1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Expanding built-ins and some pseudo-instructions by rewriting
of the PPC assembly code. *)
open Datatypes
open Camlcoq
open Integers
open AST
open Memdata
open Asm
(* Buffering the expanded code *)
let current_code = ref ([]: instruction list)
let emit i = current_code := i :: !current_code
let emit_loadimm r n =
List.iter emit (Asmgen.loadimm r n [])
let emit_addimm rd rs n =
List.iter emit (Asmgen.addimm rd rs n [])
let get_code () =
let c = List.rev !current_code in current_code := []; c
(* Generation of fresh labels *)
let dummy_function = { fn_code = []; fn_sig = signature_main }
let current_function = ref dummy_function
let next_label = ref (None : label option)
let new_label () =
let lbl =
match !next_label with
| Some l -> l
| None ->
(* on-demand computation of the next available label *)
List.fold_left
(fun next instr ->
match instr with
| Plabel l -> if P.lt l next then next else P.succ l
| _ -> next)
P.one (!current_function).fn_code
in
next_label := Some (P.succ lbl);
lbl
let set_current_function f =
current_function := f; next_label := None
(* Useful constants *)
let _0 = Integers.Int.zero
let _1 = Integers.Int.one
let _2 = coqint_of_camlint 2l
let _4 = coqint_of_camlint 4l
let _6 = coqint_of_camlint 6l
let _8 = coqint_of_camlint 8l
let _m4 = coqint_of_camlint (-4l)
let _m8 = coqint_of_camlint (-8l)
(* Handling of annotations *)
let expand_annot_val txt targ args res =
emit (Pannot(EF_annot(txt, [AA_arg targ]), List.map (fun r -> APreg r) args));
begin match args, res with
| [IR src], [IR dst] ->
if dst <> src then emit (Pmr(dst, src))
| [FR src], [FR dst] ->
if dst <> src then emit (Pfmr(dst, src))
| _, _ ->
assert false
end
(* Handling of memcpy *)
(* On the PowerPC, unaligned accesses to 16- and 32-bit integers are
fast, but unaligned accesses to 64-bit floats can be slow
(not so much on G5, but clearly so on Power7).
So, use 64-bit accesses only if alignment >= 4.
Note that lfd and stfd cannot trap on ill-formed floats. *)
let expand_builtin_memcpy_small sz al src dst =
let rec copy ofs sz =
if sz >= 8 && al >= 4 && !Clflags.option_ffpu then begin
emit (Plfd(FPR13, Cint ofs, src));
emit (Pstfd(FPR13, Cint ofs, dst));
copy (Int.add ofs _8) (sz - 8)
end else if sz >= 4 then begin
emit (Plwz(GPR0, Cint ofs, src));
emit (Pstw(GPR0, Cint ofs, dst));
copy (Int.add ofs _4) (sz - 4)
end else if sz >= 2 then begin
emit (Plhz(GPR0, Cint ofs, src));
emit (Psth(GPR0, Cint ofs, dst));
copy (Int.add ofs _2) (sz - 2)
end else if sz >= 1 then begin
emit (Plbz(GPR0, Cint ofs, src));
emit (Pstb(GPR0, Cint ofs, dst));
copy (Int.add ofs _1) (sz - 1)
end in
copy _0 sz
let expand_builtin_memcpy_big sz al src dst =
assert (sz >= 4);
emit_loadimm GPR0 (Z.of_uint (sz / 4));
emit (Pmtctr GPR0);
let (s,d) = if dst <> GPR11 then (GPR11, GPR12) else (GPR12, GPR11) in
emit (Paddi(s, src, Cint _m4));
emit (Paddi(d, dst, Cint _m4));
let lbl = new_label() in
emit (Plabel lbl);
emit (Plwzu(GPR0, Cint _4, s));
emit (Pstwu(GPR0, Cint _4, d));
emit (Pbdnz lbl);
(* s and d lag behind by 4 bytes *)
match sz land 3 with
| 1 -> emit (Plbz(GPR0, Cint _4, s));
emit (Pstb(GPR0, Cint _4, d))
