1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness of instruction selection for operators *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Cminor.
Require Import Op.
Require Import CminorSel.
Require Import SelectOp.
Open Local Scope cminorsel_scope.
Section CMCONSTR.
Variable ge: genv.
Variable sp: val.
Variable e: env.
Variable m: mem.
(** * Useful lemmas and tactics *)
(** The following are trivial lemmas and custom tactics that help
perform backward (inversion) and forward reasoning over the evaluation
of operator applications. *)
Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
Ltac InvEval1 :=
match goal with
| [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] =>
inv H; InvEval1
| [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] =>
inv H; InvEval1
| _ =>
idtac
end.
Ltac InvEval2 :=
match goal with
| [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] =>
simpl in H; inv H
| [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] =>
simpl in H; FuncInv
| [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] =>
simpl in H; FuncInv
| [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] =>
simpl in H; FuncInv
| _ =>
idtac
end.
Ltac InvEval := InvEval1; InvEval2; InvEval2.
Ltac TrivialExists :=
match goal with
| [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto]
end.
(** * Correctness of the smart constructors *)
(** We now show that the code generated by "smart constructor" functions
such as [SelectOp.notint] behaves as expected. Continuing the
[notint] example, we show that if the expression [e]
evaluates to some value [v], then [SelectOp.notint e]
evaluates to a value [v'] which is either [Val.notint v] or more defined
than [Val.notint v].
All proofs follow a common pattern:
- Reasoning by case over the result of the classification functions
(such as [add_match] for integer addition), gathering additional
information on the shape of the argument expressions in the non-default
cases.
- Inversion of the evaluations of the arguments, exploiting the additional
information thus gathered.
- Equational reasoning over the arithmetic operations performed,
using the lemmas from the [Int], [Float] and [Value] modules.
- Construction of an evaluation derivation for the expression returned
by the smart constructor.
*)
Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop :=
forall le a x,
eval_expr ge sp e m le a x ->
exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v.
Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop :=
forall le a x b y,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v.
Theorem eval_addrsymbol:
forall le id ofs,
exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (symbol_address ge id ofs) v.
Proof.
intros. unfold addrsymbol. econstructor; split.
EvalOp. simpl; eauto.
auto.
Qed.
Theorem eval_addrstack:
forall le ofs,
exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.add sp (Vint ofs)) v.
Proof.
intros. unfold addrstack. econstructor; split.
EvalOp. simpl; eauto.
auto.
Qed.
Theorem eval_notint: unary_constructor_sound notint Val.notint.
Proof.
assert (forall v, Val.lessdef (Val.notint (Val.notint v)) v).
destruct v; simpl; auto. rewrite Int.not_involutive; auto.
unfold notint; red; intros until x; case (notint_match a); intros; InvEval.
TrivialExists.
subst. exists v1; split; auto.
subst. TrivialExists.
subst. TrivialExists.
subst. TrivialExists.
subst. exists (Val.and v1 v0); split; auto. EvalOp.
subst. exists (Val.or v1 v0); split; auto. EvalOp.
subst. exists (Val.xor v1 v0); split; auto. EvalOp.
subst. exists (Val.or v0 (Val.notint v1)); split. EvalOp.
destruct v0; destruct v1; simpl; auto. rewrite Int.not_and_or_not. rewrite Int.not_involutive.
rewrite Int.or_commut. auto.
subst. exists (Val.and v0 (Val.notint v1)); split. EvalOp.
destruct v0; destruct v1; simpl; auto. rewrite Int.not_or_and_not. rewrite Int.not_involutive.
rewrite Int.and_commut. auto.
TrivialExists.
Qed.
Theorem eval_boolval: unary_constructor_sound boolval Val.boolval.
