1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Instruction selection for operators *)
(** The instruction selection pass recognizes opportunities for using
combined arithmetic and logical operations and addressing modes
offered by the target processor. For instance, the expression [x + 1]
can take advantage of the "immediate add" instruction of the processor,
and on the PowerPC, the expression [(x >> 6) & 0xFF] can be turned
into a "rotate and mask" instruction.
This file defines functions for building CminorSel expressions and
statements, especially expressions consisting of operator
applications. These functions examine their arguments to choose
cheaper forms of operators whenever possible.
For instance, [add e1 e2] will return a CminorSel expression semantically
equivalent to [Eop Oadd (e1 ::: e2 ::: Enil)], but will use a
[Oaddimm] operator if one of the arguments is an integer constant,
or suppress the addition altogether if one of the arguments is the
null integer. In passing, we perform operator reassociation
([(e + c1) * c2] becomes [(e * c2) + (c1 * c2)]) and a small amount
of constant propagation.
On top of the "smart constructor" functions defined below,
module [Selection] implements the actual instruction selection pass.
*)
Require Import Coqlib.
Require Import Compopts.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import CminorSel.
Open Local Scope cminorsel_scope.
(** ** Constants **)
Definition addrsymbol (id: ident) (ofs: int) :=
Eop (Oaddrsymbol id ofs) Enil.
Definition addrstack (ofs: int) :=
Eop (Oaddrstack ofs) Enil.
(** ** Integer logical negation *)
Nondetfunction notint (e: expr) :=
match e with
| Eop (Ointconst n) Enil => Eop (Ointconst (Int.not n)) Enil
| Eop Onot (t1:::Enil) => t1
| Eop Oand (t1:::t2:::Enil) => Eop Onand (t1:::t2:::Enil)
| Eop Oor (t1:::t2:::Enil) => Eop Onor (t1:::t2:::Enil)
| Eop Oxor (t1:::t2:::Enil) => Eop Onxor (t1:::t2:::Enil)
| Eop Onand (t1:::t2:::Enil) => Eop Oand (t1:::t2:::Enil)
| Eop Onor (t1:::t2:::Enil) => Eop Oor (t1:::t2:::Enil)
| Eop Onxor (t1:::t2:::Enil) => Eop Oxor (t1:::t2:::Enil)
| Eop Oandc (t1:::t2:::Enil) => Eop Oorc (t2:::t1:::Enil)
| Eop Oorc (t1:::t2:::Enil) => Eop Oandc (t2:::t1:::Enil)
| _ => Eop Onot (e:::Enil)
end.
(** ** Integer addition and pointer addition *)
Nondetfunction addimm (n: int) (e: expr) :=
if Int.eq n Int.zero then e else
match e with
| Eop (Ointconst m) Enil => Eop (Ointconst(Int.add n m)) Enil
| Eop (Oaddrsymbol s m) Enil => Eop (Oaddrsymbol s (Int.add n m)) Enil
| Eop (Oaddrstack m) Enil => Eop (Oaddrstack (Int.add n m)) Enil
| Eop (Oaddimm m) (t ::: Enil) => Eop (Oaddimm(Int.add n m)) (t ::: Enil)
| Eop (Oaddsymbol s m) (t ::: Enil) => Eop (Oaddsymbol s (Int.add n m)) (t ::: Enil)
| _ => Eop (Oaddimm n) (e ::: Enil)
end.
Nondetfunction addsymbol (s: ident) (ofs: int) (e: expr) :=
match e with
| Eop (Ointconst n) Enil => Eop (Oaddrsymbol s (Int.add ofs n)) Enil
| Eop (Oaddimm n) (t ::: Enil) => Eop (Oaddsymbol s (Int.add ofs n)) (t ::: Enil)
| _ => Eop (Oaddsymbol s ofs) (e ::: Enil)
end.
