summaryrefslogtreecommitdiff
path: root/lib/Maps.v
blob: 6969091818fb0892bf3d6d2fb5e4ddbf8703985e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
(** Applicative finite maps are the main data structure used in this
  project.  A finite map associates data to keys.  The two main operations
  are [set k d m], which returns a map identical to [m] except that [d]
  is associated to [k], and [get k m] which returns the data associated
  to key [k] in map [m].  In this library, we distinguish two kinds of maps:
- Trees: the [get] operation returns an option type, either [None]
  if no data is associated to the key, or [Some d] otherwise.
- Maps: the [get] operation always returns a data.  If no data was explicitly
  associated with the key, a default data provided at map initialization time
  is returned.

  In this library, we provide efficient implementations of trees and
  maps whose keys range over the type [positive] of binary positive
  integers or any type that can be injected into [positive].  The
  implementation is based on radix-2 search trees (uncompressed
  Patricia trees) and guarantees logarithmic-time operations.  An
  inefficient implementation of maps as functions is also provided.
*)

Require Import Coqlib.

Set Implicit Arguments.

(** * The abstract signatures of trees *)

Module Type TREE.
  Variable elt: Set.
  Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
  Variable t: Set -> Set.
  Variable eq: forall (A: Set), (forall (x y: A), {x=y} + {x<>y}) ->
                forall (a b: t A), {a = b} + {a <> b}.
  Variable empty: forall (A: Set), t A.
  Variable get: forall (A: Set), elt -> t A -> option A.
  Variable set: forall (A: Set), elt -> A -> t A -> t A.
  Variable remove: forall (A: Set), elt -> t A -> t A.

  (** The ``good variables'' properties for trees, expressing
    commutations between [get], [set] and [remove]. *)
  Hypothesis gempty:
    forall (A: Set) (i: elt), get i (empty A) = None.
  Hypothesis gss:
    forall (A: Set) (i: elt) (x: A) (m: t A), get i (set i x m) = Some x.
  Hypothesis gso:
    forall (A: Set) (i j: elt) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Hypothesis gsspec:
    forall (A: Set) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then Some x else get i m.
  Hypothesis gsident:
    forall (A: Set) (i: elt) (m: t A) (v: A),
    get i m = Some v -> set i v m = m.
  (* We could implement the following, but it's not needed for the moment.
    Hypothesis grident:
      forall (A: Set) (i: elt) (m: t A) (v: A),
      get i m = None -> remove i m = m.
  *)
  Hypothesis grs:
    forall (A: Set) (i: elt) (m: t A), get i (remove i m) = None.
  Hypothesis gro:
    forall (A: Set) (i j: elt) (m: t A),
    i <> j -> get i (remove j m) = get i m.

  (** Applying a function to all data of a tree. *)
  Variable map:
    forall (A B: Set), (elt -> A -> B) -> t A -> t B.
  Hypothesis gmap:
    forall (A B: Set) (f: elt -> A -> B) (i: elt) (m: t A),
    get i (map f m) = option_map (f i) (get i m).

  (** Applying a function pairwise to all data of two trees. *)
  Variable combine:
    forall (A: Set), (option A -> option A -> option A) -> t A -> t A -> t A.
  Hypothesis gcombine:
    forall (A: Set) (f: option A -> option A -> option A)
           (m1 m2: t A) (i: elt),
    f None None = None ->
    get i (combine f m1 m2) = f (get i m1) (get i m2).
  Hypothesis combine_commut:
    forall (A: Set) (f g: option A -> option A -> option A),
    (forall (i j: option A), f i j = g j i) ->
    forall (m1 m2: t A),
    combine f m1 m2 = combine g m2 m1.

  (** Enumerating the bindings of a tree. *)
  Variable elements:
    forall (A: Set), t A -> list (elt * A).
  Hypothesis elements_correct:
    forall (A: Set) (m: t A) (i: elt) (v: A),
    get i m = Some v -> In (i, v) (elements m).
  Hypothesis elements_complete:
    forall (A: Set) (m: t A) (i: elt) (v: A),
    In (i, v) (elements m) -> get i m = Some v.
  Hypothesis elements_keys_norepet:
    forall (A: Set) (m: t A), 
    list_norepet (List.map (@fst elt A) (elements m)).

  (** Folding a function over all bindings of a tree. *)
  Variable fold:
    forall (A B: Set), (B -> elt -> A -> B) -> t A -> B -> B.
  Hypothesis fold_spec:
    forall (A B: Set) (f: B -> elt -> A -> B) (v: B) (m: t A),
    fold f m v =
    List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
End TREE.

