1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for PPC generation: auxiliary results. *)
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Asm.
Require Import Asmgen.
Require Import Conventions.
Require Import Asmgenproof0.
(** * Properties of low half/high half decomposition *)
Lemma high_half_zero:
forall v, Val.add (high_half v) Vzero = high_half v.
Proof.
intros. generalize (high_half_type v).
rewrite Val.add_commut.
case (high_half v); simpl; intros; try contradiction.
auto.
rewrite Int.add_commut; rewrite Int.add_zero; auto.
rewrite Int.add_zero; auto.
Qed.
Lemma low_high_u:
forall n, Int.or (Int.shl (high_u n) (Int.repr 16)) (low_u n) = n.
Proof.
intros. unfold high_u, low_u.
rewrite Int.shl_rolm. rewrite Int.shru_rolm.
rewrite Int.rolm_rolm.
change (Int.modu (Int.add (Int.sub (Int.repr (Z_of_nat Int.wordsize)) (Int.repr 16))
(Int.repr 16))
(Int.repr (Z_of_nat Int.wordsize)))
with (Int.zero).
rewrite Int.rolm_zero. rewrite <- Int.and_or_distrib.
exact (Int.and_mone n).
apply int_wordsize_divides_modulus. reflexivity. reflexivity.
Qed.
Lemma low_high_u_xor:
forall n, Int.xor (Int.shl (high_u n) (Int.repr 16)) (low_u n) = n.
Proof.
intros. unfold high_u, low_u.
rewrite Int.shl_rolm. rewrite Int.shru_rolm.
rewrite Int.rolm_rolm.
change (Int.modu (Int.add (Int.sub (Int.repr (Z_of_nat Int.wordsize)) (Int.repr 16))
(Int.repr 16))
(Int.repr (Z_of_nat Int.wordsize)))
with (Int.zero).
rewrite Int.rolm_zero. rewrite <- Int.and_xor_distrib.
exact (Int.and_mone n).
apply int_wordsize_divides_modulus. reflexivity. reflexivity.
Qed.
Lemma low_high_s:
forall n, Int.add (Int.shl (high_s n) (Int.repr 16)) (low_s n) = n.
Proof.
intros.
rewrite Int.shl_mul_two_p.
unfold high_s.
rewrite <- (Int.divu_pow2 (Int.sub n (low_s n)) (Int.repr 65536) (Int.repr 16)).
2: reflexivity.
change (two_p (Int.unsigned (Int.repr 16))) with 65536.
set (x := Int.sub n (low_s n)).
assert (x = Int.add (Int.mul (Int.divu x (Int.repr 65536)) (Int.repr 65536))
(Int.modu x (Int.repr 65536))).
apply Int.modu_divu_Euclid. vm_compute; congruence.
assert (Int.modu x (Int.repr 65536) = Int.zero).
unfold Int.modu, Int.zero. decEq.
change 0 with (0 mod 65536).
change (Int.unsigned (Int.repr 65536)) with 65536.
apply Int.eqmod_mod_eq. omega.
unfold x, low_s. eapply Int.eqmod_trans.
apply Int.eqmod_divides with Int.modulus.
unfold Int.sub. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl.
exists 65536. compute; auto.
replace 0 with (Int.unsigned n - Int.unsigned n) by omega.
apply Int.eqmod_sub. apply Int.eqmod_refl. apply Int.eqmod_sign_ext'.
compute; auto.
rewrite H0 in H. rewrite Int.add_zero in H.
rewrite <- H. unfold x. rewrite Int.sub_add_opp. rewrite Int.add_assoc.
rewrite (Int.add_commut (Int.neg (low_s n))). rewrite <- Int.sub_add_opp.
rewrite Int.sub_idem. apply Int.add_zero.
Qed.
Lemma add_zero_symbol_offset:
forall ge id ofs,
Val.add Vzero (symbol_offset ge id ofs) = symbol_offset ge id ofs.
Proof.
unfold symbol_offset; intros. destruct (Genv.find_symbol ge id); auto.
simpl. rewrite Int.add_zero; auto.
Qed.
Lemma csymbol_high_low:
forall ge id ofs,
Val.add (high_half (symbol_offset ge id ofs)) (low_half (symbol_offset ge id ofs))
= symbol_offset ge id ofs.
Proof.
intros. rewrite Val.add_commut. apply low_high_half.
Qed.
Lemma csymbol_high_low_2:
forall ge id ofs rel,
Val.add (const_high ge (csymbol_high id ofs rel))
(const_low ge (csymbol_low id ofs rel)) = symbol_offset ge id ofs.
Proof.
intros. destruct rel; apply csymbol_high_low.
Qed.
(*
Lemma csymbol_sda_eq:
forall ge id ofs,
symbol_is_small_data id ofs = true ->
Val.add Vzero (const_low ge (Csymbol_sda id ofs)) = symbol_offset ge id ofs.
Proof.
intros. unfold const_low. rewrite small_data_area_addressing by auto.
unfold symbol_offset.
destruct (Genv.find_symbol ge id); simpl; auto. rewrite Int.add_zero; auto.
Qed.
*)
(** Useful properties of the GPR0 registers. *)
Lemma gpr_or_zero_not_zero:
forall rs r, r <> GPR0 -> gpr_or_zero rs r = rs#r.
Proof.
intros. unfold gpr_or_zero. case (ireg_eq r GPR0); tauto.
Qed.
Lemma gpr_or_zero_zero:
forall rs, gpr_or_zero rs GPR0 = Vzero.
Proof.
intros. reflexivity.
Qed.
Hint Resolve gpr_or_zero_not_zero gpr_or_zero_zero: asmgen.
Lemma ireg_of_not_GPR0:
forall m r, ireg_of m = OK r -> IR r <> IR GPR0.
Proof.
intros. erewrite <- ireg_of_eq; eauto with asmgen.
Qed.
Hint Resolve ireg_of_not_GPR0: asmgen.
Lemma ireg_of_not_GPR0':
forall m r, ireg_of m = OK r -> r <> GPR0.
Proof.
intros. generalize (ireg_of_not_GPR0 _ _ H). congruence.
Qed.
Hint Resolve ireg_of_not_GPR0': asmgen.
(** Useful simplification tactic *)
Ltac Simplif :=
((rewrite nextinstr_inv by eauto with asmgen)
|| (rewrite nextinstr_inv1 by eauto with asmgen)
|| (rewrite Pregmap.gss)
|| (rewrite nextinstr_pc)
|| (rewrite Pregmap.gso by eauto with asmgen)); auto with asmgen.
Ltac Simpl := repeat Simplif.
(** * Correctness of PowerPC constructor functions *)
Section CONSTRUCTORS.