| 2 -> emit (Plhz(GPR0, Cint _4, s));
emit (Psth(GPR0, Cint _4, d))
| 3 -> emit (Plhz(GPR0, Cint _4, s));
emit (Psth(GPR0, Cint _4, d));
emit (Plbz(GPR0, Cint _6, s));
emit (Pstb(GPR0, Cint _6, d))
| _ -> ()
let expand_builtin_memcpy sz al args =
let (dst, src) =
match args with [IR d; IR s] -> (d, s) | _ -> assert false in
if sz <= (if !Clflags.option_ffpu && al >= 4
then if !Clflags.option_Osize then 35 else 51
else if !Clflags.option_Osize then 19 else 27)
then expand_builtin_memcpy_small sz al src dst
else expand_builtin_memcpy_big sz al src dst
(* Handling of volatile reads and writes *)
let expand_builtin_vload_common chunk base offset res =
match chunk, res with
| Mint8unsigned, IR res ->
emit (Plbz(res, offset, base))
| Mint8signed, IR res ->
emit (Plbz(res, offset, base));
emit (Pextsb(res, res))
| Mint16unsigned, IR res ->
emit (Plhz(res, offset, base))
| Mint16signed, IR res ->
emit (Plha(res, offset, base))
| (Mint32 | Many32), IR res ->
emit (Plwz(res, offset, base))
| Mfloat32, FR res ->
emit (Plfs(res, offset, base))
| (Mfloat64 | Many64), FR res ->
emit (Plfd(res, offset, base))
(* Mint64 is special-cased below *)
| _ ->
assert false
let expand_builtin_vload chunk args res =
begin match args, res with
| [IR addr], [res] when chunk <> Mint64 ->
expand_builtin_vload_common chunk addr (Cint _0) res
| [IR addr], [IR res1; IR res2] when chunk = Mint64 ->
if addr <> res1 then begin
emit (Plwz(res1, Cint _0, addr));
emit (Plwz(res2, Cint _4, addr))
end else begin
emit (Plwz(res2, Cint _4, addr));
emit (Plwz(res1, Cint _0, addr))
end
| _ ->
assert false
end
let expand_builtin_vload_global chunk id ofs args res =
begin match res with
| [res] when chunk <> Mint64 ->
emit (Paddis(GPR11, GPR0, Csymbol_high(id, ofs)));
expand_builtin_vload_common chunk GPR11 (Csymbol_low(id, ofs)) res
| [IR res1; IR res2] when chunk = Mint64 ->
emit (Paddis(res1, GPR0, Csymbol_high(id, ofs)));
emit (Plwz(res1, Csymbol_low(id, ofs), res1));
let ofs = Int.add ofs _4 in
emit (Paddis(res2, GPR0, Csymbol_high(id, ofs)));
emit (Plwz(res2, Csymbol_low(id, ofs), res2))
| _ ->
assert false
end
let expand_builtin_vload_sda chunk id ofs args res =
begin match res with
| [res] when chunk <> Mint64 ->
expand_builtin_vload_common chunk GPR0 (Csymbol_sda(id, ofs)) res
| [IR res1; IR res2] when chunk = Mint64 ->
emit (Plwz(res1, Csymbol_sda(id, ofs), GPR0));
let ofs = Int.add ofs _4 in
emit (Plwz(res2, Csymbol_sda(id, ofs), GPR0))
| _ ->
assert false
end
let expand_builtin_vload_rel chunk id ofs args res =
emit (Paddis(GPR11, GPR0, Csymbol_rel_high(id, ofs)));
emit (Paddi(GPR11, GPR11, Csymbol_rel_low(id, ofs)));
expand_builtin_vload chunk [IR GPR11] res
let expand_builtin_vstore_common chunk base offset src =
match chunk, src with
| (Mint8signed | Mint8unsigned), IR src ->
emit (Pstb(src, offset, base))
| (Mint16signed | Mint16unsigned), IR src ->
emit (Psth(src, offset, base))
| (Mint32 | Many32), IR src ->
emit (Pstw(src, offset, base))
| Mfloat32, FR src ->
emit (Pstfs(src, offset, base))
| (Mfloat64 | Many64), FR src ->
emit (Pstfd(src, offset, base))
(* Mint64 is special-cased below *)
| _ ->
assert false