Proof.
assert (DFL:
forall le a x,
eval_expr ge sp e m le a x ->
exists v, eval_expr ge sp e m le (Eop (Ocmp (Ccompuimm Cne Int.zero)) (a ::: Enil)) v
/\ Val.lessdef (Val.boolval x) v).
intros. TrivialExists. simpl. destruct x; simpl; auto.
red. induction a; simpl; intros; eauto. destruct o; eauto.
(* intconst *)
destruct e0; eauto. InvEval. TrivialExists. simpl. destruct (Int.eq i Int.zero); auto.
(* cmp *)
inv H. simpl in H5.
destruct (eval_condition c vl m) as []_eqn.
TrivialExists. simpl. inv H5. rewrite Heqo. destruct b; auto.
simpl in H5. inv H5.
exists Vundef; split; auto. EvalOp; simpl. rewrite Heqo; auto.
(* condition *)
inv H. destruct v1.
exploit IHa1; eauto. intros [v [A B]]. exists v; split; auto. eapply eval_Econdition; eauto.
exploit IHa2; eauto. intros [v [A B]]. exists v; split; auto. eapply eval_Econdition; eauto.
Qed.
Theorem eval_notbool: unary_constructor_sound notbool Val.notbool.
Proof.
assert (DFL:
forall le a x,
eval_expr ge sp e m le a x ->
exists v, eval_expr ge sp e m le (Eop (Ocmp (Ccompuimm Ceq Int.zero)) (a ::: Enil)) v
/\ Val.lessdef (Val.notbool x) v).
intros. TrivialExists. simpl. destruct x; simpl; auto.
red. induction a; simpl; intros; eauto. destruct o; eauto.
(* intconst *)
destruct e0; eauto. InvEval. TrivialExists. simpl. destruct (Int.eq i Int.zero); auto.
(* cmp *)
inv H. simpl in H5. inv H5.
TrivialExists. simpl. rewrite eval_negate_condition.
destruct (eval_condition c vl m); auto. destruct b; auto.
(* condition *)
inv H. destruct v1.
exploit IHa1; eauto. intros [v [A B]]. exists v; split; auto. eapply eval_Econdition; eauto.
exploit IHa2; eauto. intros [v [A B]]. exists v; split; auto. eapply eval_Econdition; eauto.
Qed.
Theorem eval_addimm:
forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)).
Proof.
red; unfold addimm; intros until x.
predSpec Int.eq Int.eq_spec n Int.zero.
subst n. intros. exists x; split; auto.
destruct x; simpl; auto. rewrite Int.add_zero. auto. rewrite Int.add_zero. auto.
case (addimm_match a); intros; InvEval; simpl; TrivialExists; simpl.
rewrite Int.add_commut. auto.
unfold symbol_address. destruct (Genv.find_symbol ge s); simpl; auto. rewrite Int.add_commut; auto.
rewrite Val.add_assoc. rewrite Int.add_commut. auto.
subst x. rewrite Val.add_assoc. rewrite Int.add_commut. auto.
Qed.
Theorem eval_add: binary_constructor_sound add Val.add.
Proof.
red; intros until y.
unfold add; case (add_match a b); intros; InvEval.
rewrite Val.add_commut. apply eval_addimm; auto.
apply eval_addimm; auto.
subst.
replace (Val.add (Val.add v1 (Vint n1)) (Val.add v0 (Vint n2)))
with (Val.add (Val.add v1 v0) (Val.add (Vint n1) (Vint n2))).
apply eval_addimm. EvalOp.
repeat rewrite Val.add_assoc. decEq. apply Val.add_permut.
subst.
replace (Val.add (Val.add v1 (Vint n1)) y)
with (Val.add (Val.add v1 y) (Vint n1)).
apply eval_addimm. EvalOp.
repeat rewrite Val.add_assoc. decEq. apply Val.add_commut.
subst. TrivialExists.
econstructor. EvalOp. simpl. reflexivity. econstructor. eauto. constructor.
simpl. rewrite (Val.add_commut v1). rewrite <- Val.add_assoc. decEq; decEq.
unfold symbol_address. destruct (Genv.find_symbol ge s); auto.
subst. TrivialExists.
econstructor. EvalOp. simpl. reflexivity. econstructor. eauto. constructor.
simpl. repeat rewrite Val.add_assoc. decEq; decEq.
rewrite Val.add_commut. rewrite Val.add_permut. auto.
subst. rewrite <- Val.add_assoc. apply eval_addimm. EvalOp.