Variable ge: genv.
Variable fn: function.
(** Properties of comparisons. *)
Lemma compare_float_spec:
forall rs v1 v2,
let rs1 := nextinstr (compare_float rs v1 v2) in
rs1#CR0_0 = Val.cmpf Clt v1 v2
/\ rs1#CR0_1 = Val.cmpf Cgt v1 v2
/\ rs1#CR0_2 = Val.cmpf Ceq v1 v2
/\ forall r', r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 -> r' <> PC -> rs1#r' = rs#r'.
Proof.
intros. unfold rs1.
split. reflexivity.
split. reflexivity.
split. reflexivity.
intros. unfold compare_float. Simpl.
Qed.
Lemma compare_sint_spec:
forall rs v1 v2,
let rs1 := nextinstr (compare_sint rs v1 v2) in
rs1#CR0_0 = Val.cmp Clt v1 v2
/\ rs1#CR0_1 = Val.cmp Cgt v1 v2
/\ rs1#CR0_2 = Val.cmp Ceq v1 v2
/\ forall r', r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 -> r' <> PC -> rs1#r' = rs#r'.
Proof.
intros. unfold rs1.
split. reflexivity.
split. reflexivity.
split. reflexivity.
intros. unfold compare_sint. Simpl.
Qed.
Lemma compare_uint_spec:
forall rs m v1 v2,
let rs1 := nextinstr (compare_uint rs m v1 v2) in
rs1#CR0_0 = Val.cmpu (Mem.valid_pointer m) Clt v1 v2
/\ rs1#CR0_1 = Val.cmpu (Mem.valid_pointer m) Cgt v1 v2
/\ rs1#CR0_2 = Val.cmpu (Mem.valid_pointer m) Ceq v1 v2
/\ forall r', r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 -> r' <> PC -> rs1#r' = rs#r'.
Proof.
intros. unfold rs1.
split. reflexivity.
split. reflexivity.
split. reflexivity.
intros. unfold compare_uint. Simpl.
Qed.
(** Loading a constant. *)
Lemma loadimm_correct:
forall r n k rs m,
exists rs',
exec_straight ge fn (loadimm r n k) rs m k rs' m
/\ rs'#r = Vint n
/\ forall r': preg, r' <> r -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold loadimm.
case (Int.eq (high_s n) Int.zero).
(* addi *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
rewrite Int.add_zero_l. intuition Simpl.
(* addis *)
generalize (Int.eq_spec (low_s n) Int.zero); case (Int.eq (low_s n) Int.zero); intro.
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
rewrite <- H. rewrite Int.add_commut. rewrite low_high_s.
intuition Simpl.
(* addis + ori *)
econstructor; split. eapply exec_straight_two.
simpl; eauto. simpl; eauto. auto. auto.
split. Simpl. rewrite Int.add_zero_l. unfold Val.or. rewrite low_high_u. auto.
intros; Simpl.
Qed.
(** Add integer immediate. *)
Lemma addimm_correct:
forall r1 r2 n k rs m,
r1 <> GPR0 ->
r2 <> GPR0 ->
exists rs',
exec_straight ge fn (addimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = Val.add rs#r2 (Vint n)
/\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold addimm.
(* addi *)
case (Int.eq (high_s n) Int.zero).
econstructor; split. apply exec_straight_one.
simpl. rewrite gpr_or_zero_not_zero; eauto.
reflexivity.
intuition Simpl.
(* addis *)
generalize (Int.eq_spec (low_s n) Int.zero); case (Int.eq (low_s n) Int.zero); intro.
econstructor; split. apply exec_straight_one.
simpl. rewrite gpr_or_zero_not_zero; auto. auto.
split. Simpl.
generalize (low_high_s n). rewrite H1. rewrite Int.add_zero. congruence.
intros; Simpl.
(* addis + addi *)
econstructor; split. eapply exec_straight_two.
simpl. rewrite gpr_or_zero_not_zero; eauto.
simpl. rewrite gpr_or_zero_not_zero; eauto.
auto. auto.
split. Simpl. rewrite Val.add_assoc. simpl. rewrite low_high_s. auto.
intros; Simpl.
Qed.
(** And integer immediate. *)
Lemma andimm_base_correct:
forall r1 r2 n k (rs : regset) m,
r2 <> GPR0 ->
let v := Val.and rs#r2 (Vint n) in
exists rs',
exec_straight ge fn (andimm_base r1 r2 n k) rs m k rs' m
/\ rs'#r1 = v
/\ rs'#CR0_2 = Val.cmp Ceq v Vzero
/\ forall r', data_preg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
Proof.
intros. unfold andimm_base.
case (Int.eq (high_u n) Int.zero).
(* andi *)
exists (nextinstr (compare_sint (rs#r1 <- v) v Vzero)).
generalize (compare_sint_spec (rs#r1 <- v) v Vzero).
intros [A [B [C D]]].
split. apply exec_straight_one. reflexivity. reflexivity.
split. rewrite D; auto with asmgen. Simpl.
split. auto.
intros. rewrite D; auto with asmgen. Simpl.
(* andis *)
generalize (Int.eq_spec (low_u n) Int.zero);
case (Int.eq (low_u n) Int.zero); intro.
exists (nextinstr (compare_sint (rs#r1 <- v) v Vzero)).
generalize (compare_sint_spec (rs#r1 <- v) v Vzero).
intros [A [B [C D]]].
split. apply exec_straight_one. simpl.
generalize (low_high_u n). rewrite H0. rewrite Int.or_zero.
intro. rewrite H1. reflexivity. reflexivity.
split. rewrite D; auto with asmgen. Simpl.
split. auto.
intros. rewrite D; auto with asmgen. Simpl.
(* loadimm + and *)
generalize (loadimm_correct GPR0 n (Pand_ r1 r2 GPR0 :: k) rs m).
intros [rs1 [EX1 [RES1 OTHER1]]].
exists (nextinstr (compare_sint (rs1#r1 <- v) v Vzero)).
generalize (compare_sint_spec (rs1#r1 <- v) v Vzero).
intros [A [B [C D]]].
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl. rewrite RES1.
rewrite (OTHER1 r2). reflexivity. congruence. congruence.
reflexivity.
split. rewrite D; auto with asmgen. Simpl.
split. auto.
intros. rewrite D; auto with asmgen. Simpl.
Qed.
Lemma andimm_correct:
forall r1 r2 n k (rs : regset) m,
r2 <> GPR0 ->
exists rs',
exec_straight ge fn (andimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = Val.and rs#r2 (Vint n)
/\ forall r', data_preg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
Proof.
intros. unfold andimm. destruct (is_rlw_mask n).
