1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for constant propagation. *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Events.
Require Import Mem.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Lattice.
Require Import Kildall.
Require Import Constprop.
(** * Correctness of the static analysis *)
Section ANALYSIS.
Variable ge: genv.
(** We first show that the dataflow analysis is correct with respect
to the dynamic semantics: the approximations (sets of values)
of a register at a program point predicted by the static analysis
are a superset of the values actually encountered during concrete
executions. We formalize this correspondence between run-time values and
compile-time approximations by the following predicate. *)
Definition val_match_approx (a: approx) (v: val) : Prop :=
match a with
| Unknown => True
| I p => v = Vint p
| F p => v = Vfloat p
| S symb ofs => exists b, Genv.find_symbol ge symb = Some b /\ v = Vptr b ofs
| _ => False
end.
Definition regs_match_approx (a: D.t) (rs: regset) : Prop :=
forall r, val_match_approx (D.get r a) rs#r.
Lemma regs_match_approx_top:
forall rs, regs_match_approx D.top rs.
Proof.
intros. red; intros. simpl. rewrite PTree.gempty.
unfold Approx.top, val_match_approx. auto.
Qed.
Lemma val_match_approx_increasing:
forall a1 a2 v,
Approx.ge a1 a2 -> val_match_approx a2 v -> val_match_approx a1 v.
Proof.
intros until v.
intros [A|[B|C]].
subst a1. simpl. auto.
subst a2. simpl. tauto.
subst a2. auto.
Qed.
Lemma regs_match_approx_increasing:
forall a1 a2 rs,
D.ge a1 a2 -> regs_match_approx a2 rs -> regs_match_approx a1 rs.
Proof.
unfold D.ge, regs_match_approx. intros.
apply val_match_approx_increasing with (D.get r a2); auto.
Qed.
Lemma regs_match_approx_update:
forall ra rs a v r,
val_match_approx a v ->
regs_match_approx ra rs ->
regs_match_approx (D.set r a ra) (rs#r <- v).
Proof.
intros; red; intros. rewrite Regmap.gsspec.
case (peq r0 r); intro.
subst r0. rewrite D.gss. auto.
rewrite D.gso; auto.
Qed.
Inductive val_list_match_approx: list approx -> list val -> Prop :=
| vlma_nil:
val_list_match_approx nil nil
| vlma_cons:
forall a al v vl,
val_match_approx a v ->
val_list_match_approx al vl ->
val_list_match_approx (a :: al) (v :: vl).
Lemma approx_regs_val_list:
forall ra rs rl,
regs_match_approx ra rs ->
val_list_match_approx (approx_regs rl ra) rs##rl.
Proof.
induction rl; simpl; intros.
constructor.
constructor. apply H. auto.
Qed.
Ltac SimplVMA :=
match goal with
| H: (val_match_approx (I _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (F _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (S _ _) ?v) |- _ =>
simpl in H;
(try (elim H;
let b := fresh "b" in let A := fresh in let B := fresh in
(intros b [A B]; subst v; clear H)));
SimplVMA
| _ =>
idtac
end.
Ltac InvVLMA :=
match goal with
| H: (val_list_match_approx nil ?vl) |- _ =>
inversion H
| H: (val_list_match_approx (?a :: ?al) ?vl) |- _ =>
inversion H; SimplVMA; InvVLMA
| _ =>
idtac
end.
(** We then show that [eval_static_operation] is a correct abstract
interpretations of [eval_operation]: if the concrete arguments match
the given approximations, the concrete results match the
approximations returned by [eval_static_operation]. *)
Lemma eval_static_condition_correct:
forall cond al vl b,
val_list_match_approx al vl ->
eval_static_condition cond al = Some b ->
eval_condition cond vl = Some b.
Proof.
intros until b.
unfold eval_static_condition.
case (eval_static_condition_match cond al); intros;
InvVLMA; simpl; congruence.
Qed.
Lemma eval_static_operation_correct:
forall op sp al vl v,
val_list_match_approx al vl ->
eval_operation ge sp op vl = Some v ->
val_match_approx (eval_static_operation op al) v.