(** * The abstract signatures of maps *)

Module Type MAP.
  Variable elt: Set.
  Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
  Variable t: Set -> Set.
  Variable init: forall (A: Set), A -> t A.
  Variable get: forall (A: Set), elt -> t A -> A.
  Variable set: forall (A: Set), elt -> A -> t A -> t A.
  Hypothesis gi:
    forall (A: Set) (i: elt) (x: A), get i (init x) = x.
  Hypothesis gss:
    forall (A: Set) (i: elt) (x: A) (m: t A), get i (set i x m) = x.
  Hypothesis gso:
    forall (A: Set) (i j: elt) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Hypothesis gsspec:
    forall (A: Set) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then x else get i m.
  Hypothesis gsident:
    forall (A: Set) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
  Variable map: forall (A B: Set), (A -> B) -> t A -> t B.
  Hypothesis gmap:
    forall (A B: Set) (f: A -> B) (i: elt) (m: t A),
    get i (map f m) = f(get i m).
End MAP.

(** * An implementation of trees over type [positive] *)

Module PTree <: TREE.
  Definition elt := positive.
  Definition elt_eq := peq.

  Inductive tree (A : Set) : Set :=
    | Leaf : tree A
    | Node : tree A -> option A -> tree A -> tree A
  .
  Implicit Arguments Leaf [A].
  Implicit Arguments Node [A].

  Definition t := tree.

  Theorem eq : forall (A : Set),
    (forall (x y: A), {x=y} + {x<>y}) ->
    forall (a b : t A), {a = b} + {a <> b}.
  Proof.
    intros A eqA.
    decide equality.
    generalize o o0; decide equality.
  Qed.

  Definition empty (A : Set) := (Leaf : t A).

  Fixpoint get (A : Set) (i : positive) (m : t A) {struct i} : option A :=
    match m with
    | Leaf => None
    | Node l o r =>
        match i with
        | xH => o
        | xO ii => get ii l
        | xI ii => get ii r
        end
    end.

  Fixpoint set (A : Set) (i : positive) (v : A) (m : t A) {struct i} : t A :=
    match m with
    | Leaf =>
        match i with
        | xH => Node Leaf (Some v) Leaf
        | xO ii => Node (set ii v Leaf) None Leaf
        | xI ii => Node Leaf None (set ii v Leaf)
        end
    | Node l o r =>
        match i with
        | xH => Node l (Some v) r
        | xO ii => Node (set ii v l) o r
        | xI ii => Node l o (set ii v r)
        end
    end.

  Fixpoint remove (A : Set) (i : positive) (m : t A) {struct i} : t A :=
    match i with
    | xH =>
        match m with
        | Leaf => Leaf
        | Node Leaf o Leaf => Leaf
        | Node l o r => Node l None r
        end
    | xO ii =>
        match m with
        | Leaf => Leaf
        | Node l None Leaf =>
            match remove ii l with
            | Leaf => Leaf
            | mm => Node mm None Leaf
            end
        | Node l o r => Node (remove ii l) o r
        end
    | xI ii =>
        match m with
        | Leaf => Leaf
        | Node Leaf None r =>
            match remove ii r with
            | Leaf => Leaf
            | mm => Node Leaf None mm
            end
        | Node l o r => Node l o (remove ii r)
        end
    end.

  Theorem gempty:
    forall (A: Set) (i: positive), get i (empty A) = None.
  Proof.
    induction i; simpl; auto.
  Qed.

  Theorem gss:
    forall (A: Set) (i: positive) (x: A) (m: t A), get i (set i x m) = Some x.
  Proof.
    induction i; destruct m; simpl; auto.
  Qed.

    Lemma gleaf : forall (A : Set) (i : positive), get i (Leaf : t A) = None.
    Proof. exact gempty. Qed.

  Theorem gso:
    forall (A: Set) (i j: positive) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Proof.
    induction i; intros; destruct j; destruct m; simpl;
       try rewrite <- (gleaf A i); auto; try apply IHi; congruence.
  Qed.

  Theorem gsspec:
    forall (A: Set) (i j: positive) (x: A) (m: t A),
    get i (set j x m) = if peq i j then Some x else get i m.
  Proof.
    intros.
    destruct (peq i j); [ rewrite e; apply gss | apply gso; auto ].
  Qed.

