1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Abstract syntax and semantics for PowerPC assembly language *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Locations.
Require Stacklayout.
Require Import Conventions.
(** * Abstract syntax *)
(** Integer registers, floating-point registers. *)
Inductive ireg: Type :=
| GPR0: ireg | GPR1: ireg | GPR2: ireg | GPR3: ireg
| GPR4: ireg | GPR5: ireg | GPR6: ireg | GPR7: ireg
| GPR8: ireg | GPR9: ireg | GPR10: ireg | GPR11: ireg
| GPR12: ireg | GPR13: ireg | GPR14: ireg | GPR15: ireg
| GPR16: ireg | GPR17: ireg | GPR18: ireg | GPR19: ireg
| GPR20: ireg | GPR21: ireg | GPR22: ireg | GPR23: ireg
| GPR24: ireg | GPR25: ireg | GPR26: ireg | GPR27: ireg
| GPR28: ireg | GPR29: ireg | GPR30: ireg | GPR31: ireg.
Inductive freg: Type :=
| FPR0: freg | FPR1: freg | FPR2: freg | FPR3: freg
| FPR4: freg | FPR5: freg | FPR6: freg | FPR7: freg
| FPR8: freg | FPR9: freg | FPR10: freg | FPR11: freg
| FPR12: freg | FPR13: freg | FPR14: freg | FPR15: freg
| FPR16: freg | FPR17: freg | FPR18: freg | FPR19: freg
| FPR20: freg | FPR21: freg | FPR22: freg | FPR23: freg
| FPR24: freg | FPR25: freg | FPR26: freg | FPR27: freg
| FPR28: freg | FPR29: freg | FPR30: freg | FPR31: freg.
Lemma ireg_eq: forall (x y: ireg), {x=y} + {x<>y}.
Proof. decide equality. Defined.
Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}.
Proof. decide equality. Defined.
(** The PowerPC has a great many registers, some general-purpose, some very
specific. We model only the following registers: *)
Inductive preg: Type :=
| IR: ireg -> preg (**r integer registers *)
| FR: freg -> preg (**r float registers *)
| PC: preg (**r program counter *)
| LR: preg (**r link register (return address) *)
| CTR: preg (**r count register, used for some branches *)
| CARRY: preg (**r carry bit of the status register *)
| CR0_0: preg (**r bit 0 of the condition register *)
| CR0_1: preg (**r bit 1 of the condition register *)
| CR0_2: preg (**r bit 2 of the condition register *)
| CR0_3: preg. (**r bit 3 of the condition register *)
Coercion IR: ireg >-> preg.
Coercion FR: freg >-> preg.
Lemma preg_eq: forall (x y: preg), {x=y} + {x<>y}.
Proof. decide equality. apply ireg_eq. apply freg_eq. Defined.
Module PregEq.
Definition t := preg.
Definition eq := preg_eq.
End PregEq.
Module Pregmap := EMap(PregEq).
(** Symbolic constants. Immediate operands to an arithmetic instruction
or an indexed memory access can be either integer literals,
or the low or high 16 bits of a symbolic reference (the address
of a symbol plus a displacement), or a 16-bit offset from the
small data area register. These symbolic references are
resolved later by the linker.
*)
Inductive constant: Type :=
| Cint: int -> constant
| Csymbol_low: ident -> int -> constant
| Csymbol_high: ident -> int -> constant
| Csymbol_sda: ident -> int -> constant.
(** A note on constants: while immediate operands to PowerPC
instructions must be representable in 16 bits (with
sign extension or left shift by 16 positions for some instructions),
we do not attempt to capture these restrictions in the
abstract syntax nor in the semantics. The assembler will
emit an error if immediate operands exceed the representable
range. Of course, our PPC generator (file [Asmgen]) is
careful to respect this range. *)
(** Bits in the condition register. We are only interested in the
first 4 bits. *)
Inductive crbit: Type :=
| CRbit_0: crbit
| CRbit_1: crbit
| CRbit_2: crbit
| CRbit_3: crbit.
(** The instruction set. Most instructions correspond exactly to
actual instructions of the PowerPC processor. See the PowerPC
reference manuals for more details. Some instructions,
described below, are pseudo-instructions: they expand to
canned instruction sequences during the printing of the assembly
code. *)
Definition label := positive.