TrivialExists.
Qed.
Theorem eval_sub: binary_constructor_sound sub Val.sub.
Proof.
red; intros until y.
unfold sub; case (sub_match a b); intros; InvEval.
rewrite Val.sub_add_opp. apply eval_addimm; auto.
subst. rewrite Val.sub_add_l. rewrite Val.sub_add_r.
rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp.
apply eval_addimm; EvalOp.
subst. rewrite Val.sub_add_l. apply eval_addimm; EvalOp.
subst. rewrite Val.sub_add_r. apply eval_addimm; EvalOp.
TrivialExists.
Qed.
Theorem eval_negint: unary_constructor_sound negint (fun v => Val.sub Vzero v).
Proof.
red; intros. unfold negint. TrivialExists.
Qed.
Lemma eval_rolm:
forall amount mask,
unary_constructor_sound (fun a => rolm a amount mask)
(fun x => Val.rolm x amount mask).
Proof.
red; intros until x. unfold rolm; case (rolm_match a); intros; InvEval.
TrivialExists.
subst. rewrite Val.rolm_rolm. TrivialExists.
subst. rewrite <- Val.rolm_zero. rewrite Val.rolm_rolm.
rewrite (Int.add_commut Int.zero). rewrite Int.add_zero. TrivialExists.
TrivialExists.
Qed.
Theorem eval_shlimm:
forall n, unary_constructor_sound (fun a => shlimm a n)
(fun x => Val.shl x (Vint n)).
Proof.
red; intros. unfold shlimm.
predSpec Int.eq Int.eq_spec n Int.zero.
subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto.
destruct (Int.ltu n Int.iwordsize) as []_eqn.
rewrite Val.shl_rolm; auto. apply eval_rolm; auto.
TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto.
Qed.
Theorem eval_shrimm:
forall n, unary_constructor_sound (fun a => shrimm a n)
(fun x => Val.shr x (Vint n)).
Proof.
red; intros. unfold shrimm.
predSpec Int.eq Int.eq_spec n Int.zero.
subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto.
TrivialExists.
Qed.
Theorem eval_shruimm:
forall n, unary_constructor_sound (fun a => shruimm a n)
(fun x => Val.shru x (Vint n)).
Proof.
red; intros. unfold shruimm.
predSpec Int.eq Int.eq_spec n Int.zero.
subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto.
destruct (Int.ltu n Int.iwordsize) as []_eqn.
rewrite Val.shru_rolm; auto. apply eval_rolm; auto.
TrivialExists. econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto.
Qed.
Lemma eval_mulimm_base:
forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)).
Proof.
intros; red; intros; unfold mulimm_base.
generalize (Int.one_bits_decomp n).
generalize (Int.one_bits_range n).
destruct (Int.one_bits n).
intros. TrivialExists.
destruct l.
intros. rewrite H1. simpl.
rewrite Int.add_zero.
replace (Vint (Int.shl Int.one i)) with (Val.shl Vone (Vint i)). rewrite Val.shl_mul.
apply eval_shlimm. auto. simpl. rewrite H0; auto with coqlib.
destruct l.
intros. rewrite H1. simpl.
exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]].
exploit (eval_shlimm i0 (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]].
exists (Val.add v1 v2); split.
econstructor. eauto. EvalOp.
rewrite Int.add_zero.
replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one i0)))
with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint i0))).
rewrite Val.mul_add_distr_r.
repeat rewrite Val.shl_mul. apply Val.add_lessdef; auto.
simpl. repeat rewrite H0; auto with coqlib.
intros. TrivialExists.