Proof.
intros until v.
unfold eval_static_operation.
case (eval_static_operation_match op al); intros;
InvVLMA; simpl in *; FuncInv; try congruence.
destruct (Genv.find_symbol ge s). exists b. intuition congruence.
congruence.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
exists b. split. auto. congruence.
exists b. split. auto. congruence.
exists b. split. auto. congruence.
replace n2 with i0. destruct (Int.eq i0 Int.zero).
discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
replace n2 with i0. destruct (Int.eq i0 Int.zero).
discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
subst v. unfold Int.not. congruence.
subst v. unfold Int.not. congruence.
subst v. unfold Int.not. congruence.
replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
destruct (Int.ltu n (Int.repr 32)).
injection H0; intro; subst v. simpl. congruence. discriminate.
destruct (Int.ltu n (Int.repr 32)).
injection H0; intro; subst v. simpl. congruence. discriminate.
replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
rewrite <- H3. replace v0 with (Vfloat n1). reflexivity. congruence.
caseEq (eval_static_condition c vl0).
intros. generalize (eval_static_condition_correct _ _ _ _ H H1).
intro. rewrite H2 in H0.
destruct b; injection H0; intro; subst v; simpl; auto.
intros; simpl; auto.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
auto.
Qed.
(** The correctness of the static analysis follows from the results
above and the fact that the result of the static analysis is
a solution of the forward dataflow inequations. *)
Lemma analyze_correct_1:
forall f pc rs pc',
In pc' (successors f pc) ->
regs_match_approx (transfer f pc (analyze f)!!pc) rs ->
regs_match_approx (analyze f)!!pc' rs.
Proof.
intros until pc'. unfold analyze.
caseEq (DS.fixpoint (successors f) (fn_nextpc f) (transfer f)
((fn_entrypoint f, D.top) :: nil)).
intros approxs; intros.
apply regs_match_approx_increasing with (transfer f pc approxs!!pc).
eapply DS.fixpoint_solution; eauto.
elim (fn_code_wf f pc); intro. auto.
unfold successors in H0; rewrite H2 in H0; simpl; contradiction.
auto.
intros. rewrite PMap.gi. apply regs_match_approx_top.
Qed.
Lemma analyze_correct_3:
forall f rs,
regs_match_approx (analyze f)!!(f.(fn_entrypoint)) rs.
Proof.
intros. unfold analyze.
caseEq (DS.fixpoint (successors f) (fn_nextpc f) (transfer f)
((fn_entrypoint f, D.top) :: nil)).
intros approxs; intros.
apply regs_match_approx_increasing with D.top.
eapply DS.fixpoint_entry; eauto. auto with coqlib.
apply regs_match_approx_top.
intros. rewrite PMap.gi. apply regs_match_approx_top.
Qed.
(** * Correctness of strength reduction *)
(** We now show that strength reduction over operators and addressing
modes preserve semantics: the strength-reduced operations and
addressings evaluate to the same values as the original ones if the
actual arguments match the static approximations used for strength
reduction. *)
Section STRENGTH_REDUCTION.
Variable approx: D.t.
Variable sp: val.
Variable rs: regset.
Hypothesis MATCH: regs_match_approx approx rs.
Lemma intval_correct:
forall r n,
intval approx r = Some n -> rs#r = Vint n.
Proof.
intros until n.
unfold intval. caseEq (D.get r approx); intros; try discriminate.
generalize (MATCH r). unfold val_match_approx. rewrite H.
congruence.
Qed.
Lemma cond_strength_reduction_correct:
forall cond args,
let (cond', args') := cond_strength_reduction approx cond args in
eval_condition cond' rs##args' = eval_condition cond rs##args.