Inductive instruction : Type :=
| Padd: ireg -> ireg -> ireg -> instruction (**r integer addition *)
| Padde: ireg -> ireg -> ireg -> instruction (**r integer addition with carry *)
| Paddi: ireg -> ireg -> constant -> instruction (**r add immediate *)
| Paddic: ireg -> ireg -> constant -> instruction (**r add immediate and set carry *)
| Paddis: ireg -> ireg -> constant -> instruction (**r add immediate high *)
| Paddze: ireg -> ireg -> instruction (**r add carry *)
| Pallocframe: Z -> int -> instruction (**r allocate new stack frame *)
| Pand_: ireg -> ireg -> ireg -> instruction (**r bitwise and *)
| Pandc: ireg -> ireg -> ireg -> instruction (**r bitwise and-complement *)
| Pandi_: ireg -> ireg -> constant -> instruction (**r and immediate and set conditions *)
| Pandis_: ireg -> ireg -> constant -> instruction (**r and immediate high and set conditions *)
| Pb: label -> instruction (**r unconditional branch *)
| Pbctr: instruction (**r branch to contents of register CTR *)
| Pbctrl: instruction (**r branch to contents of CTR and link *)
| Pbf: crbit -> label -> instruction (**r branch if false *)
| Pbl: ident -> instruction (**r branch and link *)
| Pbs: ident -> instruction (**r branch to symbol *)
| Pblr: instruction (**r branch to contents of register LR *)
| Pbt: crbit -> label -> instruction (**r branch if true *)
| Pbtbl: ireg -> list label -> instruction (**r N-way branch through a jump table *)
| Pcmplw: ireg -> ireg -> instruction (**r unsigned integer comparison *)
| Pcmplwi: ireg -> constant -> instruction (**r same, with immediate argument *)
| Pcmpw: ireg -> ireg -> instruction (**r signed integer comparison *)
| Pcmpwi: ireg -> constant -> instruction (**r same, with immediate argument *)
| Pcror: crbit -> crbit -> crbit -> instruction (**r or between condition bits *)
| Pdivw: ireg -> ireg -> ireg -> instruction (**r signed division *)
| Pdivwu: ireg -> ireg -> ireg -> instruction (**r unsigned division *)
| Peqv: ireg -> ireg -> ireg -> instruction (**r bitwise not-xor *)
| Pextsb: ireg -> ireg -> instruction (**r 8-bit sign extension *)
| Pextsh: ireg -> ireg -> instruction (**r 16-bit sign extension *)
| Pfreeframe: Z -> int -> instruction (**r deallocate stack frame and restore previous frame *)
| Pfabs: freg -> freg -> instruction (**r float absolute value *)
| Pfadd: freg -> freg -> freg -> instruction (**r float addition *)
| Pfcmpu: freg -> freg -> instruction (**r float comparison *)
| Pfcti: ireg -> freg -> instruction (**r float-to-signed-int conversion *)
| Pfdiv: freg -> freg -> freg -> instruction (**r float division *)
| Pfmadd: freg -> freg -> freg -> freg -> instruction (**r float multiply-add *)
| Pfmake: freg -> ireg -> ireg -> instruction (**r build a float from 2 ints *)
| Pfmr: freg -> freg -> instruction (**r float move *)
| Pfmsub: freg -> freg -> freg -> freg -> instruction (**r float multiply-sub *)
| Pfmul: freg -> freg -> freg -> instruction (**r float multiply *)
| Pfneg: freg -> freg -> instruction (**r float negation *)
| Pfrsp: freg -> freg -> instruction (**r float round to single precision *)
| Pfsub: freg -> freg -> freg -> instruction (**r float subtraction *)
| Plbz: ireg -> constant -> ireg -> instruction (**r load 8-bit unsigned int *)
| Plbzx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Plfd: freg -> constant -> ireg -> instruction (**r load 64-bit float *)
| Plfdx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Plfs: freg -> constant -> ireg -> instruction (**r load 32-bit float *)
| Plfsx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Plha: ireg -> constant -> ireg -> instruction (**r load 16-bit signed int *)
| Plhax: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Plhz: ireg -> constant -> ireg -> instruction (**r load 16-bit unsigned int *)
| Plhzx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Plfi: freg -> float -> instruction (**r load float constant *)
| Plwz: ireg -> constant -> ireg -> instruction (**r load 32-bit int *)
| Plwzx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Pmfcrbit: ireg -> crbit -> instruction (**r move condition bit to reg *)
| Pmflr: ireg -> instruction (**r move LR to reg *)
| Pmr: ireg -> ireg -> instruction (**r integer move *)
| Pmtctr: ireg -> instruction (**r move ireg to CTR *)
| Pmtlr: ireg -> instruction (**r move ireg to LR *)
| Pmulli: ireg -> ireg -> constant -> instruction (**r integer multiply immediate *)
| Pmullw: ireg -> ireg -> ireg -> instruction (**r integer multiply *)
| Pnand: ireg -> ireg -> ireg -> instruction (**r bitwise not-and *)
| Pnor: ireg -> ireg -> ireg -> instruction (**r bitwise not-or *)
| Por: ireg -> ireg -> ireg -> instruction (**r bitwise or *)
| Porc: ireg -> ireg -> ireg -> instruction (**r bitwise or-complement *)
| Pori: ireg -> ireg -> constant -> instruction (**r or with immediate *)
| Poris: ireg -> ireg -> constant -> instruction (**r or with immediate high *)
| Prlwinm: ireg -> ireg -> int -> int -> instruction (**r rotate and mask *)
| Prlwimi: ireg -> ireg -> int -> int -> instruction (**r rotate and insert *)
| Pslw: ireg -> ireg -> ireg -> instruction (**r shift left *)
| Psraw: ireg -> ireg -> ireg -> instruction (**r shift right signed *)
| Psrawi: ireg -> ireg -> int -> instruction (**r shift right signed immediate *)
| Psrw: ireg -> ireg -> ireg -> instruction (**r shift right unsigned *)
| Pstb: ireg -> constant -> ireg -> instruction (**r store 8-bit int *)
| Pstbx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Pstfd: freg -> constant -> ireg -> instruction (**r store 64-bit float *)
| Pstfdx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Pstfs: freg -> constant -> ireg -> instruction (**r store 32-bit float *)
| Pstfsx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Psth: ireg -> constant -> ireg -> instruction (**r store 16-bit int *)
| Psthx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Pstw: ireg -> constant -> ireg -> instruction (**r store 32-bit int *)
| Pstwx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
| Psubfc: ireg -> ireg -> ireg -> instruction (**r reversed integer subtraction *)
| Psubfe: ireg -> ireg -> ireg -> instruction (**r reversed integer subtraction with carry *)
| Psubfic: ireg -> ireg -> constant -> instruction (**r integer subtraction from immediate *)
| Pxor: ireg -> ireg -> ireg -> instruction (**r bitwise xor *)
| Pxori: ireg -> ireg -> constant -> instruction (**r bitwise xor with immediate *)
| Pxoris: ireg -> ireg -> constant -> instruction (**r bitwise xor with immediate high *)
| Plabel: label -> instruction (**r define a code label *)
| Pbuiltin: external_function -> list preg -> preg -> instruction (**r built-in function *)
| Pannot: external_function -> list annot_param -> instruction (**r annotation statement *)
with annot_param : Type :=
| APreg: preg -> annot_param
| APstack: memory_chunk -> Z -> annot_param.