Qed.
Theorem eval_mulimm:
forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)).
Proof.
intros; red; intros until x; unfold mulimm.
predSpec Int.eq Int.eq_spec n Int.zero.
intros. exists (Vint Int.zero); split. EvalOp.
destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto.
predSpec Int.eq Int.eq_spec n Int.one.
intros. exists x; split; auto.
destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto.
case (mulimm_match a); intros; InvEval.
TrivialExists. simpl. rewrite Int.mul_commut; auto.
subst. rewrite Val.mul_add_distr_l.
exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]].
exploit (eval_addimm (Int.mul n n2) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]].
exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto.
rewrite Val.mul_commut; auto.
apply eval_mulimm_base; auto.
Qed.
Theorem eval_mul: binary_constructor_sound mul Val.mul.
Proof.
red; intros until y.
unfold mul; case (mul_match a b); intros; InvEval.
rewrite Val.mul_commut. apply eval_mulimm. auto.
apply eval_mulimm. auto.
TrivialExists.
Qed.
Theorem eval_andimm:
forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)).
Proof.
intros; red; intros until x. unfold andimm. case (andimm_match a); intros.
InvEval. TrivialExists. simpl. rewrite Int.and_commut; auto.
set (n' := Int.and n n2).
destruct (Int.eq (Int.shru (Int.shl n' amount) amount) n' &&
Int.ltu amount Int.iwordsize) as []_eqn.
InvEval. destruct (andb_prop _ _ Heqb).
generalize (Int.eq_spec (Int.shru (Int.shl n' amount) amount) n'). rewrite H1; intros.
replace (Val.and x (Vint n))
with (Val.rolm v0 (Int.sub Int.iwordsize amount) (Int.and (Int.shru Int.mone amount) n')).
apply eval_rolm; auto.
subst. destruct v0; simpl; auto. rewrite H3. simpl. decEq. rewrite Int.and_assoc.
rewrite (Int.and_commut n2 n).
transitivity (Int.and (Int.shru i amount) (Int.and n n2)).
rewrite (Int.shru_rolm i); auto. unfold Int.rolm. rewrite Int.and_assoc; auto.
symmetry. apply Int.shr_and_shru_and. auto.
set (e2 := Eop (Oshrimm amount) (t2 ::: Enil)) in *.
InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists.
InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists.
InvEval. subst. TrivialExists. simpl.
destruct v1; auto. simpl. unfold Int.rolm. rewrite Int.and_assoc.
decEq. decEq. decEq. apply Int.and_commut.
destruct (Int.eq (Int.shru (Int.shl n amount) amount) n &&
Int.ltu amount Int.iwordsize) as []_eqn.
InvEval. destruct (andb_prop _ _ Heqb).
generalize (Int.eq_spec (Int.shru (Int.shl n amount) amount) n). rewrite H0; intros.
replace (Val.and x (Vint n))
with (Val.rolm v1 (Int.sub Int.iwordsize amount) (Int.and (Int.shru Int.mone amount) n)).
apply eval_rolm; auto.
subst x. destruct v1; simpl; auto. rewrite H1; simpl. decEq.
transitivity (Int.and (Int.shru i amount) n).
rewrite (Int.shru_rolm i); auto. unfold Int.rolm. rewrite Int.and_assoc; auto.
symmetry. apply Int.shr_and_shru_and. auto.
TrivialExists.
TrivialExists.
Qed.
Theorem eval_and: binary_constructor_sound and Val.and.
Proof.
red; intros until y; unfold and; case (and_match a b); intros; InvEval.
rewrite Val.and_commut. apply eval_andimm; auto.
apply eval_andimm; auto.
subst. rewrite Val.and_commut. TrivialExists.
subst. TrivialExists.
TrivialExists.
Qed.