Proof.
intros. unfold cond_strength_reduction.
case (cond_strength_reduction_match cond args); intros.
caseEq (intval approx r1); intros.
simpl. rewrite (intval_correct _ _ H).
destruct (rs#r2); auto. rewrite Int.swap_cmp. auto.
destruct c; reflexivity.
caseEq (intval approx r2); intros.
simpl. rewrite (intval_correct _ _ H0). auto.
auto.
caseEq (intval approx r1); intros.
simpl. rewrite (intval_correct _ _ H).
destruct (rs#r2); auto. rewrite Int.swap_cmpu. auto.
caseEq (intval approx r2); intros.
simpl. rewrite (intval_correct _ _ H0). auto.
auto.
auto.
Qed.
Lemma make_addimm_correct:
forall n r v,
let (op, args) := make_addimm n r in
eval_operation ge sp Oadd (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_addimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.add_zero in H. congruence.
rewrite Int.add_zero in H. congruence.
exact H0.
Qed.
Lemma make_shlimm_correct:
forall n r v,
let (op, args) := make_shlimm n r in
eval_operation ge sp Oshl (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_shlimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.shl_zero in H. congruence.
simpl in *. FuncInv. caseEq (Int.ltu n (Int.repr 32)); intros.
rewrite H1 in H0. rewrite Int.shl_rolm in H0. auto. exact H1.
rewrite H1 in H0. discriminate.
Qed.
Lemma make_shrimm_correct:
forall n r v,
let (op, args) := make_shrimm n r in
eval_operation ge sp Oshr (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_shrimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.shr_zero in H. congruence.
assumption.
Qed.
Lemma make_shruimm_correct:
forall n r v,
let (op, args) := make_shruimm n r in
eval_operation ge sp Oshru (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_shruimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.shru_zero in H. congruence.
simpl in *. FuncInv. caseEq (Int.ltu n (Int.repr 32)); intros.
rewrite H1 in H0. rewrite Int.shru_rolm in H0. auto. exact H1.
rewrite H1 in H0. discriminate.
Qed.
Lemma make_mulimm_correct:
forall n r v,
let (op, args) := make_mulimm n r in
eval_operation ge sp Omul (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_mulimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in H0. FuncInv. rewrite Int.mul_zero in H. simpl. congruence.
generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intros.
subst n. simpl in H1. simpl. FuncInv. rewrite Int.mul_one in H0. congruence.
caseEq (Int.is_power2 n); intros.
replace (eval_operation ge sp Omul (rs # r :: Vint n :: nil))
with (eval_operation ge sp Oshl (rs # r :: Vint i :: nil)).
apply make_shlimm_correct.
simpl. generalize (Int.is_power2_range _ _ H1).
change (Z_of_nat wordsize) with 32. intro. rewrite H2.
destruct rs#r; auto. rewrite (Int.mul_pow2 i0 _ _ H1). auto.
exact H2.
Qed.
Lemma make_andimm_correct:
forall n r v,
let (op, args) := make_andimm n r in
eval_operation ge sp Oand (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_andimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.and_zero in H. congruence.
generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
subst n. simpl in *. FuncInv. rewrite Int.and_mone in H0. congruence.
exact H1.
Qed.
Lemma make_orimm_correct:
forall n r v,
let (op, args) := make_orimm n r in
eval_operation ge sp Oor (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_orimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.or_zero in H. congruence.
generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
subst n. simpl in *. FuncInv. rewrite Int.or_mone in H0. congruence.
exact H1.
Qed.
Lemma make_xorimm_correct:
forall n r v,
let (op, args) := make_xorimm n r in
eval_operation ge sp Oxor (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_xorimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.xor_zero in H. congruence.
exact H0.
Qed.
Lemma op_strength_reduction_correct:
forall op args v,
let (op', args') := op_strength_reduction approx op args in
eval_operation ge sp op rs##args = Some v ->
eval_operation ge sp op' rs##args' = Some v.
Proof.
intros; unfold op_strength_reduction;
case (op_strength_reduction_match op args); intros; simpl List.map.