Nondetfunction add (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 =>
addimm n1 t2
| t1, Eop (Ointconst n2) Enil =>
addimm n2 t1
| Eop (Oaddrsymbol s ofs) Enil, t2 =>
addsymbol s ofs t2
| t1, Eop (Oaddrsymbol s ofs) Enil =>
addsymbol s ofs t1
| Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
| Eop (Oaddimm n1) (t1:::Enil), t2 =>
addimm n1 (Eop Oadd (t1:::t2:::Enil))
| Eop (Oaddrstack n1) Enil, Eop (Oaddimm n2) (t2:::Enil) =>
Eop Oadd (Eop (Oaddrstack (Int.add n1 n2)) Enil ::: t2 ::: Enil)
| Eop (Oaddsymbol s ofs) (t1:::Enil), Eop (Oaddimm n) (t2:::Enil) =>
addsymbol s (Int.add ofs n) (Eop Oadd (t1:::t2:::Enil))
| Eop (Oaddsymbol s ofs) (t1:::Enil), t2 =>
addsymbol s ofs (Eop Oadd (t1:::t2:::Enil))
| t1, Eop (Oaddimm n2) (t2:::Enil) =>
addimm n2 (Eop Oadd (t1:::t2:::Enil))
| t1, Eop (Oaddsymbol s ofs) (t2:::Enil) =>
addsymbol s ofs (Eop Oadd (t1:::t2:::Enil))
| _, _ =>
Eop Oadd (e1:::e2:::Enil)
end.
(** ** Integer and pointer subtraction *)
Nondetfunction sub (e1: expr) (e2: expr) :=
match e1, e2 with
| t1, Eop (Ointconst n2) Enil =>
addimm (Int.neg n2) t1
| Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
| Eop (Oaddimm n1) (t1:::Enil), t2 =>
addimm n1 (Eop Osub (t1:::t2:::Enil))
| t1, Eop (Oaddimm n2) (t2:::Enil) =>
addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
| _, _ =>
Eop Osub (e1:::e2:::Enil)
end.
Definition negint (e: expr) := Eop (Osubimm Int.zero) (e ::: Enil).
(** ** Rotates and immediate shifts *)
Nondetfunction rolm (e1: expr) (amount2: int) (mask2: int) :=
match e1 with
| Eop (Ointconst n1) Enil =>
Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
| Eop (Orolm amount1 mask1) (t1:::Enil) =>
Eop (Orolm (Int.modu (Int.add amount1 amount2) Int.iwordsize)
(Int.and (Int.rol mask1 amount2) mask2))
(t1:::Enil)
| Eop (Oandimm mask1) (t1:::Enil) =>
Eop (Orolm (Int.modu amount2 Int.iwordsize)
(Int.and (Int.rol mask1 amount2) mask2))
(t1:::Enil)
| _ =>
Eop (Orolm amount2 mask2) (e1:::Enil)
end.
Definition shlimm (e1: expr) (n2: int) :=
if Int.eq n2 Int.zero then
e1
else if Int.ltu n2 Int.iwordsize then
rolm e1 n2 (Int.shl Int.mone n2)
else
Eop Oshl (e1:::Eop (Ointconst n2) Enil:::Enil).
Definition shruimm (e1: expr) (n2: int) :=
if Int.eq n2 Int.zero then
e1
else if Int.ltu n2 Int.iwordsize then
rolm e1 (Int.sub Int.iwordsize n2) (Int.shru Int.mone n2)
else
Eop Oshru (e1:::Eop (Ointconst n2) Enil:::Enil).
Nondetfunction shrimm (e1: expr) (n2: int) :=
if Int.eq n2 Int.zero then
e1
else
match e1 with
| Eop (Oandimm mask1) (t1:::Enil) =>
if Int.lt mask1 Int.zero
then Eop (Oshrimm n2) (e1:::Enil)
else shruimm e1 n2
| _ =>
Eop (Oshrimm n2) (e1:::Enil)
end.
(** ** Integer multiply *)
Definition mulimm_base (n1: int) (e2: expr) :=
match Int.one_bits n1 with
| i :: nil =>
shlimm e2 i
| i :: j :: nil =>
if optim_for_size tt then
Eop (Omulimm n1) (e2:::Enil)
else
Elet e2
(Eop Oadd (shlimm (Eletvar 0) i :::
shlimm (Eletvar 0) j ::: Enil))
| _ =>
Eop (Omulimm n1) (e2:::Enil)
end.
