoffloat_default:
      forall (e1: expr),
      singleoffloat_cases e1.

Definition singleoffloat_match (e1: expr) :=
  match e1 as z1 return singleoffloat_cases z1 with
  | Eop Osingleoffloat (e2 ::: Enil) =>
      singleoffloat_case1 e2
  | e1 =>
      singleoffloat_default e1
  end.

Definition singleoffloat (e: expr) := 
  match singleoffloat_match e with
  | singleoffloat_case1 e1 => e
  | singleoffloat_default e1 => Eop Osingleoffloat (e1 ::: Enil)
  end.

(** ** Comparisons *)

Inductive comp_cases: forall (e1: expr) (e2: expr), Set :=
  | comp_case1:
      forall n1 t2,
      comp_cases (Eop (Ointconst n1) Enil) (t2)
  | comp_case2:
      forall t1 n2,
      comp_cases (t1) (Eop (Ointconst n2) Enil)
  | comp_default:
      forall (e1: expr) (e2: expr),
      comp_cases e1 e2.

Definition comp_match (e1: expr) (e2: expr) :=
  match e1 as z1, e2 as z2 return comp_cases z1 z2 with
  | Eop (Ointconst n1) Enil, t2 =>
      comp_case1 n1 t2
  | t1, Eop (Ointconst n2) Enil =>
      comp_case2 t1 n2
  | e1, e2 =>
      comp_default e1 e2
  end.

Definition comp (c: comparison) (e1: expr) (e2: expr) :=
  match comp_match e1 e2 with
  | comp_case1 n1 t2 =>
      Eop (Ocmp (Ccompimm (swap_comparison c) n1)) (t2 ::: Enil)
  | comp_case2 t1 n2 =>
      Eop (Ocmp (Ccompimm c n2)) (t1 ::: Enil)
  | comp_default e1 e2 =>
      Eop (Ocmp (Ccomp c)) (e1 ::: e2 ::: Enil)
  end.

Definition compu (c: comparison) (e1: expr) (e2: expr) :=
  match comp_match e1 e2 with
  | comp_case1 n1 t2 =>
      Eop (Ocmp (Ccompuimm (swap_comparison c) n1)) (t2 ::: Enil)
  | comp_case2 t1 n2 =>
      Eop (Ocmp (Ccompuimm c n2)) (t1 ::: Enil)
  | comp_default e1 e2 =>
      Eop (Ocmp (Ccompu c)) (e1 ::: e2 ::: Enil)
  end.

Definition compf (c: comparison) (e1: expr) (e2: expr) :=
  Eop (Ocmp (Ccompf c)) (e1 ::: e2 ::: Enil).

(** ** Conditional expressions *)

Fixpoint negate_condexpr (e: condexpr): condexpr :=
  match e with
  | CEtrue => CEfalse
  | CEfalse => CEtrue
  | CEcond c el => CEcond (negate_condition c) el
  | CEcondition e1 e2 e3 =>
      CEcondition e1 (negate_condexpr e2) (negate_condexpr e3)
  end.


Definition is_compare_neq_zero (c: condition) : bool :=
  match c with
  | Ccompimm Cne n => Int.eq n Int.zero
  | Ccompuimm Cne n => Int.eq n Int.zero
  | _ => false
  end.

Definition is_compare_eq_zero (c: condition) : bool :=
  match c with
  | Ccompimm Ceq n => Int.eq n Int.zero
  | Ccompuimm Ceq n => Int.eq n Int.zero
  | _ => false
  end.

Fixpoint condexpr_of_expr (e: expr) : condexpr :=
  match e with
  | Eop (Ointconst n) Enil =>
      if Int.eq n Int.zero then CEfalse else CEtrue
  | Eop (Ocmp c) (e1 ::: Enil) =>
      if is_compare_neq_zero c then
        condexpr_of_expr e1
      else if is_compare_eq_zero c then
        negate_condexpr (condexpr_of_expr e1)
      else
        CEcond c (e1 ::: Enil)
  | Eop (Ocmp c) el =>
      CEcond c el
  | Econdition ce e1 e2 =>
      CEcondition ce (condexpr_of_expr e1) (condexpr_of_expr e2)
  | _ =>
      CEcond (Ccompimm Cne Int.zero) (e:::Enil)
  end.