(* turned into rlw *)
econstructor; split. eapply exec_straight_one.
simpl. rewrite Val.rolm_zero. eauto. auto.
intuition Simpl.
(* andimm_base *)
destruct (andimm_base_correct r1 r2 n k rs m) as [rs' [A [B [C D]]]]; auto.
exists rs'; auto.
Qed.
(** Or integer immediate. *)
Lemma orimm_correct:
forall r1 (r2: ireg) n k (rs : regset) m,
let v := Val.or rs#r2 (Vint n) in
exists rs',
exec_straight ge fn (orimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = v
/\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold orimm.
case (Int.eq (high_u n) Int.zero).
(* ori *)
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. reflexivity. reflexivity.
intuition Simpl.
(* oris *)
generalize (Int.eq_spec (low_u n) Int.zero);
case (Int.eq (low_u n) Int.zero); intro.
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. simpl.
generalize (low_high_u n). rewrite H. rewrite Int.or_zero.
intro. rewrite H0. reflexivity. reflexivity.
intuition Simpl.
(* oris + ori *)
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
intuition Simpl.
rewrite Val.or_assoc. simpl. rewrite low_high_u. reflexivity.
Qed.
(** Xor integer immediate. *)
Lemma xorimm_correct:
forall r1 (r2: ireg) n k (rs : regset) m,
let v := Val.xor rs#r2 (Vint n) in
exists rs',
exec_straight ge fn (xorimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = v
/\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold xorimm.
case (Int.eq (high_u n) Int.zero).
(* xori *)
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. reflexivity. reflexivity.
intuition Simpl.
(* xoris *)
generalize (Int.eq_spec (low_u n) Int.zero);
case (Int.eq (low_u n) Int.zero); intro.
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. simpl.
generalize (low_high_u n). rewrite H. rewrite Int.or_zero.
intro. rewrite H0. reflexivity. reflexivity.
intuition Simpl.
(* xoris + xori *)
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
intuition Simpl.
rewrite Val.xor_assoc. simpl. rewrite low_high_u_xor. reflexivity.
Qed.
(** Rotate and mask. *)
Lemma rolm_correct:
forall r1 r2 amount mask k (rs : regset) m,
r1 <> GPR0 ->
exists rs',
exec_straight ge fn (rolm r1 r2 amount mask k) rs m k rs' m
/\ rs'#r1 = Val.rolm rs#r2 amount mask
/\ forall r', data_preg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
Proof.
intros. unfold rolm. destruct (is_rlw_mask mask).
(* rlwinm *)
econstructor; split. eapply exec_straight_one; simpl; eauto.
intuition Simpl.
(* rlwinm ; andimm *)
set (rs1 := nextinstr (rs#r1 <- (Val.rolm rs#r2 amount Int.mone))).
destruct (andimm_base_correct r1 r1 mask k rs1 m) as [rs' [A [B [C D]]]]; auto.
exists rs'.
split. eapply exec_straight_step; eauto. auto. auto.
split. rewrite B. unfold rs1. rewrite nextinstr_inv; auto with asmgen.
rewrite Pregmap.gss. destruct (rs r2); simpl; auto.
unfold Int.rolm. rewrite Int.and_assoc.
decEq; decEq; decEq. rewrite Int.and_commut. apply Int.and_mone.
intros. rewrite D; auto. unfold rs1; Simpl.
Qed.
(** Indexed memory loads. *)
Lemma loadind_correct:
forall (base: ireg) ofs ty dst k (rs: regset) m v c,
loadind base ofs ty dst k = OK c ->
Mem.loadv (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) = Some v ->
base <> GPR0 ->
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(preg_of dst) = v
/\ forall r, r <> PC -> r <> preg_of dst -> r <> GPR0 -> rs'#r = rs#r.
Proof.
Opaque Int.eq.
unfold loadind; intros. destruct ty; monadInv H; simpl in H0.
(* integer *)
rewrite (ireg_of_eq _ _ EQ).
destruct (Int.eq (high_s ofs) Int.zero).
(* one load *)
econstructor; split. apply exec_straight_one. simpl.
unfold load1. rewrite gpr_or_zero_not_zero; auto. simpl. rewrite H0. eauto. auto.
intuition Simpl.
(* loadimm + load *)
exploit (loadimm_correct GPR0 ofs); eauto. intros [rs' [A [B C]]].
exists (nextinstr (rs'#x <- v)); split.
eapply exec_straight_trans. eexact A. apply exec_straight_one; auto.
simpl. unfold load2. rewrite C; auto with asmgen. rewrite B. rewrite H0. auto.
intuition Simpl.
(* float *)
rewrite (freg_of_eq _ _ EQ).
destruct (Int.eq (high_s ofs) Int.zero).
(* one load *)
econstructor; split. apply exec_straight_one. simpl.
unfold load1. rewrite gpr_or_zero_not_zero; auto. simpl. rewrite H0. eauto. auto.
intuition Simpl.
(* loadimm + load *)
exploit (loadimm_correct GPR0 ofs); eauto. intros [rs' [A [B C]]].
exists (nextinstr (rs'#x <- v)); split.
eapply exec_straight_trans. eexact A. apply exec_straight_one; auto.
simpl. unfold load2. rewrite C; auto with asmgen. rewrite B. rewrite H0. auto.
intuition Simpl.
Qed.
(** Indexed memory stores. *)
Lemma storeind_correct:
forall (base: ireg) ofs ty src k (rs: regset) m m' c,
storeind src base ofs ty k = OK c ->
Mem.storev (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) (rs#(preg_of src)) = Some m' ->
base <> GPR0 ->
exists rs',
exec_straight ge fn c rs m k rs' m'
/\ forall r, r <> PC -> r <> GPR0 -> rs'#r = rs#r.
Proof.
unfold storeind; intros.
assert (preg_of src <> GPR0) by auto with asmgen.
destruct ty; monadInv H; simpl in H0.
(* integer *)
rewrite (ireg_of_eq _ _ EQ) in *.
destruct (Int.eq (high_s ofs) Int.zero).
(* one store *)
econstructor; split. apply exec_straight_one. simpl.
unfold store1. rewrite gpr_or_zero_not_zero; auto. simpl. rewrite H0. eauto. auto.
intros; Simpl.
(* loadimm + store *)
exploit (loadimm_correct GPR0 ofs); eauto. intros [rs' [A [B C]]].
exists (nextinstr rs'); split.
eapply exec_straight_trans. eexact A. apply exec_straight_one; auto.
simpl. unfold store2. rewrite B. rewrite ! C; auto with asmgen. rewrite H0. auto.
intuition Simpl.