(* Oadd *)
caseEq (intval approx r1); intros.
rewrite (intval_correct _ _ H).
replace (eval_operation ge sp Oadd (Vint i :: rs # r2 :: nil))
with (eval_operation ge sp Oadd (rs # r2 :: Vint i :: nil)).
apply make_addimm_correct.
simpl. destruct rs#r2; auto. rewrite Int.add_commut; auto.
caseEq (intval approx r2); intros.
rewrite (intval_correct _ _ H0). apply make_addimm_correct.
assumption.
(* Osub *)
caseEq (intval approx r1); intros.
rewrite (intval_correct _ _ H) in H0. assumption.
caseEq (intval approx r2); intros.
rewrite (intval_correct _ _ H0).
replace (eval_operation ge sp Osub (rs # r1 :: Vint i :: nil))
with (eval_operation ge sp Oadd (rs # r1 :: Vint (Int.neg i) :: nil)).
apply make_addimm_correct.
simpl. destruct rs#r1; auto; rewrite Int.sub_add_opp; auto.
assumption.
(* Omul *)
caseEq (intval approx r1); intros.
rewrite (intval_correct _ _ H).
replace (eval_operation ge sp Omul (Vint i :: rs # r2 :: nil))
with (eval_operation ge sp Omul (rs # r2 :: Vint i :: nil)).
apply make_mulimm_correct.
simpl. destruct rs#r2; auto. rewrite Int.mul_commut; auto.
caseEq (intval approx r2); intros.
rewrite (intval_correct _ _ H0). apply make_mulimm_correct.
assumption.
(* Odiv *)
caseEq (intval approx r2); intros.
caseEq (Int.is_power2 i); intros.
rewrite (intval_correct _ _ H) in H1.
simpl in *; FuncInv. destruct (Int.eq i Int.zero). congruence.
change 32 with (Z_of_nat wordsize).
rewrite (Int.is_power2_range _ _ H0).
rewrite (Int.divs_pow2 i1 _ _ H0) in H1. auto.
assumption.
assumption.
(* Odivu *)
caseEq (intval approx r2); intros.
caseEq (Int.is_power2 i); intros.
rewrite (intval_correct _ _ H).
replace (eval_operation ge sp Odivu (rs # r1 :: Vint i :: nil))
with (eval_operation ge sp Oshru (rs # r1 :: Vint i0 :: nil)).
apply make_shruimm_correct.
simpl. destruct rs#r1; auto.
change 32 with (Z_of_nat wordsize).
rewrite (Int.is_power2_range _ _ H0).
generalize (Int.eq_spec i Int.zero); case (Int.eq i Int.zero); intros.
subst i. discriminate.
rewrite (Int.divu_pow2 i1 _ _ H0). auto.
assumption.
assumption.
(* Oand *)
caseEq (intval approx r1); intros.
rewrite (intval_correct _ _ H).
replace (eval_operation ge sp Oand (Vint i :: rs # r2 :: nil))
with (eval_operation ge sp Oand (rs # r2 :: Vint i :: nil)).
apply make_andimm_correct.
simpl. destruct rs#r2; auto. rewrite Int.and_commut; auto.
caseEq (intval approx r2); intros.
rewrite (intval_correct _ _ H0). apply make_andimm_correct.
assumption.
(* Oor *)
caseEq (intval approx r1); intros.
rewrite (intval_correct _ _ H).
replace (eval_operation ge sp Oor (Vint i :: rs # r2 :: nil))
with (eval_operation ge sp Oor (rs # r2 :: Vint i :: nil)).
apply make_orimm_correct.
simpl. destruct rs#r2; auto. rewrite Int.or_commut; auto.
caseEq (intval approx r2); intros.
rewrite (intval_correct _ _ H0). apply make_orimm_correct.
assumption.
(* Oxor *)
caseEq (intval approx r1); intros.
rewrite (intval_correct _ _ H).
replace (eval_operation ge sp Oxor (Vint i :: rs # r2 :: nil))
with (eval_operation ge sp Oxor (rs # r2 :: Vint i :: nil)).
apply make_xorimm_correct.
simpl. destruct rs#r2; auto. rewrite Int.xor_commut; auto.
caseEq (intval approx r2); intros.
rewrite (intval_correct _ _ H0). apply make_xorimm_correct.
assumption.