(** ** Recognition of addressing modes for load and store operations *)

(*
Definition addressing (e: expr) :=
  match e with
  | Eop (Oaddrsymbol s n) Enil => (Aglobal s n, Enil)
  | Eop (Oaddrstack n) Enil => (Ainstack n, Enil)
  | Eop Oadd (Eop (Oaddrsymbol s n) Enil) e2 => (Abased(s, n), e2:::Enil)
  | Eop (Oaddimm n) (e1:::Enil) => (Aindexed n, e1:::Enil)
  | Eop Oadd (e1:::e2:::Enil) => (Aindexed2, e1:::e2:::Enil)
  | _ => (Aindexed Int.zero, e:::Enil)
  end.
*)

Inductive addressing_cases: forall (e: expr), Set :=
  | addressing_case1:
      forall (s: ident) (n: int),
      addressing_cases (Eop (Oaddrsymbol s n) Enil)
  | addressing_case2:
      forall (n: int),
      addressing_cases (Eop (Oaddrstack n) Enil)
  | addressing_case3:
      forall (s: ident) (n: int) (e2: expr),
      addressing_cases
        (Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil))
  | addressing_case4:
      forall (n: int) (e1: expr),
      addressing_cases (Eop (Oaddimm n) (e1:::Enil))
  | addressing_case5:
      forall (e1: expr) (e2: expr),
      addressing_cases (Eop Oadd (e1:::e2:::Enil))
  | addressing_default:
      forall (e: expr),
      addressing_cases e.

Definition addressing_match (e: expr) :=
  match e as z1 return addressing_cases z1 with
  | Eop (Oaddrsymbol s n) Enil =>
      addressing_case1 s n
  | Eop (Oaddrstack n) Enil =>
      addressing_case2 n
  | Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil) =>
      addressing_case3 s n e2
  | Eop (Oaddimm n) (e1:::Enil) =>
      addressing_case4 n e1
  | Eop Oadd (e1:::e2:::Enil) =>
      addressing_case5 e1 e2
  | e =>
      addressing_default e
  end.

Definition addressing (e: expr) :=
  match addressing_match e with
  | addressing_case1 s n =>
      (Aglobal s n, Enil)
  | addressing_case2 n =>
      (Ainstack n, Enil)
  | addressing_case3 s n e2 =>
      (Abased s n, e2:::Enil)
  | addressing_case4 n e1 =>
      (Aindexed n, e1:::Enil)
  | addressing_case5 e1 e2 =>
      (Aindexed2, e1:::e2:::Enil)
  | addressing_default e =>
      (Aindexed Int.zero, e:::Enil)
  end.

Definition load (chunk: memory_chunk) (e1: expr) :=
  match addressing e1 with
  | (mode, args) => Eload chunk mode args
  end.

Definition store (chunk: memory_chunk) (e1 e2: expr) :=
  match addressing e1 with
  | (mode, args) => Sstore chunk mode args e2
  end.

(** * Translation from Cminor to CminorSel *)

(** Instruction selection for operator applications *)

Definition sel_constant (cst: Cminor.constant) : expr :=
  match cst with
  | Cminor.Ointconst n => Eop (Ointconst n) Enil
  | Cminor.Ofloatconst f => Eop (Ofloatconst f) Enil
  | Cminor.Oaddrsymbol id ofs => Eop (Oaddrsymbol id ofs) Enil
  | Cminor.Oaddrstack ofs => Eop (Oaddrstack ofs) Enil
  end.

Definition sel_unop (op: Cminor.unary_operation) (arg: expr) : expr :=
  match op with
  | Cminor.Ocast8unsigned => cast8unsigned arg 
  | Cminor.Ocast8signed => cast8signed arg 
  | Cminor.Ocast16unsigned => cast16unsigned arg 
  | Cminor.Ocast16signed => cast16signed arg 
  | Cminor.Onegint => Eop (Osubimm Int.zero) (arg ::: Enil)
  | Cminor.Onotbool => notbool arg
  | Cminor.Onotint => notint arg
  | Cminor.Onegf => Eop Onegf (arg ::: Enil)
  | Cminor.Oabsf => Eop Oabsf (arg ::: Enil)
  | Cminor.Osingleoffloat => singleoffloat arg
  | Cminor.Ointoffloat => Eop Ointoffloat (arg ::: Enil)
  | Cminor.Ointuoffloat => Eop Ointuoffloat (arg ::: Enil)
  | Cminor.Ofloatofint => Eop Ofloatofint (arg ::: Enil)
  | Cminor.Ofloatofintu => Eop Ofloatofintu (arg ::: Enil)
  end.