(* float *)
rewrite (freg_of_eq _ _ EQ) in *.
destruct (Int.eq (high_s ofs) Int.zero).
(* one store *)
econstructor; split. apply exec_straight_one. simpl.
unfold store1. rewrite gpr_or_zero_not_zero; auto. simpl. rewrite H0. eauto. auto.
intuition Simpl.
(* loadimm + store *)
exploit (loadimm_correct GPR0 ofs); eauto. intros [rs' [A [B C]]].
exists (nextinstr rs'); split.
eapply exec_straight_trans. eexact A. apply exec_straight_one; auto.
simpl. unfold store2. rewrite B. rewrite ! C; auto with asmgen. rewrite H0. auto.
intuition Simpl.
Qed.
(** Float comparisons. *)
Lemma floatcomp_correct:
forall cmp (r1 r2: freg) k rs m,
exists rs',
exec_straight ge fn (floatcomp cmp r1 r2 k) rs m k rs' m
/\ rs'#(reg_of_crbit (fst (crbit_for_fcmp cmp))) =
(if snd (crbit_for_fcmp cmp)
then Val.cmpf cmp rs#r1 rs#r2
else Val.notbool (Val.cmpf cmp rs#r1 rs#r2))
/\ forall r',
r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
r' <> CR0_2 -> r' <> CR0_3 -> rs'#r' = rs#r'.
Proof.
intros.
generalize (compare_float_spec rs rs#r1 rs#r2).
intros [A [B [C D]]].
set (rs1 := nextinstr (compare_float rs rs#r1 rs#r2)) in *.
assert ((cmp = Ceq \/ cmp = Cne \/ cmp = Clt \/ cmp = Cgt)
\/ (cmp = Cle \/ cmp = Cge)).
case cmp; tauto.
unfold floatcomp. elim H; intro; clear H.
exists rs1.
split. destruct H0 as [EQ|[EQ|[EQ|EQ]]]; subst cmp;
apply exec_straight_one; reflexivity.
split.
destruct H0 as [EQ|[EQ|[EQ|EQ]]]; subst cmp; simpl; auto.
rewrite Val.negate_cmpf_eq. auto.
auto.
(* two instrs *)
exists (nextinstr (rs1#CR0_3 <- (Val.cmpf cmp rs#r1 rs#r2))).
split. elim H0; intro; subst cmp.
apply exec_straight_two with rs1 m.
reflexivity. simpl.
rewrite C; rewrite A. rewrite Val.or_commut. rewrite <- Val.cmpf_le.
reflexivity. reflexivity. reflexivity.
apply exec_straight_two with rs1 m.
reflexivity. simpl.
rewrite C; rewrite B. rewrite Val.or_commut. rewrite <- Val.cmpf_ge.
reflexivity. reflexivity. reflexivity.
split. elim H0; intro; subst cmp; simpl.
reflexivity.
reflexivity.
intros. Simpl.
Qed.
(** Translation of conditions. *)
Ltac ArgsInv :=
repeat (match goal with
| [ H: Error _ = OK _ |- _ ] => discriminate
| [ H: match ?args with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct args
| [ H: bind _ _ = OK _ |- _ ] => monadInv H
| [ H: match _ with left _ => _ | right _ => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
| [ H: match _ with true => _ | false => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
end);
subst;
repeat (match goal with
| [ H: ireg_of _ = OK _ |- _ ] => simpl in *; rewrite (ireg_of_eq _ _ H) in *
| [ H: freg_of _ = OK _ |- _ ] => simpl in *; rewrite (freg_of_eq _ _ H) in *
end).
Lemma transl_cond_correct_1:
forall cond args k rs m c,
transl_cond cond args k = OK c ->
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
(if snd (crbit_for_cond cond)
then Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)
else Val.notbool (Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)))
/\ forall r, data_preg r = true -> rs'#r = rs#r.
Proof.
intros.
Opaque Int.eq.
unfold transl_cond in H; destruct cond; ArgsInv; simpl.
(* Ccomp *)
fold (Val.cmp c0 (rs x) (rs x0)).
destruct (compare_sint_spec rs (rs x) (rs x0)) as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl; reflexivity. reflexivity.
split.
case c0; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
auto with asmgen.
(* Ccompu *)
fold (Val.cmpu (Mem.valid_pointer m) c0 (rs x) (rs x0)).
destruct (compare_uint_spec rs m (rs x) (rs x0)) as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl; reflexivity. reflexivity.
split.
case c0; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
auto with asmgen.
(* Ccompimm *)
fold (Val.cmp c0 (rs x) (Vint i)).
destruct (Int.eq (high_s i) Int.zero); inv EQ0.
destruct (compare_sint_spec rs (rs x) (Vint i)) as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl; reflexivity. reflexivity.
split.
case c0; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
auto with asmgen.
destruct (loadimm_correct GPR0 i (Pcmpw x GPR0 :: k) rs m) as [rs1 [EX1 [RES1 OTH1]]].
destruct (compare_sint_spec rs1 (rs x) (Vint i)) as [A [B [C D]]].
assert (SAME: rs1 x = rs x) by (apply OTH1; eauto with asmgen).
exists (nextinstr (compare_sint rs1 (rs1 x) (Vint i))).
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl. rewrite RES1; rewrite SAME; auto.
reflexivity.
split. rewrite SAME.
case c0; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
intros. rewrite SAME; rewrite D; auto with asmgen.
(* Ccompuimm *)
fold (Val.cmpu (Mem.valid_pointer m) c0 (rs x) (Vint i)).
destruct (Int.eq (high_u i) Int.zero); inv EQ0.
destruct (compare_uint_spec rs m (rs x) (Vint i)) as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl; reflexivity. reflexivity.
split.
case c0; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
auto with asmgen.
destruct (loadimm_correct GPR0 i (Pcmplw x GPR0 :: k) rs m) as [rs1 [EX1 [RES1 OTH1]]].
destruct (compare_uint_spec rs1 m (rs x) (Vint i)) as [A [B [C D]]].
assert (SAME: rs1 x = rs x) by (apply OTH1; eauto with asmgen).
exists (nextinstr (compare_uint rs1 m (rs1 x) (Vint i))).
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl. rewrite RES1; rewrite SAME; auto.
reflexivity.
split. rewrite SAME.
case c0; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
intros. rewrite SAME; rewrite D; auto with asmgen.
(* Ccompf *)
fold (Val.cmpf c0 (rs x) (rs x0)).
destruct (floatcomp_correct c0 x x0 k rs m) as [rs' [EX [RES OTH]]].
exists rs'. split. auto.
split. apply RES.
auto with asmgen.