(** The pseudo-instructions are the following:
- [Plabel]: define a code label at the current program point
- [Plfi]: load a floating-point constant in a float register.
Expands to a float load [lfd] from an address in the constant data section
initialized with the floating-point constant:
<<
addis r12, 0, ha16(lbl)
lfd rdst, lo16(lbl)(r12)
.const_data
lbl: .double floatcst
.text
>>
Initialized data in the constant data section are not modeled here,
which is why we use a pseudo-instruction for this purpose.
- [Pfcti]: convert a float to a signed integer. This requires a transfer
via memory of a 32-bit integer from a float register to an int register.
Expands to:
<<
fctiwz f13, rsrc
stfdu f13, -8(r1)
lwz rdst, 4(r1)
addi r1, r1, 8
>>
- [Pfmake]: build a double float from two 32-bit integers. This also
requires a transfer via memory. Expands to:
<<
stwu rsrc1, -8(r1)
stw rsrc2, 4(r1)
lfd rdst, 0(r1)
addi r1, r1, 8
>>
- [Pallocframe sz ofs]: in the formal semantics, this pseudo-instruction
allocates a memory block with bounds [0] and [sz], stores the value
of register [r1] (the stack pointer, by convention) at offset [ofs]
in this block, and sets [r1] to a pointer to the bottom of this
block. In the printed PowerPC assembly code, this allocation
is just a store-decrement of register [r1], assuming that [ofs = 0]:
<<
stwu r1, -sz(r1)
>>
This cannot be expressed in our memory model, which does not reflect
the fact that stack frames are adjacent and allocated/freed
following a stack discipline.
- [Pfreeframe sz ofs]: in the formal semantics, this pseudo-instruction
reads the word at offset [ofs] in the block pointed by [r1] (the
stack pointer), frees this block, and sets [r1] to the value of the
word at offset [ofs]. In the printed PowerPC assembly code, this
freeing is just a load of register [r1] relative to [r1] itself:
<<
lwz r1, ofs(r1)
>>
Again, our memory model cannot comprehend that this operation
frees (logically) the current stack frame.
- [Pbtbl reg table]: this is a N-way branch, implemented via a jump table
as follows:
<<
addis r12, reg, ha16(lbl)
lwz r12, lo16(lbl)(r12)
mtctr r12
bctr r12
lbl: .long table[0], table[1], ...
>>
Note that [reg] contains 4 times the index of the desired table entry.
*)
Definition code := list instruction.
Definition fundef := AST.fundef code.
Definition program := AST.program fundef unit.
(** * Operational semantics *)
(** The semantics operates over a single mapping from registers
(type [preg]) to values. We maintain (but do not enforce)
the convention that integer registers are mapped to values of
type [Tint], float registers to values of type [Tfloat],
and boolean registers ([CARRY], [CR0_0], etc) to either
[Vzero] or [Vone]. *)
Definition regset := Pregmap.t val.
Definition genv := Genv.t fundef unit.
Notation "a # b" := (a b) (at level 1, only parsing).
Notation "a # b <- c" := (Pregmap.set b c a) (at level 1, b at next level).
Section RELSEM.
(** Looking up instructions in a code sequence by position. *)
Fixpoint find_instr (pos: Z) (c: code) {struct c} : option instruction :=
match c with
| nil => None
| i :: il => if zeq pos 0 then Some i else find_instr (pos - 1) il
end.
(** Position corresponding to a label *)
Definition is_label (lbl: label) (instr: instruction) : bool :=
match instr with
| Plabel lbl' => if peq lbl lbl' then true else false
| _ => false
end.
Lemma is_label_correct:
forall lbl instr,
if is_label lbl instr then instr = Plabel lbl else instr <> Plabel lbl.
Proof.
intros. destruct instr; simpl; try discriminate.
case (peq lbl l); intro; congruence.
Qed.
Fixpoint label_pos (lbl: label) (pos: Z) (c: code) {struct c} : option Z :=
match c with
| nil => None
| instr :: c' =>
if is_label lbl instr then Some (pos + 1) else label_pos lbl (pos + 1) c'
end.
(** Some PowerPC instructions treat register GPR0 as the integer literal 0
when that register is used in argument position. *)
Definition gpr_or_zero (rs: regset) (r: ireg) :=
if ireg_eq r GPR0 then Vzero else rs#r.
Variable ge: genv.
Definition symbol_offset (id: ident) (ofs: int) : val :=
match Genv.find_symbol ge id with
| Some b => Vptr b ofs
| None => Vundef
end.