(* Oshl *)
caseEq (intval approx r2); intros.
caseEq (Int.ltu i (Int.repr 32)); intros.
rewrite (intval_correct _ _ H). apply make_shlimm_correct.
assumption.
assumption.
(* Oshr *)
caseEq (intval approx r2); intros.
caseEq (Int.ltu i (Int.repr 32)); intros.
rewrite (intval_correct _ _ H). apply make_shrimm_correct.
assumption.
assumption.
(* Oshru *)
caseEq (intval approx r2); intros.
caseEq (Int.ltu i (Int.repr 32)); intros.
rewrite (intval_correct _ _ H). apply make_shruimm_correct.
assumption.
assumption.
(* Ocmp *)
generalize (cond_strength_reduction_correct c rl).
destruct (cond_strength_reduction approx c rl).
simpl. intro. rewrite H. auto.
(* default *)
assumption.
Qed.
Ltac KnownApprox :=
match goal with
| MATCH: (regs_match_approx ?approx ?rs),
H: (D.get ?r ?approx = ?a) |- _ =>
generalize (MATCH r); rewrite H; intro; clear H; KnownApprox
| _ => idtac
end.
Lemma addr_strength_reduction_correct:
forall addr args,
let (addr', args') := addr_strength_reduction approx addr args in
eval_addressing ge sp addr' rs##args' = eval_addressing ge sp addr rs##args.
Proof.
intros.
(* Useful lemmas *)
assert (A0: forall r1 r2,
eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil)) =
eval_addressing ge sp Aindexed2 (rs ## (r2 :: r1 :: nil))).
intros. simpl. destruct (rs#r1); destruct (rs#r2); auto;
rewrite Int.add_commut; auto.
assert (A1: forall r1 r2 n,
val_match_approx (I n) rs#r2 ->
eval_addressing ge sp (Aindexed n) (rs ## (r1 :: nil)) =
eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
intros; simpl in *. rewrite H. auto.
assert (A2: forall r1 r2 n,
val_match_approx (I n) rs#r1 ->
eval_addressing ge sp (Aindexed n) (rs ## (r2 :: nil)) =
eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
intros. rewrite A0. apply A1. auto.
assert (A3: forall r1 r2 id ofs,
val_match_approx (S id ofs) rs#r1 ->
eval_addressing ge sp (Abased id ofs) (rs ## (r2 :: nil)) =
eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
intros. elim H. intros b [A B]. simpl. rewrite A; rewrite B. auto.
assert (A4: forall r1 r2 id ofs,
val_match_approx (S id ofs) rs#r2 ->
eval_addressing ge sp (Abased id ofs) (rs ## (r1 :: nil)) =
eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
intros. rewrite A0. apply A3. auto.
assert (A5: forall r1 r2 id ofs n,
val_match_approx (S id ofs) rs#r1 ->
val_match_approx (I n) rs#r2 ->
eval_addressing ge sp (Aglobal id (Int.add ofs n)) nil =
eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
intros. elim H. intros b [A B]. simpl. rewrite A; rewrite B.
simpl in H0. rewrite H0. auto.
unfold addr_strength_reduction;
case (addr_strength_reduction_match addr args); intros.
(* Aindexed2 *)
caseEq (D.get r1 approx); intros;
caseEq (D.get r2 approx); intros;
try reflexivity; KnownApprox; auto.
rewrite A0. rewrite Int.add_commut. apply A5; auto.
(* Abased *)
caseEq (intval approx r1); intros.
simpl; rewrite (intval_correct _ _ H). auto.
auto.
(* Aindexed *)
caseEq (D.get r1 approx); intros; auto.
simpl; KnownApprox.
elim H0. intros b [A B]. rewrite A; rewrite B. auto.
(* default *)
reflexivity.
Qed.
End STRENGTH_REDUCTION.
End ANALYSIS.