Nondetfunction mulimm (n1: int) (e2: expr) :=
if Int.eq n1 Int.zero then Eop (Ointconst Int.zero) Enil
else if Int.eq n1 Int.one then e2
else match e2 with
| Eop (Ointconst n2) Enil => Eop (Ointconst(Int.mul n1 n2)) Enil
| Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.mul n1 n2) (mulimm_base n1 t2)
| _ => mulimm_base n1 e2
end.
Nondetfunction mul (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 => mulimm n1 t2
| t1, Eop (Ointconst n2) Enil => mulimm n2 t1
| _, _ => Eop Omul (e1:::e2:::Enil)
end.
(** ** Bitwise and, or, xor *)
Nondetfunction andimm (n1: int) (e2: expr) :=
if Int.eq n1 Int.zero then Eop (Ointconst Int.zero) Enil else
if Int.eq n1 Int.mone then e2 else
match e2 with
| Eop (Ointconst n2) Enil =>
Eop (Ointconst (Int.and n1 n2)) Enil
| Eop (Oandimm n2) (Eop (Oshrimm amount) (t2:::Enil) ::: Enil) =>
let n := Int.and n1 n2 in
if Int.eq (Int.shru (Int.shl n amount) amount) n
&& Int.ltu amount Int.iwordsize
then rolm t2 (Int.sub Int.iwordsize amount)
(Int.and (Int.shru Int.mone amount) n)
else Eop (Oandimm n) (Eop (Oshrimm amount) (t2:::Enil) ::: Enil)
| Eop (Oandimm n2) (t2:::Enil) =>
Eop (Oandimm (Int.and n1 n2)) (t2:::Enil)
| Eop (Orolm amount2 mask2) (t2:::Enil) =>
Eop (Orolm amount2 (Int.and n1 mask2)) (t2:::Enil)
| Eop (Oshrimm amount) (t2:::Enil) =>
if Int.eq (Int.shru (Int.shl n1 amount) amount) n1
&& Int.ltu amount Int.iwordsize
then rolm t2 (Int.sub Int.iwordsize amount)
(Int.and (Int.shru Int.mone amount) n1)
else Eop (Oandimm n1) (e2:::Enil)
| _ =>
Eop (Oandimm n1) (e2:::Enil)
end.
Nondetfunction and (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 => andimm n1 t2
| t1, Eop (Ointconst n2) Enil => andimm n2 t1
| Eop Onot (t1:::Enil), t2 => Eop Oandc (t2:::t1:::Enil)
| t1, Eop Onot (t2:::Enil) => Eop Oandc (t1:::t2:::Enil)
| _, _ => Eop Oand (e1:::e2:::Enil)
end.
Definition same_expr_pure (e1 e2: expr) :=
match e1, e2 with
| Evar v1, Evar v2 => if ident_eq v1 v2 then true else false
| _, _ => false
end.
Nondetfunction orimm (n1: int) (e2: expr) :=
if Int.eq n1 Int.zero then e2 else
if Int.eq n1 Int.mone then Eop (Ointconst Int.mone) Enil else
match e2 with
| Eop (Ointconst n2) Enil => Eop (Ointconst (Int.or n1 n2)) Enil
| Eop (Oorimm n2) (t2:::Enil) => Eop (Oorimm (Int.or n1 n2)) (t2:::Enil)
| _ => Eop (Oorimm n1) (e2:::Enil)
end.
Nondetfunction or (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Orolm amount1 mask1) (t1:::Enil), Eop (Orolm amount2 mask2) (t2:::Enil) =>
if Int.eq amount1 amount2 && same_expr_pure t1 t2
then Eop (Orolm amount1 (Int.or mask1 mask2)) (t1:::Enil)
else Eop Oor (e1:::e2:::Enil)
| Eop (Oandimm mask1) (t1:::Enil), Eop (Orolm amount2 mask2) (t2:::Enil) =>
if Int.eq mask1 (Int.not mask2) && is_rlw_mask mask2
then Eop (Oroli amount2 mask2) (t1:::t2:::Enil)
else Eop Oor (e1:::e2:::Enil)
| Eop (Orolm amount1 mask1) (t1:::Enil), Eop (Oandimm mask2) (t2:::Enil) =>
if Int.eq mask2 (Int.not mask1) && is_rlw_mask mask1
then Eop (Oroli amount1 mask1) (t2:::t1:::Enil)
else Eop Oor (e1:::e2:::Enil)
| Eop (Ointconst n1) Enil, t2 => orimm n1 t2
| t1, Eop (Ointconst n2) Enil => orimm n2 t1
| Eop Onot (t1:::Enil), t2 => Eop Oorc (t2:::t1:::Enil)
| t1, Eop Onot (t2:::Enil) => Eop Oorc (t1:::t2:::Enil)
| _, _ => Eop Oor (e1:::e2:::Enil)
end.