(** The two functions below axiomatize how the linker processes
symbolic references [symbol + offset] and splits their
actual values into two 16-bit halves. *)
Parameter low_half: val -> val.
Parameter high_half: val -> val.
(** The fundamental property of these operations is that, when applied
to the address of a symbol, their results can be recombined by
addition, rebuilding the original address. *)
Axiom low_high_half:
forall id ofs,
Val.add (low_half (symbol_offset id ofs)) (high_half (symbol_offset id ofs))
= symbol_offset id ofs.
(** The other axioms we take is that the results of
the [low_half] and [high_half] functions are of type [Tint],
i.e. either integers, pointers or undefined values. *)
Axiom low_half_type:
forall v, Val.has_type (low_half v) Tint.
Axiom high_half_type:
forall v, Val.has_type (high_half v) Tint.
(** We also axiomatize the small data area. For simplicity, we
claim that small data symbols can be accessed by absolute 16-bit
offsets, that is, relative to [GPR0]. In reality, the linker
rewrites the object code, transforming [symb@sdarx(r0)] addressings
into [offset(rN)] addressings, where [rN] is the reserved
register pointing to the base of the small data area containing
symbol [symb]. We leave this transformation up to the linker. *)
Parameter symbol_is_small_data: ident -> int -> bool.
Parameter small_data_area_offset: genv -> ident -> int -> val.
Axiom small_data_area_addressing:
forall id ofs,
symbol_is_small_data id ofs = true ->
small_data_area_offset ge id ofs = symbol_offset id ofs.
(** Armed with the [low_half] and [high_half] functions,
we can define the evaluation of a symbolic constant.
Note that for [const_high], integer constants
are shifted left by 16 bits, but not symbol addresses:
we assume (as in the [low_high_half] axioms above)
that the results of [high_half] are already shifted
(their 16 low bits are equal to 0). *)
Definition const_low (c: constant) :=
match c with
| Cint n => Vint n
| Csymbol_low id ofs => low_half (symbol_offset id ofs)
| Csymbol_high id ofs => Vundef
| Csymbol_sda id ofs => small_data_area_offset ge id ofs
end.
Definition const_high (c: constant) :=
match c with
| Cint n => Vint (Int.shl n (Int.repr 16))
| Csymbol_low id ofs => Vundef
| Csymbol_high id ofs => high_half (symbol_offset id ofs)
| Csymbol_sda id ofs => Vundef
end.
(** The semantics is purely small-step and defined as a function
from the current state (a register set + a memory state)
to either [OK rs' m'] where [rs'] and [m'] are the updated register
set and memory state after execution of the instruction at [rs#PC],
or [Error] if the processor is stuck. *)
Inductive outcome: Type :=
| OK: regset -> mem -> outcome
| Error: outcome.
(** Manipulations over the [PC] register: continuing with the next
instruction ([nextinstr]) or branching to a label ([goto_label]). *)
Definition nextinstr (rs: regset) :=
rs#PC <- (Val.add rs#PC Vone).
Definition goto_label (c: code) (lbl: label) (rs: regset) (m: mem) :=
match label_pos lbl 0 c with
| None => Error
| Some pos =>
match rs#PC with
| Vptr b ofs => OK (rs#PC <- (Vptr b (Int.repr pos))) m
| _ => Error
end
end.
(** Auxiliaries for memory accesses, in two forms: one operand
(plus constant offset) or two operands. *)
Definition load1 (chunk: memory_chunk) (rd: preg)
(cst: constant) (r1: ireg) (rs: regset) (m: mem) :=
match Mem.loadv chunk m (Val.add (gpr_or_zero rs r1) (const_low cst)) with
| None => Error
| Some v => OK (nextinstr (rs#rd <- v)) m
end.
Definition load2 (chunk: memory_chunk) (rd: preg) (r1 r2: ireg)
(rs: regset) (m: mem) :=
match Mem.loadv chunk m (Val.add rs#r1 rs#r2) with
| None => Error
| Some v => OK (nextinstr (rs#rd <- v)) m
end.
Definition store1 (chunk: memory_chunk) (r: preg)
(cst: constant) (r1: ireg) (rs: regset) (m: mem) :=
match Mem.storev chunk m (Val.add (gpr_or_zero rs r1) (const_low cst)) (rs#r) with
| None => Error
| Some m' => OK (nextinstr rs) m'
end.
Definition store2 (chunk: memory_chunk) (r: preg) (r1 r2: ireg)
(rs: regset) (m: mem) :=
match Mem.storev chunk m (Val.add rs#r1 rs#r2) (rs#r) with
| None => Error
| Some m' => OK (nextinstr rs) m'
end.
(** Operations over condition bits. *)
Definition reg_of_crbit (bit: crbit) :=
match bit with
| CRbit_0 => CR0_0
| CRbit_1 => CR0_1
| CRbit_2 => CR0_2
| CRbit_3 => CR0_3
end.
Definition compare_sint (rs: regset) (v1 v2: val) :=
rs#CR0_0 <- (Val.cmp Clt v1 v2)
#CR0_1 <- (Val.cmp Cgt v1 v2)
#CR0_2 <- (Val.cmp Ceq v1 v2)
#CR0_3 <- Vundef.
Definition compare_uint (rs: regset) (v1 v2: val) :=
rs#CR0_0 <- (Val.cmpu Clt v1 v2)
#CR0_1 <- (Val.cmpu Cgt v1 v2)
#CR0_2 <- (Val.cmpu Ceq v1 v2)
#CR0_3 <- Vundef.