(* Cnotcompf *)
rewrite Val.notbool_negb_3. rewrite Val.notbool_idem4.
fold (Val.cmpf c0 (rs x) (rs x0)).
destruct (floatcomp_correct c0 x x0 k rs m) as [rs' [EX [RES OTH]]].
exists rs'. split. auto.
split. rewrite RES. destruct (snd (crbit_for_fcmp c0)); auto.
auto with asmgen.
(* Cmaskzero *)
destruct (andimm_base_correct GPR0 x i k rs m) as [rs' [A [B [C D]]]].
eauto with asmgen.
exists rs'. split. assumption.
split. rewrite C. destruct (rs x); auto.
auto with asmgen.
(* Cmasknotzero *)
destruct (andimm_base_correct GPR0 x i k rs m) as [rs' [A [B [C D]]]].
eauto with asmgen.
exists rs'. split. assumption.
split. rewrite C. destruct (rs x); auto.
fold (option_map negb (Some (Int.eq (Int.and i0 i) Int.zero))).
rewrite Val.notbool_negb_3. rewrite Val.notbool_idem4. auto.
auto with asmgen.
Qed.
Lemma transl_cond_correct_2:
forall cond args k rs m b c,
transl_cond cond args k = OK c ->
eval_condition cond (map rs (map preg_of args)) m = Some b ->
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
(if snd (crbit_for_cond cond)
then Val.of_bool b
else Val.notbool (Val.of_bool b))
/\ forall r, data_preg r = true -> rs'#r = rs#r.
Proof.
intros.
replace (Val.of_bool b)
with (Val.of_optbool (eval_condition cond rs ## (preg_of ## args) m)).
eapply transl_cond_correct_1; eauto.
rewrite H0; auto.
Qed.
Lemma transl_cond_correct_3:
forall cond args k ms sp rs m b m' c,
transl_cond cond args k = OK c ->
agree ms sp rs ->
eval_condition cond (map ms args) m = Some b ->
Mem.extends m m' ->
exists rs',
exec_straight ge fn c rs m' k rs' m'
/\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
(if snd (crbit_for_cond cond)
then Val.of_bool b
else Val.notbool (Val.of_bool b))
/\ agree ms sp rs'.
Proof.
intros.
exploit transl_cond_correct_2. eauto.
eapply eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto.
intros [rs' [A [B C]]].
exists rs'; split. eauto. split. auto. apply agree_exten with rs; auto.
Qed.
(** Translation of condition operators *)
Remark add_carry_eq0:
forall i,
Vint (Int.add (Int.add (Int.sub Int.zero i) i)
(Int.add_carry Int.zero (Int.xor i Int.mone) Int.one)) =
Val.of_bool (Int.eq i Int.zero).
Proof.
intros. rewrite <- Int.sub_add_l. rewrite Int.add_zero_l.
rewrite Int.sub_idem. rewrite Int.add_zero_l. fold (Int.not i).
predSpec Int.eq Int.eq_spec i Int.zero.
subst i. reflexivity.
unfold Val.of_bool, Vfalse. decEq.
unfold Int.add_carry. rewrite Int.unsigned_zero. rewrite Int.unsigned_one.
apply zlt_true.
generalize (Int.unsigned_range (Int.not i)); intro.
assert (Int.unsigned (Int.not i) <> Int.modulus - 1).
red; intros.
assert (Int.repr (Int.unsigned (Int.not i)) = Int.mone).
Local Transparent Int.repr.
rewrite H1. apply Int.mkint_eq. reflexivity.
rewrite Int.repr_unsigned in H2.
assert (Int.not (Int.not i) = Int.zero).
rewrite H2. apply Int.mkint_eq; reflexivity.
rewrite Int.not_involutive in H3.
congruence.
omega.
Qed.
Remark add_carry_ne0:
forall i,
Vint (Int.add (Int.add i (Int.xor (Int.add i Int.mone) Int.mone))
(Int.add_carry i Int.mone Int.zero)) =
Val.of_bool (negb (Int.eq i Int.zero)).
Proof.
intros. fold (Int.not (Int.add i Int.mone)). rewrite Int.not_neg.
rewrite (Int.add_commut (Int.neg (Int.add i Int.mone))).
rewrite <- Int.sub_add_opp. rewrite Int.sub_add_r. rewrite Int.sub_idem.
rewrite Int.add_zero_l. rewrite Int.add_neg_zero. rewrite Int.add_zero_l.
Transparent Int.eq.
unfold Int.add_carry, Int.eq.
rewrite Int.unsigned_zero. rewrite Int.unsigned_mone.
unfold negb, Val.of_bool, Vtrue, Vfalse.
destruct (zeq (Int.unsigned i) 0); decEq.
apply zlt_true. omega.
apply zlt_false. generalize (Int.unsigned_range i). omega.
Qed.
Lemma transl_cond_op_correct:
forall cond args r k rs m c,
transl_cond_op cond args r k = OK c ->
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(preg_of r) = Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)
/\ forall r', data_preg r' = true -> r' <> preg_of r -> rs'#r' = rs#r'.
Proof.
intros until args. unfold transl_cond_op.
destruct (classify_condition cond args); intros; monadInv H; simpl;
erewrite ! ireg_of_eq; eauto.
(* eq 0 *)
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. Simpl. destruct (rs x0); simpl; auto.
apply add_carry_eq0.
intros; Simpl.
(* ne 0 *)
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
rewrite gpr_or_zero_not_zero; eauto with asmgen.
split. Simpl. destruct (rs x0); simpl; auto.
apply add_carry_ne0.
intros; Simpl.
(* ge 0 *)
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. Simpl. rewrite Val.rolm_ge_zero. auto.
intros; Simpl.
(* lt 0 *)
econstructor; split.
apply exec_straight_one; simpl; reflexivity.
split. Simpl. rewrite Val.rolm_lt_zero. auto.
intros; Simpl.
(* default *)
set (bit := fst (crbit_for_cond c)) in *.
set (isset := snd (crbit_for_cond c)) in *.
set (k1 :=
Pmfcrbit x bit ::
(if isset
then k
else Pxori x x (Cint Int.one) :: k)).
generalize (transl_cond_correct_1 c rl k1 rs m c0 EQ0).
fold bit; fold isset.
intros [rs1 [EX1 [RES1 AG1]]].
destruct isset.
(* bit set *)
econstructor; split. eapply exec_straight_trans. eexact EX1.
unfold k1. apply exec_straight_one; simpl; reflexivity.
intuition Simpl.
(* bit clear *)
econstructor; split. eapply exec_straight_trans. eexact EX1.
unfold k1. eapply exec_straight_two; simpl; reflexivity.
intuition Simpl.
rewrite RES1. destruct (eval_condition c rs ## (preg_of ## rl) m). destruct b; auto. auto.