(** * Correctness of the code transformation *)
(** We now show that the transformed code after constant propagation
has the same semantics as the original code. *)
Section PRESERVATION.
Variable prog: program.
Let tprog := transf_program prog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
intros; unfold ge, tge, tprog, transf_program.
apply Genv.find_symbol_transf.
Qed.
Lemma functions_translated:
forall (v: val) (f: fundef),
Genv.find_funct ge v = Some f ->
Genv.find_funct tge v = Some (transf_fundef f).
Proof.
intros.
exact (Genv.find_funct_transf transf_fundef H).
Qed.
Lemma function_ptr_translated:
forall (b: block) (f: fundef),
Genv.find_funct_ptr ge b = Some f ->
Genv.find_funct_ptr tge b = Some (transf_fundef f).
Proof.
intros.
exact (Genv.find_funct_ptr_transf transf_fundef H).
Qed.
Lemma sig_function_translated:
forall f,
funsig (transf_fundef f) = funsig f.
Proof.
intros. destruct f; reflexivity.
Qed.
Lemma transf_ros_correct:
forall ros rs f approx,
regs_match_approx ge approx rs ->
find_function ge ros rs = Some f ->
find_function tge (transf_ros approx ros) rs = Some (transf_fundef f).
Proof.
intros until approx; intro MATCH.
destruct ros; simpl.
intro.
exploit functions_translated; eauto. intro FIND.
caseEq (D.get r approx); intros; auto.
generalize (Int.eq_spec i0 Int.zero); case (Int.eq i0 Int.zero); intros; auto.
generalize (MATCH r). rewrite H0. intros [b [A B]].
rewrite <- symbols_preserved in A.
rewrite B in FIND. rewrite H1 in FIND.
rewrite Genv.find_funct_find_funct_ptr in FIND.
simpl. rewrite A. auto.
rewrite symbols_preserved. destruct (Genv.find_symbol ge i).
intro. apply function_ptr_translated. auto.
congruence.
Qed.
(** The proof of semantic preservation is a simulation argument
based on diagrams of the following form:
<<
st1 --------------- st2
| |
t| |t
| |
v v
st1'--------------- st2'
>>
The left vertical arrow represents a transition in the
original RTL code. The top horizontal bar is the [match_states]
invariant between the initial state [st1] in the original RTL code
and an initial state [st2] in the transformed code.
This invariant expresses that all code fragments appearing in [st2]
are obtained by [transf_code] transformation of the corresponding
fragments in [st1]. Moreover, the values of registers in [st1]
must match their compile-time approximations at the current program
point.
These two parts of the diagram are the hypotheses. In conclusions,
we want to prove the other two parts: the right vertical arrow,
which is a transition in the transformed RTL code, and the bottom
horizontal bar, which means that the [match_state] predicate holds
between the final states [st1'] and [st2']. *)
Inductive match_stackframes: stackframe -> stackframe -> Prop :=
match_stackframe_intro:
forall res c sp pc rs f,
c = f.(RTL.fn_code) ->
(forall v, regs_match_approx ge (analyze f)!!pc (rs#res <- v)) ->
match_stackframes
(Stackframe res c sp pc rs)
(Stackframe res (transf_code (analyze f) c) sp pc rs).
Inductive match_states: state -> state -> Prop :=
| match_states_intro:
forall s c sp pc rs m f s'
(CF: c = f.(RTL.fn_code))
(MATCH: regs_match_approx ge (analyze f)!!pc rs)
(STACKS: list_forall2 match_stackframes s s'),
match_states (State s c sp pc rs m)
(State s' (transf_code (analyze f) c) sp pc rs m)
| match_states_call:
forall s f args m s',
list_forall2 match_stackframes s s' ->
match_states (Callstate s f args m)
(Callstate s' (transf_fundef f) args m)
| match_states_return:
forall s s' v m,
list_forall2 match_stackframes s s' ->
match_states (Returnstate s v m)
(Returnstate s' v m).