Nondetfunction xorimm (n1: int) (e2: expr) :=
if Int.eq n1 Int.zero then e2 else
match e2 with
| Eop (Ointconst n2) Enil => Eop (Ointconst (Int.xor n1 n2)) Enil
| Eop (Oxorimm n2) (t2:::Enil) => Eop (Oxorimm (Int.xor n1 n2)) (t2:::Enil)
| _ => Eop (Oxorimm n1) (e2:::Enil)
end.
Nondetfunction xor (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 => xorimm n1 t2
| t1, Eop (Ointconst n2) Enil => xorimm n2 t1
| Eop Onot (t1:::Enil), t2 => Eop Onxor (t1:::t2:::Enil)
| t1, Eop Onot (t2:::Enil) => Eop Onxor (t1:::t2:::Enil)
| _, _ => Eop Oxor (e1:::e2:::Enil)
end.
(** ** Integer division and modulus *)
Definition mod_aux (divop: operation) (e1 e2: expr) :=
Elet e1
(Elet (lift e2)
(Eop Osub (Eletvar 1 :::
Eop Omul (Eop divop (Eletvar 1 ::: Eletvar 0 ::: Enil) :::
Eletvar 0 :::
Enil) :::
Enil))).
Definition divs_base (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil).
Definition mods_base := mod_aux Odiv.
Definition divu_base (e1: expr) (e2: expr) := Eop Odivu (e1:::e2:::Enil).
Definition modu_base := mod_aux Odivu.
Definition shrximm (e1: expr) (n2: int) :=
if Int.eq n2 Int.zero then e1 else Eop (Oshrximm n2) (e1:::Enil).
(** ** General shifts *)
Nondetfunction shl (e1: expr) (e2: expr) :=
match e2 with
| Eop (Ointconst n2) Enil => shlimm e1 n2
| _ => Eop Oshl (e1:::e2:::Enil)
end.
Nondetfunction shr (e1: expr) (e2: expr) :=
match e2 with
| Eop (Ointconst n2) Enil => shrimm e1 n2
| _ => Eop Oshr (e1:::e2:::Enil)
end.
Nondetfunction shru (e1: expr) (e2: expr) :=
match e2 with
| Eop (Ointconst n2) Enil => shruimm e1 n2
| _ => Eop Oshru (e1:::e2:::Enil)
end.
(** ** Floating-point arithmetic *)
Definition negf (e: expr) := Eop Onegf (e ::: Enil).
Definition absf (e: expr) := Eop Oabsf (e ::: Enil).
Definition addf (e1 e2: expr) := Eop Oaddf (e1 ::: e2 ::: Enil).
Definition subf (e1 e2: expr) := Eop Osubf (e1 ::: e2 ::: Enil).
Definition mulf (e1 e2: expr) := Eop Omulf (e1 ::: e2 ::: Enil).