let expand_builtin_vstore chunk args =
begin match args with
| [IR addr; src] when chunk <> Mint64 ->
expand_builtin_vstore_common chunk addr (Cint _0) src
| [IR addr; IR src1; IR src2] when chunk = Mint64 ->
emit (Pstw(src1, Cint _0, addr));
emit (Pstw(src2, Cint _4, addr))
| _ ->
assert false
end
let expand_builtin_vstore_global chunk id ofs args =
begin match args with
| [src] when chunk <> Mint64 ->
let tmp = if src = IR GPR11 then GPR12 else GPR11 in
emit (Paddis(tmp, GPR0, Csymbol_high(id, ofs)));
expand_builtin_vstore_common chunk tmp (Csymbol_low(id, ofs)) src
| [IR src1; IR src2] when chunk = Mint64 ->
let tmp =
if not (List.mem GPR12 [src1; src2]) then GPR12 else
if not (List.mem GPR11 [src1; src2]) then GPR11 else GPR10 in
emit (Paddis(tmp, GPR0, Csymbol_high(id, ofs)));
emit (Pstw(src1, Csymbol_low(id, ofs), tmp));
let ofs = Int.add ofs _4 in
emit (Paddis(tmp, GPR0, Csymbol_high(id, ofs)));
emit (Pstw(src2, Csymbol_low(id, ofs), tmp))
| _ ->
assert false
end
let expand_builtin_vstore_sda chunk id ofs args =
begin match args with
| [src] when chunk <> Mint64 ->
expand_builtin_vstore_common chunk GPR0 (Csymbol_sda(id, ofs)) src
| [IR src1; IR src2] when chunk = Mint64 ->
emit (Pstw(src1, Csymbol_sda(id, ofs), GPR0));
let ofs = Int.add ofs _4 in
emit (Pstw(src2, Csymbol_sda(id, ofs), GPR0))
| _ ->
assert false
end
let expand_builtin_vstore_rel chunk id ofs args =
let tmp =
if not (List.mem (IR GPR12) args) then GPR12 else
if not (List.mem (IR GPR11) args) then GPR11 else GPR10 in
emit (Paddis(tmp, GPR0, Csymbol_rel_high(id, ofs)));
emit (Paddi(tmp, tmp, Csymbol_rel_low(id, ofs)));
expand_builtin_vstore chunk (IR tmp :: args)
(* Handling of varargs *)
let current_function_stacksize = ref 0l
let align n a = (n + a - 1) land (-a)
let rec next_arg_locations ir fr ofs = function
| [] ->
(ir, fr, ofs)
| (Tint | Tany32) :: l ->
if ir < 8
then next_arg_locations (ir + 1) fr ofs l
else next_arg_locations ir fr (ofs + 4) l
| (Tfloat | Tsingle | Tany64) :: l ->
if fr < 8
then next_arg_locations ir (fr + 1) ofs l
else next_arg_locations ir fr (align ofs 8 + 8) l
| Tlong :: l ->
if ir < 7
then next_arg_locations (align ir 2 + 2) fr ofs l
else next_arg_locations ir fr (align ofs 8 + 8) l
let expand_builtin_va_start r =
if not (!current_function).fn_sig.sig_cc.cc_vararg then
invalid_arg "Fatal error: va_start used in non-vararg function";
let (ir, fr, ofs) =
next_arg_locations 0 0 0 (!current_function).fn_sig.sig_args in
emit_loadimm GPR0 (Z.of_uint ir);
emit (Pstb(GPR0, Cint _0, r));
emit_loadimm GPR0 (Z.of_uint fr);
emit (Pstb(GPR0, Cint _1, r));
emit_addimm GPR0 GPR1 (coqint_of_camlint
Int32.(add (add !current_function_stacksize 8l)
(of_int ofs)));
emit (Pstw(GPR0, Cint _4, r));
emit_addimm GPR0 GPR1 (coqint_of_camlint
Int32.(sub !current_function_stacksize 96l));
emit (Pstw(GPR0, Cint _8, r))
(* Auxiliary for 64-bit integer arithmetic built-ins. They expand to
two instructions, one computing the low 32 bits of the result,
followed by another computing the high 32 bits. In cases where
the first instruction would overwrite arguments to the second
instruction, we must go through GPR0 to hold the low 32 bits of the result.