Definition compare_float (rs: regset) (v1 v2: val) :=
rs#CR0_0 <- (Val.cmpf Clt v1 v2)
#CR0_1 <- (Val.cmpf Cgt v1 v2)
#CR0_2 <- (Val.cmpf Ceq v1 v2)
#CR0_3 <- Vundef.
Definition val_cond_reg (rs: regset) :=
Val.or (Val.shl rs#CR0_0 (Vint (Int.repr 31)))
(Val.or (Val.shl rs#CR0_1 (Vint (Int.repr 30)))
(Val.or (Val.shl rs#CR0_2 (Vint (Int.repr 29)))
(Val.shl rs#CR0_3 (Vint (Int.repr 28))))).
(** Execution of a single instruction [i] in initial state
[rs] and [m]. Return updated state. For instructions
that correspond to actual PowerPC instructions, the cases are
straightforward transliterations of the informal descriptions
given in the PowerPC reference manuals. For pseudo-instructions,
refer to the informal descriptions given above. Note that
we set to [Vundef] the registers used as temporaries by the
expansions of the pseudo-instructions, so that the PPC code
we generate cannot use those registers to hold values that
must survive the execution of the pseudo-instruction.
*)
Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome :=
match i with
| Padd rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.add rs#r1 rs#r2))) m
| Padde rd r1 r2 =>
OK (nextinstr (rs #rd <- (Val.add (Val.add rs#r1 rs#r2) rs#CARRY)
#CARRY <- (Val.add_carry rs#r1 rs#r2 rs#CARRY))) m
| Paddi rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.add (gpr_or_zero rs r1) (const_low cst)))) m
| Paddic rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.add (gpr_or_zero rs r1) (const_low cst))
#CARRY <- (Val.add_carry (gpr_or_zero rs r1) (const_low cst) Vzero))) m
| Paddis rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.add (gpr_or_zero rs r1) (const_high cst)))) m
| Paddze rd r1 =>
OK (nextinstr (rs#rd <- (Val.add rs#r1 rs#CARRY)
#CARRY <- (Val.add_carry rs#r1 Vzero rs#CARRY))) m
| Pallocframe sz ofs =>
let (m1, stk) := Mem.alloc m 0 sz in
let sp := Vptr stk Int.zero in
match Mem.storev Mint32 m1 (Val.add sp (Vint ofs)) rs#GPR1 with
| None => Error
| Some m2 => OK (nextinstr (rs#GPR1 <- sp #GPR0 <- Vundef)) m2
end
| Pand_ rd r1 r2 =>
let v := Val.and rs#r1 rs#r2 in
OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
| Pandc rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.and rs#r1 (Val.notint rs#r2)))) m
| Pandi_ rd r1 cst =>
let v := Val.and rs#r1 (const_low cst) in
OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
| Pandis_ rd r1 cst =>
let v := Val.and rs#r1 (const_high cst) in
OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
| Pb lbl =>
goto_label c lbl rs m
| Pbctr =>
OK (rs#PC <- (rs#CTR)) m
| Pbctrl =>
OK (rs#LR <- (Val.add rs#PC Vone) #PC <- (rs#CTR)) m
| Pbf bit lbl =>
match rs#(reg_of_crbit bit) with
| Vint n => if Int.eq n Int.zero then goto_label c lbl rs m else OK (nextinstr rs) m
| _ => Error
end
| Pbl ident =>
OK (rs#LR <- (Val.add rs#PC Vone) #PC <- (symbol_offset ident Int.zero)) m
| Pbs ident =>
OK (rs#PC <- (symbol_offset ident Int.zero)) m
| Pblr =>
OK (rs#PC <- (rs#LR)) m
| Pbt bit lbl =>
match rs#(reg_of_crbit bit) with
| Vint n => if Int.eq n Int.zero then OK (nextinstr rs) m else goto_label c lbl rs m
| _ => Error
end
| Pbtbl r tbl =>
match gpr_or_zero rs r with
| Vint n =>
let pos := Int.unsigned n in
if zeq (Zmod pos 4) 0 then
match list_nth_z tbl (pos / 4) with
| None => Error
| Some lbl => goto_label c lbl (rs #GPR12 <- Vundef #CTR <- Vundef) m
end
else Error
| _ => Error
end
| Pcmplw r1 r2 =>
OK (nextinstr (compare_uint rs rs#r1 rs#r2)) m
| Pcmplwi r1 cst =>
OK (nextinstr (compare_uint rs rs#r1 (const_low cst))) m
| Pcmpw r1 r2 =>
OK (nextinstr (compare_sint rs rs#r1 rs#r2)) m
| Pcmpwi r1 cst =>
OK (nextinstr (compare_sint rs rs#r1 (const_low cst))) m
| Pcror bd b1 b2 =>
OK (nextinstr (rs#(reg_of_crbit bd) <- (Val.or rs#(reg_of_crbit b1) rs#(reg_of_crbit b2)))) m
| Pdivw rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.divs rs#r1 rs#r2))) m
| Pdivwu rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.divu rs#r1 rs#r2))) m
| Peqv rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.notint (Val.xor rs#r1 rs#r2)))) m