Ltac TransfInstr :=
match goal with
| H1: (PTree.get ?pc ?c = Some ?instr), f: function |- _ =>
cut ((transf_code (analyze f) c)!pc = Some(transf_instr (analyze f)!!pc instr));
[ simpl
| unfold transf_code; rewrite PTree.gmap;
unfold option_map; rewrite H1; reflexivity ]
end.
(** The proof of simulation proceeds by case analysis on the transition
taken in the source code. *)
Lemma transf_step_correct:
forall s1 t s2,
step ge s1 t s2 ->
forall s1' (MS: match_states s1 s1'),
exists s2', step tge s1' t s2' /\ match_states s2 s2'.
Proof.
induction 1; intros; inv MS.
(* Inop *)
exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' rs m); split.
TransfInstr; intro. eapply exec_Inop; eauto.
econstructor; eauto.
eapply analyze_correct_1 with (pc := pc); eauto.
unfold successors; rewrite H; auto with coqlib.
unfold transfer; rewrite H. auto.
(* Iop *)
exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#res <- v) m); split.
TransfInstr. caseEq (op_strength_reduction (analyze f)!!pc op args);
intros op' args' OSR.
assert (eval_operation tge sp op' rs##args' = Some v).
rewrite (eval_operation_preserved symbols_preserved).
generalize (op_strength_reduction_correct ge (analyze f)!!pc sp rs
MATCH op args v).
rewrite OSR; simpl. auto.
generalize (eval_static_operation_correct ge op sp
(approx_regs args (analyze f)!!pc) rs##args v
(approx_regs_val_list _ _ _ args MATCH) H0).
case (eval_static_operation op (approx_regs args (analyze f)!!pc)); intros;
simpl in H2;
eapply exec_Iop; eauto; simpl.
congruence.
congruence.
elim H2; intros b [A B]. rewrite symbols_preserved.
rewrite A; rewrite B; auto.
econstructor; eauto.
eapply analyze_correct_1 with (pc := pc); eauto.
unfold successors; rewrite H; auto with coqlib.
unfold transfer; rewrite H.
apply regs_match_approx_update; auto.
eapply eval_static_operation_correct; eauto.
apply approx_regs_val_list; auto.
(* Iload *)
caseEq (addr_strength_reduction (analyze f)!!pc addr args);
intros addr' args' ASR.
assert (eval_addressing tge sp addr' rs##args' = Some a).
rewrite (eval_addressing_preserved symbols_preserved).
generalize (addr_strength_reduction_correct ge (analyze f)!!pc sp rs
MATCH addr args).
rewrite ASR; simpl. congruence.
TransfInstr. rewrite ASR. intro.
exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#dst <- v) m); split.
eapply exec_Iload; eauto.
econstructor; eauto.
apply analyze_correct_1 with pc; auto.
unfold successors; rewrite H; auto with coqlib.
unfold transfer; rewrite H.
apply regs_match_approx_update; auto. simpl; auto.
(* Istore *)
caseEq (addr_strength_reduction (analyze f)!!pc addr args);
intros addr' args' ASR.
assert (eval_addressing tge sp addr' rs##args' = Some a).
rewrite (eval_addressing_preserved symbols_preserved).
generalize (addr_strength_reduction_correct ge (analyze f)!!pc sp rs
MATCH addr args).
rewrite ASR; simpl. congruence.
TransfInstr. rewrite ASR. intro.
exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' rs m'); split.
eapply exec_Istore; eauto.
econstructor; eauto.
apply analyze_correct_1 with pc; auto.
unfold successors; rewrite H; auto with coqlib.
unfold transfer; rewrite H. auto.
(* Icall *)
exploit transf_ros_correct; eauto. intro FIND'.
TransfInstr; intro.
econstructor; split.
eapply exec_Icall; eauto. apply sig_function_translated; auto.
constructor; auto. constructor; auto.
econstructor; eauto.
intros. apply analyze_correct_1 with pc; auto.
unfold successors; rewrite H; auto with coqlib.
unfold transfer; rewrite H.
apply regs_match_approx_update; auto. simpl. auto.