*)
let expand_int64_arith conflict rl fn =
if conflict then (fn GPR0; emit (Pmr(rl, GPR0))) else fn rl
(* Handling of compiler-inlined builtins *)
let expand_builtin_inline name args res =
(* Can use as temporaries: GPR0, FPR13 *)
match name, args, res with
(* Integer arithmetic *)
| "__builtin_mulhw", [IR a1; IR a2], [IR res] ->
emit (Pmulhw(res, a1, a2))
| "__builtin_mulhwu", [IR a1; IR a2], [IR res] ->
emit (Pmulhwu(res, a1, a2))
| "__builtin_clz", [IR a1], [IR res] ->
emit (Pcntlz(res, a1))
| ("__builtin_bswap" | "__builtin_bswap32"), [IR a1], [IR res] ->
emit (Pstwu(a1, Cint _m8, GPR1));
emit (Pcfi_adjust _8);
emit (Plwbrx(res, GPR0, GPR1));
emit (Paddi(GPR1, GPR1, Cint _8));
emit (Pcfi_adjust _m8)
| "__builtin_bswap16", [IR a1], [IR res] ->
emit (Prlwinm(GPR0, a1, _8, coqint_of_camlint 0x0000FF00l));
emit (Prlwinm(res, a1, coqint_of_camlint 24l,
coqint_of_camlint 0x000000FFl));
emit (Por(res, GPR0, res))
(* Float arithmetic *)
| "__builtin_fmadd", [FR a1; FR a2; FR a3], [FR res] ->
emit (Pfmadd(res, a1, a2, a3))
| "__builtin_fmsub", [FR a1; FR a2; FR a3], [FR res] ->
emit (Pfmsub(res, a1, a2, a3))
| "__builtin_fnmadd", [FR a1; FR a2; FR a3], [FR res] ->
emit (Pfnmadd(res, a1, a2, a3))
| "__builtin_fnmsub", [FR a1; FR a2; FR a3], [FR res] ->
emit (Pfnmsub(res, a1, a2, a3))
| "__builtin_fabs", [FR a1], [FR res] ->
emit (Pfabs(res, a1))
| "__builtin_fsqrt", [FR a1], [FR res] ->
emit (Pfsqrt(res, a1))
| "__builtin_frsqrte", [FR a1], [FR res] ->
emit (Pfrsqrte(res, a1))
| "__builtin_fres", [FR a1], [FR res] ->
emit (Pfres(res, a1))
| "__builtin_fsel", [FR a1; FR a2; FR a3], [FR res] ->
emit (Pfsel(res, a1, a2, a3))
| "__builtin_fcti", [FR a1], [IR res] ->
emit (Pfctiw(FPR13, a1));
emit (Pstfdu(FPR13, Cint _m8, GPR1));
emit (Pcfi_adjust _8);
emit (Plwz(res, Cint _4, GPR1));
emit (Paddi(GPR1, GPR1, Cint _8));
emit (Pcfi_adjust _m8)
(* 64-bit integer arithmetic *)
| "__builtin_negl", [IR ah; IR al], [IR rh; IR rl] ->
expand_int64_arith (rl = ah) rl (fun rl ->
emit (Psubfic(rl, al, Cint _0));
emit (Psubfze(rh, ah)))
| "__builtin_addl", [IR ah; IR al; IR bh; IR bl], [IR rh; IR rl] ->
expand_int64_arith (rl = ah || rl = bh) rl (fun rl ->
emit (Paddc(rl, al, bl));
emit (Padde(rh, ah, bh)))
| "__builtin_subl", [IR ah; IR al; IR bh; IR bl], [IR rh; IR rl] ->
expand_int64_arith (rl = ah || rl = bh) rl (fun rl ->
emit (Psubfc(rl, bl, al));
emit (Psubfe(rh, bh, ah)))
| "__builtin_mull", [IR a; IR b], [IR rh; IR rl] ->
expand_int64_arith (rl = a || rl = b) rl (fun rl ->
emit (Pmullw(rl, a, b));
emit (Pmulhwu(rh, a, b)))
(* Memory accesses *)
| "__builtin_read16_reversed", [IR a1], [IR res] ->
emit (Plhbrx(res, GPR0, a1))
| "__builtin_read32_reversed", [IR a1], [IR res] ->
emit (Plwbrx(res, GPR0, a1))
| "__builtin_write16_reversed", [IR a1; IR a2], _ ->
emit (Psthbrx(a2, GPR0, a1))
| "__builtin_write32_reversed", [IR a1; IR a2], _ ->
emit (Pstwbrx(a2, GPR0, a1))
(* Synchronization *)
| "__builtin_membar", [], _ ->
()
| "__builtin_eieio", [], _ ->
emit (Peieio)
| "__builtin_sync", [], _ ->
emit (Psync)
| "__builtin_isync", [], _ ->
emit (Pisync)
| "__builtin_trap", [], _ ->
emit (Ptrap)
(* Vararg stuff *)
| "__builtin_va_start", [IR a], _ ->
expand_builtin_va_start a
(* Catch-all *)
| _ ->
invalid_arg ("unrecognized builtin " ^ name)
(* Calls to variadic functions: condition bit 6 must be set
if at least one argument is a float; clear otherwise.
