1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Translation from Mach to PPC. *)
Require Import Coqlib.
Require Import Maps.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Asm.
(** Decomposition of integer constants. As noted in file [Asm],
immediate arguments to PowerPC instructions must fit into 16 bits,
and are interpreted after zero extension, sign extension, or
left shift by 16 bits, depending on the instruction. Integer
constants that do not fit must be synthesized using two
processor instructions. The following functions decompose
arbitrary 32-bit integers into two 16-bit halves (high and low
halves). They satisfy the following properties:
- [low_u n] is an unsigned 16-bit integer;
- [low_s n] is a signed 16-bit integer;
- [(high_u n) << 16 | low_u n] equals [n];
- [(high_s n) << 16 + low_s n] equals [n].
*)
Definition low_u (n: int) := Int.and n (Int.repr 65535).
Definition high_u (n: int) := Int.shru n (Int.repr 16).
Definition low_s (n: int) := Int.sign_ext 16 n.
Definition high_s (n: int) := Int.shru (Int.sub n (low_s n)) (Int.repr 16).
(** Smart constructors for arithmetic operations involving
a 32-bit integer constant. Depending on whether the
constant fits in 16 bits or not, one or several instructions
are generated as required to perform the operation
and prepended to the given instruction sequence [k]. *)
Definition loadimm (r: ireg) (n: int) (k: code) :=
if Int.eq (high_s n) Int.zero then
Paddi r GPR0 (Cint n) :: k
else if Int.eq (low_s n) Int.zero then
Paddis r GPR0 (Cint (high_s n)) :: k
else
Paddis r GPR0 (Cint (high_u n)) ::
Pori r r (Cint (low_u n)) :: k.
Definition addimm (r1 r2: ireg) (n: int) (k: code) :=
if Int.eq (high_s n) Int.zero then
Paddi r1 r2 (Cint n) :: k
else if Int.eq (low_s n) Int.zero then
Paddis r1 r2 (Cint (high_s n)) :: k
else
Paddis r1 r2 (Cint (high_s n)) ::
Paddi r1 r1 (Cint (low_s n)) :: k.
Definition andimm (r1 r2: ireg) (n: int) (k: code) :=
if Int.eq (high_u n) Int.zero then
Pandi_ r1 r2 (Cint n) :: k
else if Int.eq (low_u n) Int.zero then
Pandis_ r1 r2 (Cint (high_u n)) :: k
else
loadimm GPR0 n (Pand_ r1 r2 GPR0 :: k).
Definition orimm (r1 r2: ireg) (n: int) (k: code) :=
if Int.eq (high_u n) Int.zero then
Pori r1 r2 (Cint n) :: k
else if Int.eq (low_u n) Int.zero then
Poris r1 r2 (Cint (high_u n)) :: k
else
Poris r1 r2 (Cint (high_u n)) ::
Pori r1 r1 (Cint (low_u n)) :: k.
Definition xorimm (r1 r2: ireg) (n: int) (k: code) :=
if Int.eq (high_u n) Int.zero then
Pxori r1 r2 (Cint n) :: k
else if Int.eq (low_u n) Int.zero then
Pxoris r1 r2 (Cint (high_u n)) :: k
else
Pxoris r1 r2 (Cint (high_u n)) ::
Pxori r1 r1 (Cint (low_u n)) :: k.
(** Accessing slots in the stack frame. *)
Definition loadind (base: ireg) (ofs: int) (ty: typ) (dst: mreg) (k: code) :=
if Int.eq (high_s ofs) Int.zero then
match ty with
| Tint => Plwz (ireg_of dst) (Cint ofs) base :: k
| Tfloat => Plfd (freg_of dst) (Cint ofs) base :: k
end
else
loadimm GPR0 ofs
(match ty with
| Tint => Plwzx (ireg_of dst) base GPR0 :: k
| Tfloat => Plfdx (freg_of dst) base GPR0 :: k
end).