Qed.
(** Translation of arithmetic operations. *)
Ltac TranslOpSimpl :=
econstructor; split;
[ apply exec_straight_one; [simpl; eauto | reflexivity]
| split; intros; Simpl; fail ].
Lemma transl_op_correct_aux:
forall op args res k (rs: regset) m v c,
transl_op op args res k = OK c ->
eval_operation ge (rs#GPR1) op (map rs (map preg_of args)) m = Some v ->
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(preg_of res) = v
/\ forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r.
Proof.
Opaque Int.eq.
intros. unfold transl_op in H; destruct op; ArgsInv; simpl in H0; try (inv H0); try TranslOpSimpl.
(* Omove *)
destruct (preg_of res) eqn:RES; destruct (preg_of m0) eqn:ARG; inv H.
TranslOpSimpl.
TranslOpSimpl.
(* Ointconst *)
destruct (loadimm_correct x i k rs m) as [rs' [A [B C]]].
exists rs'. auto with asmgen.
(* Oaddrsymbol *)
change (symbol_address ge i i0) with (symbol_offset ge i i0).
set (v' := symbol_offset ge i i0).
destruct (symbol_is_small_data i i0) eqn:SD.
(* small data *)
Opaque Val.add.
econstructor; split. apply exec_straight_one; simpl; reflexivity.
split. Simpl. rewrite small_data_area_addressing by auto. apply add_zero_symbol_offset.
intros; Simpl.
(* not small data *)
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
split. Simpl. rewrite gpr_or_zero_not_zero; eauto with asmgen. Simpl.
rewrite Val.add_assoc. rewrite csymbol_high_low_2. apply add_zero_symbol_offset.
intros; Simpl.
(* Oaddrstack *)
destruct (addimm_correct x GPR1 i k rs m) as [rs' [EX [RES OTH]]]; eauto with asmgen.
exists rs'; auto with asmgen.
(* Oaddimm *)
destruct (addimm_correct x0 x i k rs m) as [rs' [A [B C]]]; eauto with asmgen.
exists rs'; auto with asmgen.
(* Oaddsymbol *)
destruct (symbol_is_small_data i i0) eqn:SD.
(* small data *)
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
split. Simpl. rewrite (Val.add_commut (rs x)). f_equal.
rewrite small_data_area_addressing by auto. apply add_zero_symbol_offset.
intros; Simpl.
destruct (symbol_is_rel_data i i0).
(* relative data *)
econstructor; split. eapply exec_straight_three; simpl; reflexivity.
split. Simpl. rewrite gpr_or_zero_zero. rewrite gpr_or_zero_not_zero by (eauto with asmgen).
Simpl. rewrite Val.add_assoc. rewrite (Val.add_commut (rs x)). f_equal.
rewrite Val.add_assoc. rewrite csymbol_high_low. apply add_zero_symbol_offset.
intros; Simpl.
(* absolute data *)
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
split. Simpl. rewrite ! gpr_or_zero_not_zero by (eauto with asmgen). Simpl.
rewrite Val.add_assoc. rewrite (Val.add_commut (rs x)). f_equal.
apply csymbol_high_low.
intros; Simpl.
(* Osubimm *)
case (Int.eq (high_s i) Int.zero).
TranslOpSimpl.
destruct (loadimm_correct GPR0 i (Psubfc x0 x GPR0 :: k) rs m) as [rs1 [EX [RES OTH]]].
econstructor; split.
eapply exec_straight_trans. eexact EX. apply exec_straight_one; simpl; reflexivity.
split. Simpl. rewrite RES. rewrite OTH; eauto with asmgen.
intros; Simpl.
(* Omulimm *)
case (Int.eq (high_s i) Int.zero).
TranslOpSimpl.
destruct (loadimm_correct GPR0 i (Pmullw x0 x GPR0 :: k) rs m) as [rs1 [EX [RES OTH]]].
econstructor; split.
eapply exec_straight_trans. eexact EX. apply exec_straight_one; simpl; reflexivity.
split. Simpl. rewrite RES. rewrite OTH; eauto with asmgen.
intros; Simpl.
(* Odivs *)
replace v with (Val.maketotal (Val.divs (rs x) (rs x0))).
TranslOpSimpl.
rewrite H1; auto.
(* Odivu *)
replace v with (Val.maketotal (Val.divu (rs x) (rs x0))).
TranslOpSimpl.
rewrite H1; auto.
(* Oand *)
set (v' := Val.and (rs x) (rs x0)) in *.
pose (rs1 := rs#x1 <- v').
destruct (compare_sint_spec rs1 v' Vzero) as [A [B [C D]]].
econstructor; split. apply exec_straight_one; simpl; reflexivity.
split. rewrite D; auto with asmgen. unfold rs1; Simpl.
intros. rewrite D; auto with asmgen. unfold rs1; Simpl.
(* Oandimm *)
destruct (andimm_correct x0 x i k rs m) as [rs' [A [B C]]]; eauto with asmgen.
(* Oorimm *)
destruct (orimm_correct x0 x i k rs m) as [rs' [A [B C]]].
exists rs'; auto with asmgen.
(* Oxorimm *)
destruct (xorimm_correct x0 x i k rs m) as [rs' [A [B C]]].
exists rs'; auto with asmgen.
(* Onor *)
replace (Val.notint (rs x))
with (Val.notint (Val.or (rs x) (rs x))).
TranslOpSimpl.
destruct (rs x); simpl; auto. rewrite Int.or_idem. auto.
(* Oshrximm *)
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. Simpl. apply Val.shrx_carry. auto.
intros; Simpl.
(* Orolm *)
destruct (rolm_correct x0 x i i0 k rs m) as [rs' [A [B C]]]; eauto with asmgen.
(* Ointoffloat *)
replace v with (Val.maketotal (Val.intoffloat (rs x))).
TranslOpSimpl.
rewrite H1; auto.
(* Ocmp *)
destruct (transl_cond_op_correct c0 args res k rs m c) as [rs' [A [B C]]]; auto.
exists rs'; auto with asmgen.
Qed.
Lemma transl_op_correct:
forall op args res k ms sp rs m v m' c,
transl_op op args res k = OK c ->
agree ms sp rs ->
eval_operation ge sp op (map ms args) m = Some v ->
Mem.extends m m' ->
exists rs',
exec_straight ge fn c rs m' k rs' m'
/\ agree (Regmap.set res v (Mach.undef_regs (destroyed_by_op op) ms)) sp rs'
/\ forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r.