| Pextsb rd r1 =>
OK (nextinstr (rs#rd <- (Val.sign_ext 8 rs#r1))) m
| Pextsh rd r1 =>
OK (nextinstr (rs#rd <- (Val.sign_ext 16 rs#r1))) m
| Pfreeframe sz ofs =>
match Mem.loadv Mint32 m (Val.add rs#GPR1 (Vint ofs)) with
| None => Error
| Some v =>
match rs#GPR1 with
| Vptr stk ofs =>
match Mem.free m stk 0 sz with
| None => Error
| Some m' => OK (nextinstr (rs#GPR1 <- v)) m'
end
| _ => Error
end
end
| Pfabs rd r1 =>
OK (nextinstr (rs#rd <- (Val.absf rs#r1))) m
| Pfadd rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.addf rs#r1 rs#r2))) m
| Pfcmpu r1 r2 =>
OK (nextinstr (compare_float rs rs#r1 rs#r2)) m
| Pfcti rd r1 =>
OK (nextinstr (rs#FPR13 <- Vundef #rd <- (Val.intoffloat rs#r1))) m
| Pfdiv rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.divf rs#r1 rs#r2))) m
| Pfmadd rd r1 r2 r3 =>
OK (nextinstr (rs#rd <- (Val.addf (Val.mulf rs#r1 rs#r2) rs#r3))) m
| Pfmake rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.floatofwords rs#r1 rs#r2))) m
| Pfmr rd r1 =>
OK (nextinstr (rs#rd <- (rs#r1))) m
| Pfmsub rd r1 r2 r3 =>
OK (nextinstr (rs#rd <- (Val.subf (Val.mulf rs#r1 rs#r2) rs#r3))) m
| Pfmul rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.mulf rs#r1 rs#r2))) m
| Pfneg rd r1 =>
OK (nextinstr (rs#rd <- (Val.negf rs#r1))) m
| Pfrsp rd r1 =>
OK (nextinstr (rs#rd <- (Val.singleoffloat rs#r1))) m
| Pfsub rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.subf rs#r1 rs#r2))) m
| Plbz rd cst r1 =>
load1 Mint8unsigned rd cst r1 rs m
| Plbzx rd r1 r2 =>
load2 Mint8unsigned rd r1 r2 rs m
| Plfd rd cst r1 =>
load1 Mfloat64 rd cst r1 rs m
| Plfdx rd r1 r2 =>
load2 Mfloat64 rd r1 r2 rs m
| Plfs rd cst r1 =>
load1 Mfloat32 rd cst r1 rs m
| Plfsx rd r1 r2 =>
load2 Mfloat32 rd r1 r2 rs m
| Plha rd cst r1 =>
load1 Mint16signed rd cst r1 rs m
| Plhax rd r1 r2 =>
load2 Mint16signed rd r1 r2 rs m
| Plhz rd cst r1 =>
load1 Mint16unsigned rd cst r1 rs m
| Plhzx rd r1 r2 =>
load2 Mint16unsigned rd r1 r2 rs m
| Plfi rd f =>
OK (nextinstr (rs #GPR12 <- Vundef #rd <- (Vfloat f))) m
| Plwz rd cst r1 =>
load1 Mint32 rd cst r1 rs m
| Plwzx rd r1 r2 =>
load2 Mint32 rd r1 r2 rs m
| Pmfcrbit rd bit =>
OK (nextinstr (rs#rd <- (rs#(reg_of_crbit bit)))) m
| Pmflr rd =>
OK (nextinstr (rs#rd <- (rs#LR))) m
| Pmr rd r1 =>
OK (nextinstr (rs#rd <- (rs#r1))) m
| Pmtctr r1 =>
OK (nextinstr (rs#CTR <- (rs#r1))) m
| Pmtlr r1 =>
OK (nextinstr (rs#LR <- (rs#r1))) m
| Pmulli rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.mul rs#r1 (const_low cst)))) m
| Pmullw rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.mul rs#r1 rs#r2))) m
| Pnand rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.notint (Val.and rs#r1 rs#r2)))) m
| Pnor rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.notint (Val.or rs#r1 rs#r2)))) m
| Por rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.or rs#r1 rs#r2))) m
| Porc rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.or rs#r1 (Val.notint rs#r2)))) m
| Pori rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.or rs#r1 (const_low cst)))) m
| Poris rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.or rs#r1 (const_high cst)))) m
| Prlwinm rd r1 amount mask =>
OK (nextinstr (rs#rd <- (Val.rolm rs#r1 amount mask))) m
| Prlwimi rd r1 amount mask =>
OK (nextinstr (rs#rd <- (Val.or (Val.and rs#rd (Vint (Int.not mask)))
(Val.rolm rs#r1 amount mask)))) m
| Pslw rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.shl rs#r1 rs#r2))) m
| Psraw rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.shr rs#r1 rs#r2) #CARRY <- (Val.shr_carry rs#r1 rs#r2))) m
| Psrawi rd r1 n =>
OK (nextinstr (rs#rd <- (Val.shr rs#r1 (Vint n)) #CARRY <- (Val.shr_carry rs#r1 (Vint n)))) m
| Psrw rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.shru rs#r1 rs#r2))) m
| Pstb rd cst r1 =>
store1 Mint8unsigned rd cst r1 rs m
| Pstbx rd r1 r2 =>
store2 Mint8unsigned rd r1 r2 rs m
| Pstfd rd cst r1 =>
store1 Mfloat64 rd cst r1 rs m
| Pstfdx rd r1 r2 =>
store2 Mfloat64 rd r1 r2 rs m
| Pstfs rd cst r1 =>
match store1 Mfloat32 rd cst r1 rs m with