Definition storeind (src: mreg) (base: ireg) (ofs: int) (ty: typ) (k: code) :=
if Int.eq (high_s ofs) Int.zero then
match ty with
| Tint => Pstw (ireg_of src) (Cint ofs) base :: k
| Tfloat => Pstfd (freg_of src) (Cint ofs) base :: k
end
else
loadimm GPR0 ofs
(match ty with
| Tint => Pstwx (ireg_of src) base GPR0 :: k
| Tfloat => Pstfdx (freg_of src) base GPR0 :: k
end).
(** Constructor for a floating-point comparison. The PowerPC has
a single [fcmpu] instruction to compare floats, which sets
bits 0, 1 and 2 of the condition register to reflect ``less'',
``greater'' and ``equal'' conditions, respectively.
The ``less or equal'' and ``greater or equal'' conditions must be
synthesized by a [cror] instruction that computes the logical ``or''
of the corresponding two conditions. *)
Definition floatcomp (cmp: comparison) (r1 r2: freg) (k: code) :=
Pfcmpu r1 r2 ::
match cmp with
| Cle => Pcror CRbit_3 CRbit_2 CRbit_0 :: k
| Cge => Pcror CRbit_3 CRbit_2 CRbit_1 :: k
| _ => k
end.
(** Translation of a condition. Prepends to [k] the instructions
that evaluate the condition and leave its boolean result in one of
the bits of the condition register. The bit in question is
determined by the [crbit_for_cond] function. *)
Definition transl_cond
(cond: condition) (args: list mreg) (k: code) :=
match cond, args with
| Ccomp c, a1 :: a2 :: nil =>
Pcmpw (ireg_of a1) (ireg_of a2) :: k
| Ccompu c, a1 :: a2 :: nil =>
Pcmplw (ireg_of a1) (ireg_of a2) :: k
| Ccompimm c n, a1 :: nil =>
if Int.eq (high_s n) Int.zero then
Pcmpwi (ireg_of a1) (Cint n) :: k
else
loadimm GPR0 n (Pcmpw (ireg_of a1) GPR0 :: k)
| Ccompuimm c n, a1 :: nil =>
if Int.eq (high_u n) Int.zero then
Pcmplwi (ireg_of a1) (Cint n) :: k
else
loadimm GPR0 n (Pcmplw (ireg_of a1) GPR0 :: k)
| Ccompf cmp, a1 :: a2 :: nil =>
floatcomp cmp (freg_of a1) (freg_of a2) k
| Cnotcompf cmp, a1 :: a2 :: nil =>
floatcomp cmp (freg_of a1) (freg_of a2) k
| Cmaskzero n, a1 :: nil =>
andimm GPR0 (ireg_of a1) n k
| Cmasknotzero n, a1 :: nil =>
andimm GPR0 (ireg_of a1) n k
| _, _ =>
k (**r never happens for well-typed code *)
end.
(* CRbit_0 = Less
CRbit_1 = Greater
CRbit_2 = Equal
CRbit_3 = Other *)
Definition crbit_for_icmp (cmp: comparison) :=
match cmp with
| Ceq => (CRbit_2, true)
| Cne => (CRbit_2, false)
| Clt => (CRbit_0, true)
| Cle => (CRbit_1, false)
| Cgt => (CRbit_1, true)
| Cge => (CRbit_0, false)
end.
Definition crbit_for_fcmp (cmp: comparison) :=
match cmp with
| Ceq => (CRbit_2, true)
| Cne => (CRbit_2, false)
| Clt => (CRbit_0, true)
| Cle => (CRbit_3, true)
| Cgt => (CRbit_1, true)
| Cge => (CRbit_3, true)
end.
Definition crbit_for_cond (cond: condition) :=
match cond with
| Ccomp cmp => crbit_for_icmp cmp
| Ccompu cmp => crbit_for_icmp cmp
| Ccompimm cmp n => crbit_for_icmp cmp
| Ccompuimm cmp n => crbit_for_icmp cmp
| Ccompf cmp => crbit_for_fcmp cmp
| Cnotcompf cmp => let p := crbit_for_fcmp cmp in (fst p, negb (snd p))
| Cmaskzero n => (CRbit_2, true)
| Cmasknotzero n => (CRbit_2, false)
end.