Definition sel_binop (op: Cminor.binary_operation) (arg1 arg2: expr) : expr :=
  match op with
  | Cminor.Oadd => add arg1 arg2
  | Cminor.Osub => sub arg1 arg2
  | Cminor.Omul => mul arg1 arg2
  | Cminor.Odiv => divs arg1 arg2
  | Cminor.Odivu => divu arg1 arg2
  | Cminor.Omod => mods arg1 arg2
  | Cminor.Omodu => modu arg1 arg2
  | Cminor.Oand => and arg1 arg2
  | Cminor.Oor => or arg1 arg2
  | Cminor.Oxor => Eop Oxor (arg1 ::: arg2 ::: Enil)
  | Cminor.Oshl => shl arg1 arg2
  | Cminor.Oshr => Eop Oshr (arg1 ::: arg2 ::: Enil)
  | Cminor.Oshru => shru arg1 arg2
  | Cminor.Oaddf => addf arg1 arg2
  | Cminor.Osubf => subf arg1 arg2
  | Cminor.Omulf => Eop Omulf (arg1 ::: arg2 ::: Enil)
  | Cminor.Odivf => Eop Odivf (arg1 ::: arg2 ::: Enil)
  | Cminor.Ocmp c => comp c arg1 arg2
  | Cminor.Ocmpu c => compu c arg1 arg2
  | Cminor.Ocmpf c => compf c arg1 arg2
  end.

(** Conversion from Cminor expression to Cminorsel expressions *)

Fixpoint sel_expr (a: Cminor.expr) : expr :=
  match a with
  | Cminor.Evar id => Evar id
  | Cminor.Econst cst => sel_constant cst
  | Cminor.Eunop op arg => sel_unop op (sel_expr arg)
  | Cminor.Ebinop op arg1 arg2 => sel_binop op (sel_expr arg1) (sel_expr arg2)
  | Cminor.Eload chunk addr => load chunk (sel_expr addr)
  | Cminor.Econdition cond ifso ifnot =>
      Econdition (condexpr_of_expr (sel_expr cond))
                 (sel_expr ifso) (sel_expr ifnot)
  end.

Fixpoint sel_exprlist (al: list Cminor.expr) : exprlist :=
  match al with
  | nil => Enil
  | a :: bl => Econs (sel_expr a) (sel_exprlist bl)
  end.

(** Conversion from Cminor statements to Cminorsel statements. *)

Fixpoint sel_stmt (s: Cminor.stmt) : stmt :=
  match s with
  | Cminor.Sskip => Sskip
  | Cminor.Sassign id e => Sassign id (sel_expr e)
  | Cminor.Sstore chunk addr rhs => store chunk (sel_expr addr) (sel_expr rhs)
  | Cminor.Scall optid sg fn args =>
      Scall optid sg (sel_expr fn) (sel_exprlist args)
  | Cminor.Stailcall sg fn args => 
      Stailcall sg (sel_expr fn) (sel_exprlist args)
  | Cminor.Sseq s1 s2 => Sseq (sel_stmt s1) (sel_stmt s2)
  | Cminor.Sifthenelse e ifso ifnot =>
      Sifthenelse (condexpr_of_expr (sel_expr e))
                  (sel_stmt ifso) (sel_stmt ifnot)
  | Cminor.Sloop body => Sloop (sel_stmt body)
  | Cminor.Sblock body => Sblock (sel_stmt body)
  | Cminor.Sexit n => Sexit n
  | Cminor.Sswitch e cases dfl => Sswitch (sel_expr e) cases dfl
  | Cminor.Sreturn None => Sreturn None
  | Cminor.Sreturn (Some e) => Sreturn (Some (sel_expr e))
  | Cminor.Slabel lbl body => Slabel lbl (sel_stmt body)
  | Cminor.Sgoto lbl => Sgoto lbl
  end.

(** Conversion of functions and programs. *)

Definition sel_function (f: Cminor.function) : function :=
  mkfunction
    f.(Cminor.fn_sig)
    f.(Cminor.fn_params)
    f.(Cminor.fn_vars)
    f.(Cminor.fn_stackspace)
    (sel_stmt f.(Cminor.fn_body)).

Definition sel_fundef (f: Cminor.fundef) : fundef :=
  transf_fundef sel_function f.

Definition sel_program (p: Cminor.program) : program :=
  transform_program sel_fundef p.