Theorem eval_orimm:
forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)).
Proof.
intros; red; intros until x.
unfold orimm. destruct (orimm_match a); intros; InvEval.
TrivialExists. simpl. rewrite Int.or_commut; auto.
subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists.
TrivialExists.
Qed.
Remark eval_same_expr:
forall a1 a2 le v1 v2,
same_expr_pure a1 a2 = true ->
eval_expr ge sp e m le a1 v1 ->
eval_expr ge sp e m le a2 v2 ->
a1 = a2 /\ v1 = v2.
Proof.
intros until v2.
destruct a1; simpl; try (intros; discriminate).
destruct a2; simpl; try (intros; discriminate).
case (ident_eq i i0); intros.
subst i0. inversion H0. inversion H1. split. auto. congruence.
discriminate.
Qed.
Theorem eval_or: binary_constructor_sound or Val.or.
Proof.
red; intros until y; unfold or; case (or_match a b); intros.
(* rolm - rolm *)
destruct (Int.eq amount1 amount2 && same_expr_pure t1 t2) as []_eqn.
destruct (andb_prop _ _ Heqb0).
generalize (Int.eq_spec amount1 amount2). rewrite H1. intro. subst amount2.
InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]. subst.
rewrite Val.or_rolm. TrivialExists.
TrivialExists.
(* andimm - rolm *)
destruct (Int.eq mask1 (Int.not mask2) && is_rlw_mask mask2) as []_eqn.
destruct (andb_prop _ _ Heqb0).
generalize (Int.eq_spec mask1 (Int.not mask2)); rewrite H1; intros.
InvEval. subst. TrivialExists.
TrivialExists.
(* rolm - andimm *)
destruct (Int.eq mask2 (Int.not mask1) && is_rlw_mask mask1) as []_eqn.
destruct (andb_prop _ _ Heqb0).
generalize (Int.eq_spec mask2 (Int.not mask1)); rewrite H1; intros.
InvEval. subst. rewrite Val.or_commut. TrivialExists.
TrivialExists.
(* intconst *)
InvEval. rewrite Val.or_commut. apply eval_orimm; auto.
InvEval. apply eval_orimm; auto.
(* orc *)
InvEval. subst. rewrite Val.or_commut. TrivialExists.
InvEval. subst. TrivialExists.
(* default *)
TrivialExists.
Qed.
Theorem eval_xorimm:
forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)).
Proof.
intros; red; intros until x.
unfold xorimm. destruct (xorimm_match a); intros; InvEval.
TrivialExists. simpl. rewrite Int.xor_commut; auto.
subst. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut. TrivialExists.
TrivialExists.
Qed.
Theorem eval_xor: binary_constructor_sound xor Val.xor.
Proof.
red; intros until y; unfold xor; case (xor_match a b); intros; InvEval.
rewrite Val.xor_commut. apply eval_xorimm; auto.
apply eval_xorimm; auto.
subst x. rewrite Val.xor_commut. rewrite Val.not_xor. rewrite <- Val.xor_assoc.
rewrite <- Val.not_xor. rewrite Val.xor_commut. TrivialExists.
subst y. rewrite Val.not_xor. rewrite <- Val.xor_assoc. rewrite <- Val.not_xor. TrivialExists.
TrivialExists.
Qed.
Theorem eval_divs:
forall le a b x y z,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
Val.divs x y = Some z ->
exists v, eval_expr ge sp e m le (divs a b) v /\ Val.lessdef z v.
Proof.
intros. unfold divs. exists z; split. EvalOp. auto.
Qed.
Lemma eval_mod_aux:
forall divop semdivop,
(forall sp x y m, eval_operation ge sp divop (x :: y :: nil) m = semdivop x y) ->
forall le a b x y z,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
semdivop x y = Some z ->
eval_expr ge sp e m le (mod_aux divop a b) (Val.sub x (Val.mul z y)).