(** Recognition of comparisons [>= 0] and [< 0]. *)
Inductive condition_class: condition -> list mreg -> Type :=
| condition_eq0:
forall n r, n = Int.zero -> condition_class (Ccompimm Ceq n) (r :: nil)
| condition_ne0:
forall n r, n = Int.zero -> condition_class (Ccompimm Cne n) (r :: nil)
| condition_ge0:
forall n r, n = Int.zero -> condition_class (Ccompimm Cge n) (r :: nil)
| condition_lt0:
forall n r, n = Int.zero -> condition_class (Ccompimm Clt n) (r :: nil)
| condition_default:
forall c rl, condition_class c rl.
Definition classify_condition (c: condition) (args: list mreg): condition_class c args :=
match c as z1, args as z2 return condition_class z1 z2 with
| Ccompimm Ceq n, r :: nil =>
match Int.eq_dec n Int.zero with
| left EQ => condition_eq0 n r EQ
| right _ => condition_default (Ccompimm Ceq n) (r :: nil)
end
| Ccompimm Cne n, r :: nil =>
match Int.eq_dec n Int.zero with
| left EQ => condition_ne0 n r EQ
| right _ => condition_default (Ccompimm Cne n) (r :: nil)
end
| Ccompimm Cge n, r :: nil =>
match Int.eq_dec n Int.zero with
| left EQ => condition_ge0 n r EQ
| right _ => condition_default (Ccompimm Cge n) (r :: nil)
end
| Ccompimm Clt n, r :: nil =>
match Int.eq_dec n Int.zero with
| left EQ => condition_lt0 n r EQ
| right _ => condition_default (Ccompimm Clt n) (r :: nil)
end
| x, y =>
condition_default x y
end.
(** Translation of a condition operator. The generated code sets
the [r] target register to 0 or 1 depending on the truth value of the
condition. *)
Definition transl_cond_op
(cond: condition) (args: list mreg) (r: mreg) (k: code) :=
match classify_condition cond args with
| condition_eq0 _ a _ =>
Psubfic GPR0 (ireg_of a) (Cint Int.zero) ::
Padde (ireg_of r) GPR0 (ireg_of a) :: k
| condition_ne0 _ a _ =>
Paddic GPR0 (ireg_of a) (Cint Int.mone) ::
Psubfe (ireg_of r) GPR0 (ireg_of a) :: k
| condition_ge0 _ a _ =>
Prlwinm (ireg_of r) (ireg_of a) Int.one Int.one ::
Pxori (ireg_of r) (ireg_of r) (Cint Int.one) :: k
| condition_lt0 _ a _ =>
Prlwinm (ireg_of r) (ireg_of a) Int.one Int.one :: k
| condition_default _ _ =>
let p := crbit_for_cond cond in
transl_cond cond args
(Pmfcrbit (ireg_of r) (fst p) ::
if snd p
then k
else Pxori (ireg_of r) (ireg_of r) (Cint Int.one) :: k)
end.
(** Translation of the arithmetic operation [r <- op(args)].