Proof.
intros.
exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eauto.
intros [v' [A B]]. rewrite (sp_val _ _ _ H0) in A.
exploit transl_op_correct_aux; eauto. intros [rs' [P [Q R]]].
rewrite <- Q in B.
exists rs'; split. eexact P.
split. apply agree_set_undef_mreg with rs; auto.
auto.
Qed.
(** Translation of memory accesses *)
Lemma transl_memory_access_correct:
forall (P: regset -> Prop) mk1 mk2 addr args temp k c (rs: regset) a m m',
transl_memory_access mk1 mk2 addr args temp k = OK c ->
eval_addressing ge (rs#GPR1) addr (map rs (map preg_of args)) = Some a ->
temp <> GPR0 ->
(forall cst (r1: ireg) (rs1: regset) k,
Val.add (gpr_or_zero rs1 r1) (const_low ge cst) = a ->
(forall r, r <> PC -> r <> temp -> r <> GPR0 -> rs1 r = rs r) ->
exists rs',
exec_straight ge fn (mk1 cst r1 :: k) rs1 m k rs' m' /\ P rs') ->
(forall (r1 r2: ireg) (rs1: regset) k,
Val.add rs1#r1 rs1#r2 = a ->
(forall r, r <> PC -> r <> temp -> r <> GPR0 -> rs1 r = rs r) ->
exists rs',
exec_straight ge fn (mk2 r1 r2 :: k) rs1 m k rs' m' /\ P rs') ->
exists rs',
exec_straight ge fn c rs m k rs' m' /\ P rs'.
Proof.
intros until m'; intros TR ADDR TEMP MK1 MK2.
unfold transl_memory_access in TR; destruct addr; ArgsInv; simpl in ADDR; inv ADDR.
(* Aindexed *)
case (Int.eq (high_s i) Int.zero).
(* Aindexed short *)
apply MK1. rewrite gpr_or_zero_not_zero; eauto with asmgen. auto.
(* Aindexed long *)
set (rs1 := nextinstr (rs#temp <- (Val.add (rs x) (Vint (Int.shl (high_s i) (Int.repr 16)))))).
exploit (MK1 (Cint (low_s i)) temp rs1 k).
simpl. rewrite gpr_or_zero_not_zero; eauto with asmgen.
unfold rs1; Simpl. rewrite Val.add_assoc.
Transparent Val.add.
simpl. rewrite low_high_s. auto.
intros; unfold rs1; Simpl.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
simpl. rewrite gpr_or_zero_not_zero; eauto with asmgen. auto.
auto. auto.
(* Aindexed2 *)
apply MK2; auto.
(* Aglobal *)
destruct (symbol_is_small_data i i0) eqn:SISD; inv TR.
(* Aglobal from small data *)
apply MK1. unfold const_low. rewrite small_data_area_addressing by auto.
apply add_zero_symbol_offset.
auto.
(* Aglobal general case *)
set (rel := symbol_is_rel_data i i0).
set (rs1 := nextinstr (rs#temp <- (const_high ge (csymbol_high i i0 rel)))).
exploit (MK1 (csymbol_low i i0 rel) temp rs1 k).
simpl. rewrite gpr_or_zero_not_zero; eauto with asmgen.
unfold rs1. Simpl. apply csymbol_high_low_2.
intros; unfold rs1; Simpl.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_zero.
rewrite Val.add_commut. unfold const_high, csymbol_high.
destruct rel; rewrite high_half_zero; reflexivity.
reflexivity.
assumption. assumption.
(* Abased *)
destruct (symbol_is_small_data i i0) eqn:SISD.
(* Abased from small data *)
set (rs1 := nextinstr (rs#GPR0 <- (symbol_offset ge i i0))).
exploit (MK2 x GPR0 rs1 k).
unfold rs1; Simpl. apply Val.add_commut.
intros. unfold rs1; Simpl.
intros [rs' [EX' AG']].
exists rs'; split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_zero. f_equal. unfold rs1. f_equal. f_equal.
unfold const_low. rewrite small_data_area_addressing; auto.
apply add_zero_symbol_offset.
reflexivity.
assumption. assumption.
destruct (symbol_is_rel_data i i0).
(* Abased relative *)
set (rs1 := nextinstr (rs#GPR0 <- (const_high ge (Csymbol_rel_high i i0)))).
set (rs2 := nextinstr (rs1#temp <- (Val.add (rs x) (const_high ge (Csymbol_rel_high i i0))))).
exploit (MK1 (Csymbol_rel_low i i0) temp rs2 k).
simpl. rewrite gpr_or_zero_not_zero; eauto with asmgen.
unfold rs2. Simpl. rewrite Val.add_assoc. simpl. rewrite csymbol_high_low.
apply Val.add_commut.
intros. unfold rs2; Simpl. unfold rs1; Simpl.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_zero.
rewrite (Val.add_commut Vzero). unfold const_high. rewrite high_half_zero. auto.
reflexivity.
apply exec_straight_step with rs2 m.
simpl. unfold rs2, rs1. Simpl.
reflexivity.
assumption. assumption.
(* Abased absolute *)
set (rs1 := nextinstr (rs#temp <- (Val.add (rs x) (const_high ge (Csymbol_high i i0))))).
exploit (MK1 (Csymbol_low i i0) temp rs1 k).
simpl. rewrite gpr_or_zero_not_zero; eauto with asmgen.
unfold rs1. Simpl.
rewrite Val.add_assoc. simpl. rewrite csymbol_high_low. apply Val.add_commut.
intros; unfold rs1; Simpl.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_not_zero; eauto with asmgen. auto.
assumption. assumption.
(* Ainstack *)
destruct (Int.eq (high_s i) Int.zero); inv TR.
apply MK1. simpl. rewrite gpr_or_zero_not_zero; eauto with asmgen. auto.
set (rs1 := nextinstr (rs#temp <- (Val.add rs#GPR1 (Vint (Int.shl (high_s i) (Int.repr 16)))))).
exploit (MK1 (Cint (low_s i)) temp rs1 k).
simpl. rewrite gpr_or_zero_not_zero; auto.
unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
rewrite Val.add_assoc. simpl. rewrite low_high_s. auto.
congruence.
intros. unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_not_zero; eauto with asmgen. auto.
assumption. assumption.
Qed.
(** Translation of loads *)
Lemma transl_load_correct:
forall chunk addr args dst k c (rs: regset) m a v,
transl_load chunk addr args dst k = OK c ->
eval_addressing ge (rs#GPR1) addr (map rs (map preg_of args)) = Some a ->
Mem.loadv chunk m a = Some v ->
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(preg_of dst) = v
/\ forall r, r <> PC -> r <> GPR12 -> r <> GPR0 -> r <> preg_of dst -> rs' r = rs r.