| OK rs' m' => OK (rs'#FPR13 <- Vundef) m'
| Error => Error
end
| Pstfsx rd r1 r2 =>
match store2 Mfloat32 rd r1 r2 rs m with
| OK rs' m' => OK (rs'#FPR13 <- Vundef) m'
| Error => Error
end
| Psth rd cst r1 =>
store1 Mint16unsigned rd cst r1 rs m
| Psthx rd r1 r2 =>
store2 Mint16unsigned rd r1 r2 rs m
| Pstw rd cst r1 =>
store1 Mint32 rd cst r1 rs m
| Pstwx rd r1 r2 =>
store2 Mint32 rd r1 r2 rs m
| Psubfc rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.sub rs#r2 rs#r1)
#CARRY <- (Val.add_carry rs#r2 (Val.notint rs#r1) Vone))) m
| Psubfe rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.add (Val.add rs#r2 (Val.notint rs#r1)) rs#CARRY)
#CARRY <- (Val.add_carry rs#r2 (Val.notint rs#r1) rs#CARRY))) m
| Psubfic rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.sub (const_low cst) rs#r1)
#CARRY <- (Val.add_carry (const_low cst) (Val.notint rs#r1) Vone))) m
| Pxor rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.xor rs#r1 rs#r2))) m
| Pxori rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.xor rs#r1 (const_low cst)))) m
| Pxoris rd r1 cst =>
OK (nextinstr (rs#rd <- (Val.xor rs#r1 (const_high cst)))) m
| Plabel lbl =>
OK (nextinstr rs) m
| Pbuiltin ef args res =>
Error (**r treated specially below *)
| Pannot ef args =>
Error (**r treated specially below *)
end.
(** Translation of the LTL/Linear/Mach view of machine registers
to the PPC view. PPC has two different types for registers
(integer and float) while LTL et al have only one. The
[ireg_of] and [freg_of] are therefore partial in principle.
To keep things simpler, we make them return nonsensical
results when applied to a LTL register of the wrong type.
The proof in [Asmgenproof] will show that this never happens.
Note that no LTL register maps to [GPR0].
This register is reserved as a temporary to be used
by the generated PPC code. *)
Definition ireg_of (r: mreg) : ireg :=
match r with
| R3 => GPR3 | R4 => GPR4 | R5 => GPR5 | R6 => GPR6
| R7 => GPR7 | R8 => GPR8 | R9 => GPR9 | R10 => GPR10
| R14 => GPR14 | R15 => GPR15 | R16 => GPR16
| R17 => GPR17 | R18 => GPR18 | R19 => GPR19 | R20 => GPR20
| R21 => GPR21 | R22 => GPR22 | R23 => GPR23 | R24 => GPR24
| R25 => GPR25 | R26 => GPR26 | R27 => GPR27 | R28 => GPR28
| R29 => GPR29 | R30 => GPR30 | R31 => GPR31
| IT1 => GPR11 | IT2 => GPR12
| _ => GPR12 (* should not happen *)
end.
Definition freg_of (r: mreg) : freg :=
match r with
| F1 => FPR1 | F2 => FPR2 | F3 => FPR3 | F4 => FPR4
| F5 => FPR5 | F6 => FPR6 | F7 => FPR7 | F8 => FPR8
| F9 => FPR9 | F10 => FPR10 | F11 => FPR11
| F14 => FPR14 | F15 => FPR15
| F16 => FPR16 | F17 => FPR17 | F18 => FPR18 | F19 => FPR19
| F20 => FPR20 | F21 => FPR21 | F22 => FPR22 | F23 => FPR23
| F24 => FPR24 | F25 => FPR25 | F26 => FPR26 | F27 => FPR27
| F28 => FPR28 | F29 => FPR29 | F30 => FPR30 | F31 => FPR31
| FT1 => FPR0 | FT2 => FPR12 | FT3 => FPR13
| _ => FPR0 (* should not happen *)
end.
Definition preg_of (r: mreg) :=
match mreg_type r with
| Tint => IR (ireg_of r)
| Tfloat => FR (freg_of r)
end.
(** Extract the values of the arguments of an external call.
We exploit the calling conventions from module [Conventions], except that
we use PPC registers instead of locations. *)
Inductive extcall_arg (rs: regset) (m: mem): loc -> val -> Prop :=
| extcall_arg_reg: forall r,
extcall_arg rs m (R r) (rs (preg_of r))
| extcall_arg_int_stack: forall ofs bofs v,
bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
Mem.loadv Mint32 m (Val.add (rs (IR GPR1)) (Vint (Int.repr bofs))) = Some v ->
extcall_arg rs m (S (Outgoing ofs Tint)) v
| extcall_arg_float_stack: forall ofs bofs v,
bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
Mem.loadv Mfloat64 m (Val.add (rs (IR GPR1)) (Vint (Int.repr bofs))) = Some v ->
extcall_arg rs m (S (Outgoing ofs Tfloat)) v.
Definition extcall_arguments
(rs: regset) (m: mem) (sg: signature) (args: list val) : Prop :=
list_forall2 (extcall_arg rs m) (loc_arguments sg) args.
Definition loc_external_result (sg: signature) : preg :=
preg_of (loc_result sg).