The corresponding instructions are prepended to [k]. *)
Definition transl_op
(op: operation) (args: list mreg) (r: mreg) (k: code) :=
match op, args with
| Omove, a1 :: nil =>
match mreg_type a1 with
| Tint => Pmr (ireg_of r) (ireg_of a1) :: k
| Tfloat => Pfmr (freg_of r) (freg_of a1) :: k
end
| Ointconst n, nil =>
loadimm (ireg_of r) n k
| Ofloatconst f, nil =>
Plfi (freg_of r) f :: k
| Oaddrsymbol s ofs, nil =>
if symbol_is_small_data s ofs then
Paddi (ireg_of r) GPR0 (Csymbol_sda s ofs) :: k
else
Paddis GPR12 GPR0 (Csymbol_high s ofs) ::
Paddi (ireg_of r) GPR12 (Csymbol_low s ofs) :: k
| Oaddrstack n, nil =>
addimm (ireg_of r) GPR1 n k
| Ocast8signed, a1 :: nil =>
Pextsb (ireg_of r) (ireg_of a1) :: k
| Ocast8unsigned, a1 :: nil =>
Prlwinm (ireg_of r) (ireg_of a1) Int.zero (Int.repr 255) :: k
| Ocast16signed, a1 :: nil =>
Pextsh (ireg_of r) (ireg_of a1) :: k
| Ocast16unsigned, a1 :: nil =>
Prlwinm (ireg_of r) (ireg_of a1) Int.zero (Int.repr 65535) :: k
| Oadd, a1 :: a2 :: nil =>
Padd (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oaddimm n, a1 :: nil =>
addimm (ireg_of r) (ireg_of a1) n k
| Osub, a1 :: a2 :: nil =>
Psubfc (ireg_of r) (ireg_of a2) (ireg_of a1) :: k
| Osubimm n, a1 :: nil =>
if Int.eq (high_s n) Int.zero then
Psubfic (ireg_of r) (ireg_of a1) (Cint n) :: k
else
loadimm GPR0 n (Psubfc (ireg_of r) (ireg_of a1) GPR0 :: k)
| Omul, a1 :: a2 :: nil =>
Pmullw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Omulimm n, a1 :: nil =>
if Int.eq (high_s n) Int.zero then
Pmulli (ireg_of r) (ireg_of a1) (Cint n) :: k
else
loadimm GPR0 n (Pmullw (ireg_of r) (ireg_of a1) GPR0 :: k)
| Odiv, a1 :: a2 :: nil =>
Pdivw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Odivu, a1 :: a2 :: nil =>
Pdivwu (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oand, a1 :: a2 :: nil =>
Pand_ (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oandimm n, a1 :: nil =>
andimm (ireg_of r) (ireg_of a1) n k
| Oor, a1 :: a2 :: nil =>
Por (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oorimm n, a1 :: nil =>
orimm (ireg_of r) (ireg_of a1) n k
| Oxor, a1 :: a2 :: nil =>
Pxor (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oxorimm n, a1 :: nil =>
xorimm (ireg_of r) (ireg_of a1) n k
| Onand, a1 :: a2 :: nil =>
Pnand (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Onor, a1 :: a2 :: nil =>
Pnor (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Onxor, a1 :: a2 :: nil =>
Peqv (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oshl, a1 :: a2 :: nil =>
Pslw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oshr, a1 :: a2 :: nil =>
Psraw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Oshrimm n, a1 :: nil =>
Psrawi (ireg_of r) (ireg_of a1) n :: k
| Oshrximm n, a1 :: nil =>
Psrawi (ireg_of r) (ireg_of a1) n ::
Paddze (ireg_of r) (ireg_of r) :: k
| Oshru, a1 :: a2 :: nil =>
Psrw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
| Orolm amount mask, a1 :: nil =>
Prlwinm (ireg_of r) (ireg_of a1) amount mask :: k
| Oroli amount mask, a1 :: a2 :: nil =>
if mreg_eq a1 r then (**r should always be true *)
Prlwimi (ireg_of r) (ireg_of a2) amount mask :: k
else
Pmr GPR0 (ireg_of a1) ::
Prlwimi GPR0 (ireg_of a2) amount mask ::
Pmr (ireg_of r) GPR0 :: k
| Onegf, a1 :: nil =>
Pfneg (freg_of r) (freg_of a1) :: k
| Oabsf, a1 :: nil =>
Pfabs (freg_of r) (freg_of a1) :: k
| Oaddf, a1 :: a2 :: nil =>
Pfadd (freg_of r) (freg_of a1) (freg_of a2) :: k
| Osubf, a1 :: a2 :: nil =>
Pfsub (freg_of r) (freg_of a1) (freg_of a2) :: k
| Omulf, a1 :: a2 :: nil =>
Pfmul (freg_of r) (freg_of a1) (freg_of a2) :: k
| Odivf, a1 :: a2 :: nil =>
Pfdiv (freg_of r) (freg_of a1) (freg_of a2) :: k
| Omuladdf, a1 :: a2 :: a3 :: nil =>
Pfmadd (freg_of r) (freg_of a1) (freg_of a2) (freg_of a3) :: k
| Omulsubf, a1 :: a2 :: a3 :: nil =>
Pfmsub (freg_of r) (freg_of a1) (freg_of a2) (freg_of a3) :: k
| Osingleoffloat, a1 :: nil =>
Pfrsp (freg_of r) (freg_of a1) :: k
| Ointoffloat, a1 :: nil =>
Pfcti (ireg_of r) (freg_of a1) :: k
| Ofloatofwords, a1 :: a2 :: nil =>
Pfmake (freg_of r) (ireg_of a1) (ireg_of a2) :: k
| Ocmp cmp, _ =>
transl_cond_op cmp args r k
| _, _ =>
k (**r never happens for well-typed code *)
end.