Proof.
intros; unfold mod_aux.
eapply eval_Elet. eexact H0. eapply eval_Elet.
apply eval_lift. eexact H1.
eapply eval_Eop. eapply eval_Econs.
eapply eval_Eletvar. simpl; reflexivity.
eapply eval_Econs. eapply eval_Eop.
eapply eval_Econs. eapply eval_Eop.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
apply eval_Enil.
rewrite H. eauto.
eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
apply eval_Enil.
simpl; reflexivity. apply eval_Enil.
reflexivity.
Qed.
Theorem eval_mods:
forall le a b x y z,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
Val.mods x y = Some z ->
exists v, eval_expr ge sp e m le (mods a b) v /\ Val.lessdef z v.
Proof.
intros; unfold mods.
exploit Val.mods_divs; eauto. intros [v [A B]].
subst. econstructor; split; eauto.
apply eval_mod_aux with (semdivop := Val.divs); auto.
Qed.
Theorem eval_divuimm:
forall le n a x z,
eval_expr ge sp e m le a x ->
Val.divu x (Vint n) = Some z ->
exists v, eval_expr ge sp e m le (divuimm a n) v /\ Val.lessdef z v.
Proof.
intros; unfold divuimm.
destruct (Int.is_power2 n) as []_eqn.
replace z with (Val.shru x (Vint i)). apply eval_shruimm; auto.
eapply Val.divu_pow2; eauto.
TrivialExists.
econstructor. eauto. econstructor. EvalOp. simpl; eauto. constructor. auto.
Qed.
Theorem eval_divu:
forall le a x b y z,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
Val.divu x y = Some z ->
exists v, eval_expr ge sp e m le (divu a b) v /\ Val.lessdef z v.
Proof.
intros until z. unfold divu; destruct (divu_match b); intros; InvEval.
eapply eval_divuimm; eauto.
TrivialExists.
Qed.
Theorem eval_moduimm:
forall le n a x z,
eval_expr ge sp e m le a x ->
Val.modu x (Vint n) = Some z ->
exists v, eval_expr ge sp e m le (moduimm a n) v /\ Val.lessdef z v.
Proof.
intros; unfold moduimm.
destruct (Int.is_power2 n) as []_eqn.
replace z with (Val.and x (Vint (Int.sub n Int.one))). apply eval_andimm; auto.
eapply Val.modu_pow2; eauto.
exploit Val.modu_divu; eauto. intros [v [A B]].
subst. econstructor; split; eauto.
apply eval_mod_aux with (semdivop := Val.divu); auto.
EvalOp.
Qed.
Theorem eval_modu:
forall le a x b y z,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
Val.modu x y = Some z ->
exists v, eval_expr ge sp e m le (modu a b) v /\ Val.lessdef z v.
Proof.
intros until y; unfold modu; case (modu_match b); intros; InvEval.
eapply eval_moduimm; eauto.
exploit Val.modu_divu; eauto. intros [v [A B]].
subst. econstructor; split; eauto.
apply eval_mod_aux with (semdivop := Val.divu); auto.
Qed.
Theorem eval_shl: binary_constructor_sound shl Val.shl.
Proof.
red; intros until y; unfold shl; case (shl_match b); intros.
InvEval. apply eval_shlimm; auto.
TrivialExists.
Qed.
Theorem eval_shr: binary_constructor_sound shr Val.shr.
Proof.
red; intros until y; unfold shr; case (shr_match b); intros.
InvEval. apply eval_shrimm; auto.
TrivialExists.
Qed.
Theorem eval_shru: binary_constructor_sound shru Val.shru.
Proof.
red; intros until y; unfold shru; case (shru_match b); intros.
InvEval. apply eval_shruimm; auto.
TrivialExists.
Qed.
Theorem eval_negf: unary_constructor_sound negf Val.negf.
Proof.
red; intros. TrivialExists.
Qed.
Theorem eval_absf: unary_constructor_sound absf Val.absf.