(** Extract the values of the arguments of an annotation. *)
Inductive annot_arg (rs: regset) (m: mem): annot_param -> val -> Prop :=
| annot_arg_reg: forall r,
annot_arg rs m (APreg r) (rs r)
| annot_arg_stack: forall chunk ofs stk base v,
rs (IR GPR1) = Vptr stk base ->
Mem.load chunk m stk (Int.unsigned base + ofs) = Some v ->
annot_arg rs m (APstack chunk ofs) v.
Definition annot_arguments
(rs: regset) (m: mem) (params: list annot_param) (args: list val) : Prop :=
list_forall2 (annot_arg rs m) params args.
(** Execution of the instruction at [rs#PC]. *)
Inductive state: Type :=
| State: regset -> mem -> state.
Inductive step: state -> trace -> state -> Prop :=
| exec_step_internal:
forall b ofs c i rs m rs' m',
rs PC = Vptr b ofs ->
Genv.find_funct_ptr ge b = Some (Internal c) ->
find_instr (Int.unsigned ofs) c = Some i ->
exec_instr c i rs m = OK rs' m' ->
step (State rs m) E0 (State rs' m')
| exec_step_builtin:
forall b ofs c ef args res rs m t v m',
rs PC = Vptr b ofs ->
Genv.find_funct_ptr ge b = Some (Internal c) ->
find_instr (Int.unsigned ofs) c = Some (Pbuiltin ef args res) ->
external_call ef ge (map rs args) m t v m' ->
step (State rs m) t
(State (nextinstr(rs #GPR11 <- Vundef #GPR12 <- Vundef
#FPR12 <- Vundef #FPR13 <- Vundef
#FPR0 <- Vundef #CTR <- Vundef
#res <- v)) m')
| exec_step_annot:
forall b ofs c ef args rs m vargs t v m',
rs PC = Vptr b ofs ->
Genv.find_funct_ptr ge b = Some (Internal c) ->
find_instr (Int.unsigned ofs) c = Some (Pannot ef args) ->
annot_arguments rs m args vargs ->
external_call ef ge vargs m t v m' ->
step (State rs m) t
(State (nextinstr rs) m')
| exec_step_external:
forall b ef args res rs m t rs' m',
rs PC = Vptr b Int.zero ->
Genv.find_funct_ptr ge b = Some (External ef) ->
external_call ef ge args m t res m' ->
extcall_arguments rs m (ef_sig ef) args ->
rs' = (rs#(loc_external_result (ef_sig ef)) <- res
#PC <- (rs LR)) ->
step (State rs m) t (State rs' m').
End RELSEM.
(** Execution of whole programs. *)
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall m0,
Genv.init_mem p = Some m0 ->
let ge := Genv.globalenv p in
let rs0 :=
(Pregmap.init Vundef)
# PC <- (symbol_offset ge p.(prog_main) Int.zero)
# LR <- Vzero
# GPR1 <- (Vptr Mem.nullptr Int.zero) in
initial_state p (State rs0 m0).
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall rs m r,
rs#PC = Vzero ->
rs#GPR3 = Vint r ->
final_state (State rs m) r.
Definition semantics (p: program) :=
Semantics step (initial_state p) final_state (Genv.globalenv p).
(** Determinacy of the [Asm] semantics. *)
Remark extcall_arguments_determ:
forall rs m sg args1 args2,
extcall_arguments rs m sg args1 -> extcall_arguments rs m sg args2 -> args1 = args2.
Proof.
intros until m.
assert (forall ll vl1, list_forall2 (extcall_arg rs m) ll vl1 ->
forall vl2, list_forall2 (extcall_arg rs m) ll vl2 -> vl1 = vl2).
induction 1; intros vl2 EA; inv EA.
auto.
f_equal; auto.
inv H; inv H3; congruence.
intros. red in H0; red in H1. eauto.
Qed.
Remark annot_arguments_determ:
forall rs m params args1 args2,
annot_arguments rs m params args1 -> annot_arguments rs m params args2 -> args1 = args2.
Proof.
unfold annot_arguments. intros. revert params args1 H args2 H0.
induction 1; intros.
inv H0; auto.
inv H1. decEq; eauto. inv H; inv H4. auto. congruence.
Qed.
Lemma semantics_determinate: forall p, determinate (semantics p).
Proof.
Ltac Equalities :=
match goal with
| [ H1: ?a = ?b, H2: ?a = ?c |- _ ] =>
rewrite H1 in H2; inv H2; Equalities
| _ => idtac
end.
intros; constructor; simpl; intros.
(* determ *)
inv H; inv H0; Equalities.
split. constructor. auto.
discriminate.
discriminate.
inv H11.
exploit external_call_determ. eexact H4. eexact H11. intros [A B].
split. auto. intros. destruct B; auto. subst. auto.
inv H12.
assert (vargs0 = vargs) by (eapply annot_arguments_determ; eauto). subst vargs0.
exploit external_call_determ. eexact H5. eexact H13. intros [A B].
split. auto. intros. destruct B; auto. subst. auto.
assert (args0 = args) by (eapply extcall_arguments_determ; eauto). subst args0.
exploit external_call_determ. eexact H3. eexact H8. intros [A B].
split. auto. intros. destruct B; auto. subst. auto.
(* trace length *)
inv H; simpl.
omega.
eapply external_call_trace_length; eauto.
eapply external_call_trace_length; eauto.
eapply external_call_trace_length; eauto.
(* initial states *)
inv H; inv H0. f_equal. congruence.
(* final no step *)
inv H. unfold Vzero in H0. red; intros; red; intros. inv H; congruence.
(* final states *)
inv H; inv H0. congruence.
Qed.
|