Note that variadic functions cannot have arguments of type Tsingle. *)
let set_cr6 sg =
if sg.sig_cc.cc_vararg then begin
if List.mem Tfloat sg.sig_args
then emit (Pcreqv(CRbit_6, CRbit_6, CRbit_6))
else emit (Pcrxor(CRbit_6, CRbit_6, CRbit_6))
end
(* Expand instructions *)
let num_crbit = function
| CRbit_0 -> 0
| CRbit_1 -> 1
| CRbit_2 -> 2
| CRbit_3 -> 3
| CRbit_6 -> 6
let expand_instruction instr =
match instr with
| Pallocframe(sz, ofs) ->
let variadic = (!current_function).fn_sig.sig_cc.cc_vararg in
let sz = camlint_of_coqint sz in
assert (ofs = Int.zero);
let sz = if variadic then Int32.add sz 96l else sz in
let adj = Int32.neg sz in
if adj >= -0x8000l then
emit (Pstwu(GPR1, Cint(coqint_of_camlint adj), GPR1))
else begin
emit_loadimm GPR0 (coqint_of_camlint adj);
emit (Pstwxu(GPR1, GPR1, GPR0))
end;
emit (Pcfi_adjust (coqint_of_camlint sz));
if variadic then begin
emit (Pmflr GPR0);
emit (Pbl(intern_string "__compcert_va_saveregs",
{sig_args = []; sig_res = None; sig_cc = cc_default}));
emit (Pmtlr GPR0)
end;
current_function_stacksize := sz
| Pbctr sg | Pbctrl sg | Pbl(_, sg) | Pbs(_, sg) ->
set_cr6 sg;
emit instr
| Pfreeframe(sz, ofs) ->
let variadic = (!current_function).fn_sig.sig_cc.cc_vararg in
let sz = camlint_of_coqint sz in
let sz = if variadic then Int32.add sz 96l else sz in
if sz < 0x8000l then
emit (Paddi(GPR1, GPR1, Cint(coqint_of_camlint sz)))
else
emit (Plwz(GPR1, Cint ofs, GPR1))
| Pfcti(r1, r2) ->
emit (Pfctiwz(FPR13, r2));
emit (Pstfdu(FPR13, Cint _m8, GPR1));
emit (Pcfi_adjust _8);
emit (Plwz(r1, Cint _4, GPR1));
emit (Paddi(GPR1, GPR1, Cint _8));
emit (Pcfi_adjust _m8)
| Pfmake(rd, r1, r2) ->
emit (Pstwu(r1, Cint _m8, GPR1));
emit (Pcfi_adjust _8);
emit (Pstw(r2, Cint _4, GPR1));
emit (Plfd(rd, Cint _0, GPR1));
emit (Paddi(GPR1, GPR1, Cint _8));
emit (Pcfi_adjust _m8);
| Pfxdp(r1, r2) ->
if r1 <> r2 then emit(Pfmr(r1, r2))
| Pmfcrbit(r1, bit) ->
emit (Pmfcr r1);
emit (Prlwinm(r1, r1, Z.of_uint (1 + num_crbit bit), _1))
| Pbuiltin(ef, args, res) ->
begin match ef with
| EF_builtin(name, sg) ->
expand_builtin_inline (extern_atom name) args res
| EF_vload chunk ->
expand_builtin_vload chunk args res
| EF_vstore chunk ->
expand_builtin_vstore chunk args
| EF_vload_global(chunk, id, ofs) ->
if symbol_is_small_data id ofs then
expand_builtin_vload_sda chunk id ofs args res
else if symbol_is_rel_data id ofs then
expand_builtin_vload_rel chunk id ofs args res
else
expand_builtin_vload_global chunk id ofs args res
| EF_vstore_global(chunk, id, ofs) ->
if symbol_is_small_data id ofs then
expand_builtin_vstore_sda chunk id ofs args
else if symbol_is_rel_data id ofs then
expand_builtin_vstore_rel chunk id ofs args
else
expand_builtin_vstore_global chunk id ofs args
| EF_memcpy(sz, al) ->
expand_builtin_memcpy (Z.to_int sz) (Z.to_int al) args
| EF_annot_val(txt, targ) ->
expand_annot_val txt targ args res
| EF_inline_asm txt ->
emit instr
| _ ->
assert false
end
| _ ->
emit instr
let expand_function fn =
set_current_function fn;
current_code := [];
List.iter expand_instruction fn.fn_code;
let c = get_code() in
set_current_function dummy_function;
{ fn with fn_code = c }
let expand_fundef = function
| Internal f -> Internal (expand_function f)
| External ef -> External ef
let expand_program (p: Asm.program) : Asm.program =
AST.transform_program expand_fundef p
|