Proof.
red; intros. TrivialExists.
Qed.
Theorem eval_addf: binary_constructor_sound addf Val.addf.
Proof.
red; intros; TrivialExists.
Qed.
Theorem eval_subf: binary_constructor_sound subf Val.subf.
Proof.
red; intros; TrivialExists.
Qed.
Theorem eval_mulf: binary_constructor_sound mulf Val.mulf.
Proof.
red; intros; TrivialExists.
Qed.
Theorem eval_divf: binary_constructor_sound divf Val.divf.
Proof.
red; intros; TrivialExists.
Qed.
Theorem eval_comp:
forall c, binary_constructor_sound (comp c) (Val.cmp c).
Proof.
intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval.
TrivialExists. simpl. rewrite Val.swap_cmp_bool. auto.
TrivialExists.
TrivialExists.
Qed.
Theorem eval_compu:
forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c).
Proof.
intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval.
TrivialExists. simpl. rewrite Val.swap_cmpu_bool. auto.
TrivialExists.
TrivialExists.
Qed.
Theorem eval_compf:
forall c, binary_constructor_sound (compf c) (Val.cmpf c).
Proof.
intros; red; intros. unfold compf. TrivialExists.
Qed.
Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8).
Proof.
red; intros. unfold cast8signed. TrivialExists.
Qed.
Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8).
Proof.
red; intros. unfold cast8unsigned.
rewrite Val.zero_ext_and. apply eval_andimm; auto. compute; auto.
Qed.
Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16).
Proof.
red; intros. unfold cast16signed. TrivialExists.
Qed.
Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16).
Proof.
red; intros. unfold cast16unsigned.
rewrite Val.zero_ext_and. apply eval_andimm; auto. compute; auto.
Qed.
Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat.
Proof.
red; intros. unfold singleoffloat. TrivialExists.
Qed.
Theorem eval_intoffloat:
forall le a x y,
eval_expr ge sp e m le a x ->
Val.intoffloat x = Some y ->
exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v.
Proof.
intros; unfold intoffloat. TrivialExists.
Qed.
Theorem eval_intuoffloat:
forall le a x y,
eval_expr ge sp e m le a x ->
Val.intuoffloat x = Some y ->
exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v.
Proof.
intros. destruct x; simpl in H0; try discriminate.
destruct (Float.intuoffloat f) as [n|]_eqn; simpl in H0; inv H0.
exists (Vint n); split; auto. unfold intuoffloat.
set (im := Int.repr Int.half_modulus).
set (fm := Float.floatofintu im).
assert (eval_expr ge sp e m (Vfloat f :: le) (Eletvar O) (Vfloat f)).
constructor. auto.
econstructor. eauto.
apply eval_Econdition with (v1 := Float.cmp Clt f fm).
econstructor. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
simpl. auto.
destruct (Float.cmp Clt f fm) as []_eqn.
exploit Float.intuoffloat_intoffloat_1; eauto. intro EQ.
EvalOp. simpl. rewrite EQ; auto.
exploit Float.intuoffloat_intoffloat_2; eauto. intro EQ.
set (t1 := Eop (Ofloatconst (Float.floatofintu Float.ox8000_0000)) Enil).
set (t2 := subf (Eletvar 0) t1).
set (t3 := intoffloat t2).
exploit (eval_subf (Vfloat f :: le) (Eletvar 0) (Vfloat f) t1).
auto. unfold t1; EvalOp. simpl; eauto.
fold t2. intros [v2 [A2 B2]]. simpl in B2. inv B2.
exploit (eval_addimm Float.ox8000_0000 (Vfloat f :: le) t3).
unfold t3. unfold intoffloat. EvalOp. simpl. rewrite EQ. simpl. eauto.
intros [v4 [A4 B4]]. simpl in B4. inv B4.
rewrite Int.sub_add_opp in A4. rewrite Int.add_assoc in A4.
rewrite (Int.add_commut (Int.neg Float.ox8000_0000)) in A4.
rewrite Int.add_neg_zero in A4.
rewrite Int.add_zero in A4.
auto.