(** ** Comparisons *)
Nondetfunction compimm (default: comparison -> int -> condition)
(sem: comparison -> int -> int -> bool)
(c: comparison) (e1: expr) (n2: int) :=
match c, e1 with
| c, Eop (Ointconst n1) Enil =>
Eop (Ointconst (if sem c n1 n2 then Int.one else Int.zero)) Enil
| Ceq, Eop (Ocmp c) el =>
if Int.eq_dec n2 Int.zero then
Eop (Ocmp (negate_condition c)) el
else if Int.eq_dec n2 Int.one then
Eop (Ocmp c) el
else
Eop (Ointconst Int.zero) Enil
| Cne, Eop (Ocmp c) el =>
if Int.eq_dec n2 Int.zero then
Eop (Ocmp c) el
else if Int.eq_dec n2 Int.one then
Eop (Ocmp (negate_condition c)) el
else
Eop (Ointconst Int.one) Enil
| Ceq, Eop (Oandimm n1) (t1 ::: Enil) =>
if Int.eq_dec n2 Int.zero then
Eop (Ocmp (Cmaskzero n1)) (t1 ::: Enil)
else
Eop (Ocmp (default c n2)) (e1 ::: Enil)
| Cne, Eop (Oandimm n1) (t1 ::: Enil) =>
if Int.eq_dec n2 Int.zero then
Eop (Ocmp (Cmasknotzero n1)) (t1 ::: Enil)
else
Eop (Ocmp (default c n2)) (e1 ::: Enil)
| _, _ =>
Eop (Ocmp (default c n2)) (e1 ::: Enil)
end.
Nondetfunction comp (c: comparison) (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 =>
compimm Ccompimm Int.cmp (swap_comparison c) t2 n1
| t1, Eop (Ointconst n2) Enil =>
compimm Ccompimm Int.cmp c t1 n2
| _, _ =>
Eop (Ocmp (Ccomp c)) (e1 ::: e2 ::: Enil)
end.
Nondetfunction compu (c: comparison) (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 =>
compimm Ccompuimm Int.cmpu (swap_comparison c) t2 n1
| t1, Eop (Ointconst n2) Enil =>
compimm Ccompuimm Int.cmpu c t1 n2
| _, _ =>
Eop (Ocmp (Ccompu c)) (e1 ::: e2 ::: Enil)
end.
Definition compf (c: comparison) (e1: expr) (e2: expr) :=
Eop (Ocmp (Ccompf c)) (e1 ::: e2 ::: Enil).
(** ** Integer conversions *)
Definition cast8unsigned (e: expr) := andimm (Int.repr 255) e.
Definition cast8signed (e: expr) := Eop Ocast8signed (e ::: Enil).
Definition cast16unsigned (e: expr) := andimm (Int.repr 65535) e.
Definition cast16signed (e: expr) := Eop Ocast16signed (e ::: Enil).
(** ** Floating-point conversions *)
Definition intoffloat (e: expr) := Eop Ointoffloat (e ::: Enil).
Definition intuoffloat (e: expr) :=
Elet e
(Elet (Eop (Ofloatconst (Float.floatofintu Float.ox8000_0000)) Enil)
(Econdition (CEcond (Ccompf Clt) (Eletvar 1 ::: Eletvar 0 ::: Enil))
(intoffloat (Eletvar 1))
(addimm Float.ox8000_0000 (intoffloat (subf (Eletvar 1) (Eletvar 0))))))%nat.
Definition floatofintu (e: expr) :=
subf (Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil ::: e ::: Enil))
(Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Int.zero)) Enil).
Definition floatofint (e: expr) :=
subf (Eop Ofloatofwords (Eop (Ointconst Float.ox4330_0000) Enil
::: addimm Float.ox8000_0000 e ::: Enil))
(Eop (Ofloatconst (Float.from_words Float.ox4330_0000 Float.ox8000_0000)) Enil).
Definition singleoffloat (e: expr) := Eop Osingleoffloat (e ::: Enil).
(** ** Recognition of addressing modes for load and store operations *)
Definition can_use_Aindexed2 (chunk: memory_chunk): bool :=
match chunk with Mint64 => false | _ => true end.
Nondetfunction addressing (chunk: memory_chunk) (e: expr) :=
match e with
| Eop (Oaddrsymbol s n) Enil => (Aglobal s n, Enil)
| Eop (Oaddrstack n) Enil => (Ainstack n, Enil)
| Eop (Oaddsymbol s n) (e1:::Enil) => (Abased s n, e1:::Enil)
| Eop (Oaddimm n) (e1:::Enil) => (Aindexed n, e1:::Enil)
| Eop Oadd (e1:::e2:::Enil) =>
if can_use_Aindexed2 chunk
then (Aindexed2, e1:::e2:::Enil)
else (Aindexed Int.zero, Eop Oadd (e1:::e2:::Enil) ::: Enil)
| _ => (Aindexed Int.zero, e:::Enil)
end.
|