(** Common code to translate [Mload] and [Mstore] instructions. *)
Definition int_temp_for (r: mreg) :=
if mreg_eq r IT2 then GPR11 else GPR12.
Definition transl_load_store
(mk1: constant -> ireg -> instruction)
(mk2: ireg -> ireg -> instruction)
(addr: addressing) (args: list mreg)
(temp: ireg) (k: code) :=
match addr, args with
| Aindexed ofs, a1 :: nil =>
if Int.eq (high_s ofs) Int.zero then
mk1 (Cint ofs) (ireg_of a1) :: k
else
Paddis temp (ireg_of a1) (Cint (high_s ofs)) ::
mk1 (Cint (low_s ofs)) temp :: k
| Aindexed2, a1 :: a2 :: nil =>
mk2 (ireg_of a1) (ireg_of a2) :: k
| Aglobal symb ofs, nil =>
if symbol_is_small_data symb ofs then
mk1 (Csymbol_sda symb ofs) GPR0 :: k
else
Paddis temp GPR0 (Csymbol_high symb ofs) ::
mk1 (Csymbol_low symb ofs) temp :: k
| Abased symb ofs, a1 :: nil =>
Paddis temp (ireg_of a1) (Csymbol_high symb ofs) ::
mk1 (Csymbol_low symb ofs) temp :: k
| Ainstack ofs, nil =>
if Int.eq (high_s ofs) Int.zero then
mk1 (Cint ofs) GPR1 :: k
else
Paddis temp GPR1 (Cint (high_s ofs)) ::
mk1 (Cint (low_s ofs)) temp :: k
| _, _ =>
(* should not happen *) k
end.
(** Translation of arguments to annotations *)
Definition transl_annot_param (p: Mach.annot_param) : Asm.annot_param :=
match p with
| Mach.APreg r => APreg (preg_of r)
| Mach.APstack chunk ofs => APstack chunk ofs
end.
(** Translation of a Mach instruction. *)
Definition transl_instr (f: Mach.function) (i: Mach.instruction) (k: code) :=
match i with
| Mgetstack ofs ty dst =>
loadind GPR1 ofs ty dst k
| Msetstack src ofs ty =>
storeind src GPR1 ofs ty k
| Mgetparam ofs ty dst =>
Plwz GPR11 (Cint f.(fn_link_ofs)) GPR1 :: loadind GPR11 ofs ty dst k
| Mop op args res =>
transl_op op args res k
| Mload chunk addr args dst =>
match chunk with
| Mint8signed =>
transl_load_store
(Plbz (ireg_of dst)) (Plbzx (ireg_of dst)) addr args GPR12
(Pextsb (ireg_of dst) (ireg_of dst) :: k)
| Mint8unsigned =>
transl_load_store
(Plbz (ireg_of dst)) (Plbzx (ireg_of dst)) addr args GPR12 k
| Mint16signed =>
transl_load_store
(Plha (ireg_of dst)) (Plhax (ireg_of dst)) addr args GPR12 k
| Mint16unsigned =>
transl_load_store
(Plhz (ireg_of dst)) (Plhzx (ireg_of dst)) addr args GPR12 k
| Mint32 =>
transl_load_store
(Plwz (ireg_of dst)) (Plwzx (ireg_of dst)) addr args GPR12 k
| Mfloat32 =>
transl_load_store
(Plfs (freg_of dst)) (Plfsx (freg_of dst)) addr args GPR12 k
| Mfloat64 =>
transl_load_store
(Plfd (freg_of dst)) (Plfdx (freg_of dst)) addr args GPR12 k
end
| Mstore chunk addr args src =>
let temp := int_temp_for src in
match chunk with
| Mint8signed =>
transl_load_store