Qed.
Theorem eval_floatofint:
forall le a x y,
eval_expr ge sp e m le a x ->
Val.floatofint x = Some y ->
exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v.
Proof.
intros. destruct x; simpl in H0; inv H0.
exists (Vfloat (Float.floatofint i)); split; auto.
unfold floatofint.
set (t1 := addimm Float.ox8000_0000 a).
set (t2 := Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: t1 ::: Enil)).
set (t3 := Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Float.ox8000_0000)) Enil).
exploit (eval_addimm Float.ox8000_0000 le a). eauto. fold t1.
intros [v1 [A1 B1]]. simpl in B1. inv B1.
exploit (eval_subf le t2).
unfold t2. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor.
unfold eval_operation. eauto.
instantiate (2 := t3). unfold t3. EvalOp. simpl; eauto.
intros [v2 [A2 B2]]. simpl in B2. inv B2. rewrite Float.floatofint_from_words. auto.
Qed.
Theorem eval_floatofintu:
forall le a x y,
eval_expr ge sp e m le a x ->
Val.floatofintu x = Some y ->
exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v.
Proof.
intros. destruct x; simpl in H0; inv H0.
exists (Vfloat (Float.floatofintu i)); split; auto.
unfold floatofintu.
set (t2 := Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: a ::: Enil)).
set (t3 := Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Int.zero)) Enil).
exploit (eval_subf le t2).
unfold t2. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor.
unfold eval_operation. eauto.
instantiate (2 := t3). unfold t3. EvalOp. simpl; eauto.
intros [v2 [A2 B2]]. simpl in B2. inv B2. rewrite Float.floatofintu_from_words. auto.
Qed.
Theorem eval_addressing:
forall le chunk a v b ofs,
eval_expr ge sp e m le a v ->
v = Vptr b ofs ->
match addressing chunk a with (mode, args) =>
exists vl,
eval_exprlist ge sp e m le args vl /\
eval_addressing ge sp mode vl = Some v
end.
Proof.
intros until v. unfold addressing; case (addressing_match a); intros; InvEval.
exists (@nil val). split. eauto with evalexpr. simpl. auto.
exists (@nil val). split. eauto with evalexpr. simpl. auto.
exists (v0 :: nil). split. eauto with evalexpr. simpl. congruence.
exists (v1 :: nil). split. eauto with evalexpr. simpl. congruence.
exists (v1 :: v0 :: nil). split. eauto with evalexpr. simpl. congruence.
exists (v :: nil). split. eauto with evalexpr. subst v. simpl.
rewrite Int.add_zero. auto.
Qed.
Theorem eval_cond_of_expr:
forall le a v b,
eval_expr ge sp e m le a v ->
Val.bool_of_val v b ->
match cond_of_expr a with (cond, args) =>
exists vl,
eval_exprlist ge sp e m le args vl /\
eval_condition cond vl m = Some b
end.
Proof.
intros until v. unfold cond_of_expr; case (cond_of_expr_match a); intros; InvEval.
subst v. exists (v1 :: nil); split; auto with evalexpr.
simpl. destruct b.
generalize (Val.bool_of_true_val2 _ H0); clear H0; intro ISTRUE.
destruct v1; simpl in ISTRUE; try contradiction.
rewrite Int.eq_false; auto.
generalize (Val.bool_of_false_val2 _ H0); clear H0; intro ISFALSE.
destruct v1; simpl in ISFALSE; try contradiction.
rewrite ISFALSE. rewrite Int.eq_true; auto.
exists (v :: nil); split; auto with evalexpr.
simpl. inversion H0; simpl. rewrite Int.eq_false; auto. auto. auto.
Qed.
End CMCONSTR.
|