(* Itailcall *)
exploit transf_ros_correct; eauto. intros FIND'.
TransfInstr; intro.
econstructor; split.
eapply exec_Itailcall; eauto. apply sig_function_translated; auto.
constructor; auto.
(* Icond, true *)
exists (State s' (transf_code (analyze f) (fn_code f)) sp ifso rs m); split.
caseEq (cond_strength_reduction (analyze f)!!pc cond args);
intros cond' args' CSR.
assert (eval_condition cond' rs##args' = Some true).
generalize (cond_strength_reduction_correct
ge (analyze f)!!pc rs MATCH cond args).
rewrite CSR. intro. congruence.
TransfInstr. rewrite CSR.
caseEq (eval_static_condition cond (approx_regs args (analyze f)!!pc)).
intros b ESC.
generalize (eval_static_condition_correct ge cond _ _ _
(approx_regs_val_list _ _ _ args MATCH) ESC); intro.
replace b with true. intro; eapply exec_Inop; eauto. congruence.
intros. eapply exec_Icond_true; eauto.
econstructor; eauto.
apply analyze_correct_1 with pc; auto.
unfold successors; rewrite H; auto with coqlib.
unfold transfer; rewrite H; auto.
(* Icond, false *)
exists (State s' (transf_code (analyze f) (fn_code f)) sp ifnot rs m); split.
caseEq (cond_strength_reduction (analyze f)!!pc cond args);
intros cond' args' CSR.
assert (eval_condition cond' rs##args' = Some false).
generalize (cond_strength_reduction_correct
ge (analyze f)!!pc rs MATCH cond args).
rewrite CSR. intro. congruence.
TransfInstr. rewrite CSR.
caseEq (eval_static_condition cond (approx_regs args (analyze f)!!pc)).
intros b ESC.
generalize (eval_static_condition_correct ge cond _ _ _
(approx_regs_val_list _ _ _ args MATCH) ESC); intro.
replace b with false. intro; eapply exec_Inop; eauto. congruence.
intros. eapply exec_Icond_false; eauto.
econstructor; eauto.
apply analyze_correct_1 with pc; auto.
unfold successors; rewrite H; auto with coqlib.
unfold transfer; rewrite H; auto.
(* Ireturn *)
exists (Returnstate s' (regmap_optget or Vundef rs) (free m stk)); split.
eapply exec_Ireturn; eauto. TransfInstr; auto.
constructor; auto.
(* internal function *)
simpl. unfold transf_function.
econstructor; split.
eapply exec_function_internal; simpl; eauto.
simpl. econstructor; eauto.
apply analyze_correct_3; auto.
(* external function *)
simpl. econstructor; split.
eapply exec_function_external; eauto.
constructor; auto.
(* return *)
inv H3. inv H1.
econstructor; split.
eapply exec_return; eauto.
econstructor; eauto.
Qed.
Lemma transf_initial_states:
forall st1, initial_state prog st1 ->
exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inversion H.
exploit function_ptr_translated; eauto. intro FIND.
exists (Callstate nil (transf_fundef f) nil (Genv.init_mem tprog)); split.
econstructor; eauto.
replace (prog_main tprog) with (prog_main prog).
rewrite symbols_preserved. eauto.
reflexivity.
rewrite <- H2. apply sig_function_translated.
replace (Genv.init_mem tprog) with (Genv.init_mem prog).
constructor. constructor. auto.
symmetry. unfold tprog, transf_program. apply Genv.init_mem_transf.
Qed.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
intros. inv H0. inv H. inv H4. constructor.
Qed.
(** The preservation of the observable behavior of the program then
follows, using the generic preservation theorem
[Smallstep.simulation_step_preservation]. *)
Theorem transf_program_correct:
forall (beh: program_behavior),
exec_program prog beh -> exec_program tprog beh.
Proof.
unfold exec_program; intros.
eapply simulation_step_preservation; eauto.
eexact transf_initial_states.
eexact transf_final_states.
exact transf_step_correct.
Qed.
End PRESERVATION.
|