(Pstb (ireg_of src)) (Pstbx (ireg_of src)) addr args temp k
| Mint8unsigned =>
transl_load_store
(Pstb (ireg_of src)) (Pstbx (ireg_of src)) addr args temp k
| Mint16signed =>
transl_load_store
(Psth (ireg_of src)) (Psthx (ireg_of src)) addr args temp k
| Mint16unsigned =>
transl_load_store
(Psth (ireg_of src)) (Psthx (ireg_of src)) addr args temp k
| Mint32 =>
transl_load_store
(Pstw (ireg_of src)) (Pstwx (ireg_of src)) addr args temp k
| Mfloat32 =>
transl_load_store
(Pstfs (freg_of src)) (Pstfsx (freg_of src)) addr args temp k
| Mfloat64 =>
transl_load_store
(Pstfd (freg_of src)) (Pstfdx (freg_of src)) addr args temp k
end
| Mcall sig (inl r) =>
Pmtctr (ireg_of r) :: Pbctrl :: k
| Mcall sig (inr symb) =>
Pbl symb :: k
| Mtailcall sig (inl r) =>
Pmtctr (ireg_of r) ::
Plwz GPR0 (Cint f.(fn_retaddr_ofs)) GPR1 ::
Pmtlr GPR0 ::
Pfreeframe f.(fn_stacksize) f.(fn_link_ofs) ::
Pbctr :: k
| Mtailcall sig (inr symb) =>
Plwz GPR0 (Cint f.(fn_retaddr_ofs)) GPR1 ::
Pmtlr GPR0 ::
Pfreeframe f.(fn_stacksize) f.(fn_link_ofs) ::
Pbs symb :: k
| Mbuiltin ef args res =>
Pbuiltin ef (map preg_of args) (preg_of res) :: k
| Mannot ef args =>
Pannot ef (map transl_annot_param args) :: k
| Mlabel lbl =>
Plabel lbl :: k
| Mgoto lbl =>
Pb lbl :: k
| Mcond cond args lbl =>
let p := crbit_for_cond cond in
transl_cond cond args
(if (snd p) then Pbt (fst p) lbl :: k else Pbf (fst p) lbl :: k)
| Mjumptable arg tbl =>
Prlwinm GPR12 (ireg_of arg) (Int.repr 2) (Int.repr (-4)) ::
Pbtbl GPR12 tbl :: k
| Mreturn =>
Plwz GPR0 (Cint f.(fn_retaddr_ofs)) GPR1 ::
Pmtlr GPR0 ::
Pfreeframe f.(fn_stacksize) f.(fn_link_ofs) ::
Pblr :: k
end.
Definition transl_code (f: Mach.function) (il: list Mach.instruction) :=
List.fold_right (transl_instr f) nil il.
(** Translation of a whole function. Note that we must check
that the generated code contains less than [2^32] instructions,
otherwise the offset part of the [PC] code pointer could wrap
around, leading to incorrect executions. *)
Definition transl_function (f: Mach.function) :=
Pallocframe f.(fn_stacksize) f.(fn_link_ofs) ::
Pmflr GPR0 ::
Pstw GPR0 (Cint f.(fn_retaddr_ofs)) GPR1 ::
transl_code f f.(fn_code).
Open Local Scope string_scope.
Definition transf_function (f: Mach.function) : res Asm.code :=
let c := transl_function f in
if zlt Int.max_unsigned (list_length_z c)
then Errors.Error (msg "code size exceeded")
else Errors.OK c.
Definition transf_fundef (f: Mach.fundef) : res Asm.fundef :=
transf_partial_fundef transf_function f.
Definition transf_program (p: Mach.program) : res Asm.program :=
transform_partial_program transf_fundef p.
|