Proof.
intros.
assert (BASE: forall mk1 mk2 k' chunk' v',
transl_memory_access mk1 mk2 addr args GPR12 k' = OK c ->
Mem.loadv chunk' m a = Some v' ->
(forall cst (r1: ireg) (rs1: regset),
exec_instr ge fn (mk1 cst r1) rs1 m =
load1 ge chunk' (preg_of dst) cst r1 rs1 m) ->
(forall (r1 r2: ireg) (rs1: regset),
exec_instr ge fn (mk2 r1 r2) rs1 m =
load2 chunk' (preg_of dst) r1 r2 rs1 m) ->
exists rs',
exec_straight ge fn c rs m k' rs' m
/\ rs'#(preg_of dst) = v'
/\ forall r, r <> PC -> r <> GPR12 -> r <> GPR0 -> r <> preg_of dst -> rs' r = rs r).
{
intros. eapply transl_memory_access_correct; eauto. congruence.
intros. econstructor; split. apply exec_straight_one.
rewrite H4. unfold load1. rewrite H6. rewrite H3. eauto.
unfold nextinstr. rewrite Pregmap.gss. rewrite Pregmap.gso; auto with asmgen.
intuition Simpl.
intros. econstructor; split. apply exec_straight_one.
rewrite H5. unfold load2. rewrite H6. rewrite H3. eauto.
unfold nextinstr. rewrite Pregmap.gss. rewrite Pregmap.gso; auto with asmgen.
intuition Simpl.
}
destruct chunk; monadInv H.
- (* Mint8signed *)
assert (exists v1, Mem.loadv Mint8unsigned m a = Some v1 /\ v = Val.sign_ext 8 v1).
{
destruct a; simpl in *; try discriminate.
rewrite Mem.load_int8_signed_unsigned in H1.
destruct (Mem.load Mint8unsigned m b (Int.unsigned i)); simpl in H1; inv H1.
exists v0; auto.
}
destruct H as [v1 [LD SG]]. clear H1.
exploit BASE; eauto; erewrite ireg_of_eq by eauto; auto.
intros [rs1 [A [B C]]].
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl; eauto. auto.
split. Simpl. congruence. intros. Simpl.
- (* Mint8unsigned *)
eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mint816signed *)
eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mint16unsigned *)
eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mint32 *)
eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mfloat32 *)
eapply BASE; eauto; erewrite freg_of_eq by eauto; auto.
- (* Mfloat64 *)
eapply BASE; eauto; erewrite freg_of_eq by eauto; auto.
Qed.
(** Translation of stores *)
Lemma transl_store_correct:
forall chunk addr args src k c (rs: regset) m a m',
transl_store chunk addr args src k = OK c ->
eval_addressing ge (rs#GPR1) addr (map rs (map preg_of args)) = Some a ->
Mem.storev chunk m a (rs (preg_of src)) = Some m' ->
exists rs',
exec_straight ge fn c rs m k rs' m'
/\ forall r, r <> PC -> r <> GPR0 -> preg_notin r (destroyed_by_store chunk addr) -> rs' r = rs r.
Proof.
Local Transparent destroyed_by_store.
intros.
assert (TEMP0: int_temp_for src = GPR11 \/ int_temp_for src = GPR12).
unfold int_temp_for. destruct (mreg_eq src R12); auto.
assert (TEMP1: int_temp_for src <> GPR0).
destruct TEMP0; congruence.
assert (TEMP2: IR (int_temp_for src) <> preg_of src).
unfold int_temp_for. destruct (mreg_eq src R12).
subst src; simpl; congruence.
change (IR GPR12) with (preg_of R12). red; intros; elim n.
eapply preg_of_injective; eauto.
assert (BASE: forall mk1 mk2 chunk',
transl_memory_access mk1 mk2 addr args (int_temp_for src) k = OK c ->
Mem.storev chunk' m a (rs (preg_of src)) = Some m' ->
(forall cst (r1: ireg) (rs1: regset),
exec_instr ge fn (mk1 cst r1) rs1 m =
store1 ge chunk' (preg_of src) cst r1 rs1 m) ->
(forall (r1 r2: ireg) (rs1: regset),
exec_instr ge fn (mk2 r1 r2) rs1 m =
store2 chunk' (preg_of src) r1 r2 rs1 m) ->
exists rs',
exec_straight ge fn c rs m k rs' m'
/\ forall r, r <> PC -> r <> GPR0 -> r <> GPR11 /\ r <> GPR12 -> rs' r = rs r).
{
intros. eapply transl_memory_access_correct; eauto.
intros. econstructor; split. apply exec_straight_one.
rewrite H4. unfold store1. rewrite H6. rewrite H7; auto with asmgen. rewrite H3. eauto. auto.
intros; Simpl. apply H7; auto. destruct TEMP0; destruct H10; congruence.
intros. econstructor; split. apply exec_straight_one.
rewrite H5. unfold store2. rewrite H6. rewrite H7; auto with asmgen. rewrite H3. eauto. auto.
intros; Simpl. apply H7; auto. destruct TEMP0; destruct H10; congruence.
}
destruct chunk; monadInv H.
- (* Mint8signed *)
assert (Mem.storev Mint8unsigned m a (rs (preg_of src)) = Some m').
rewrite <- H1. destruct a; simpl; auto. symmetry. apply Mem.store_signed_unsigned_8.
clear H1. eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mint8unsigned *)
eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mint16signed *)
assert (Mem.storev Mint16unsigned m a (rs (preg_of src)) = Some m').
rewrite <- H1. destruct a; simpl; auto. symmetry. apply Mem.store_signed_unsigned_16.
clear H1. eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mint16unsigned *)
eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mint32 *)
eapply BASE; eauto; erewrite ireg_of_eq by eauto; auto.
- (* Mfloat32 *)
rewrite (freg_of_eq _ _ EQ) in H1.
eapply transl_memory_access_correct. eauto. eauto. eauto.
intros. econstructor; split. apply exec_straight_one.
simpl. unfold store1. rewrite H. rewrite H2; auto with asmgen. rewrite H1. eauto. auto.
Local Transparent destroyed_by_store.
simpl; intros. destruct H5 as [A [B C]]. Simpl. apply H2; auto with asmgen. destruct TEMP0; congruence.
intros. econstructor; split. apply exec_straight_one.
simpl. unfold store2. rewrite H. rewrite H2; auto with asmgen. rewrite H1. eauto. auto.
simpl; intros. destruct H5 as [A [B C]]. Simpl. apply H2; auto with asmgen. destruct TEMP0; congruence.
- (* Mfloat64 *)
eapply BASE; eauto; erewrite freg_of_eq by eauto; auto.
Qed.
End CONSTRUCTORS.
|