  Theorem gsident:
    forall (A: Set) (i: positive) (m: t A) (v: A),
    get i m = Some v -> set i v m = m.
  Proof.
    induction i; intros; destruct m; simpl; simpl in H; try congruence.
     rewrite (IHi m2 v H); congruence.
     rewrite (IHi m1 v H); congruence.
  Qed.

    Lemma rleaf : forall (A : Set) (i : positive), remove i (Leaf : t A) = Leaf.
    Proof. destruct i; simpl; auto. Qed.

  Theorem grs:
    forall (A: Set) (i: positive) (m: t A), get i (remove i m) = None.
  Proof.
    induction i; destruct m.
     simpl; auto.
     destruct m1; destruct o; destruct m2 as [ | ll oo rr]; simpl; auto.
      rewrite (rleaf A i); auto.
      cut (get i (remove i (Node ll oo rr)) = None).
        destruct (remove i (Node ll oo rr)); auto; apply IHi.
        apply IHi.
     simpl; auto.
     destruct m1 as [ | ll oo rr]; destruct o; destruct m2; simpl; auto.
      rewrite (rleaf A i); auto.
      cut (get i (remove i (Node ll oo rr)) = None).
        destruct (remove i (Node ll oo rr)); auto; apply IHi.
        apply IHi.
     simpl; auto.
     destruct m1; destruct m2; simpl; auto.
  Qed.

  Theorem gro:
    forall (A: Set) (i j: positive) (m: t A),
    i <> j -> get i (remove j m) = get i m.
  Proof.
    induction i; intros; destruct j; destruct m;
        try rewrite (rleaf A (xI j));
        try rewrite (rleaf A (xO j));
        try rewrite (rleaf A 1); auto;
        destruct m1; destruct o; destruct m2;
        simpl;
        try apply IHi; try congruence;
        try rewrite (rleaf A j); auto;
        try rewrite (gleaf A i); auto.
     cut (get i (remove j (Node m2_1 o m2_2)) = get i (Node m2_1 o m2_2));
        [ destruct (remove j (Node m2_1 o m2_2)); try rewrite (gleaf A i); auto
        | apply IHi; congruence ].
     destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf A i);
        auto.
     destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf A i);
        auto.
     cut (get i (remove j (Node m1_1 o0 m1_2)) = get i (Node m1_1 o0 m1_2));
        [ destruct (remove j (Node m1_1 o0 m1_2)); try rewrite (gleaf A i); auto
        | apply IHi; congruence ].
     destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf A i);
        auto.
     destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf A i);
        auto.
  Qed.

    Fixpoint append (i j : positive) {struct i} : positive :=
      match i with
      | xH => j
      | xI ii => xI (append ii j)
      | xO ii => xO (append ii j)
      end.

    Lemma append_assoc_0 : forall (i j : positive),
                           append i (xO j) = append (append i (xO xH)) j.
    Proof.
      induction i; intros; destruct j; simpl;
      try rewrite (IHi (xI j));
      try rewrite (IHi (xO j));
      try rewrite <- (IHi xH);
      auto.
    Qed.

    Lemma append_assoc_1 : forall (i j : positive),
                           append i (xI j) = append (append i (xI xH)) j.
    Proof.
      induction i; intros; destruct j; simpl;
      try rewrite (IHi (xI j));
      try rewrite (IHi (xO j));
      try rewrite <- (IHi xH);
      auto.
    Qed.

    Lemma append_neutral_r : forall (i : positive), append i xH = i.
    Proof.
      induction i; simpl; congruence.
    Qed.

    Lemma append_neutral_l : forall (i : positive), append xH i = i.
    Proof.
      simpl; auto.
    Qed.

    Fixpoint xmap (A B : Set) (f : positive -> A -> B) (m : t A) (i : positive)
             {struct m} : t B :=
      match m with
      | Leaf => Leaf
      | Node l o r => Node (xmap f l (append i (xO xH)))
                           (option_map (f i) o)
                           (xmap f r (append i (xI xH)))
      end.

  Definition map (A B : Set) (f : positive -> A -> B) m := xmap f m xH.

    Lemma xgmap:
      forall (A B: Set) (f: positive -> A -> B) (i j : positive) (m: t A),
      get i (xmap f m j) = option_map (f (append j i)) (get i m).
    Proof.
      induction i; intros; destruct m; simpl; auto.
      rewrite (append_assoc_1 j i); apply IHi.
      rewrite (append_assoc_0 j i); apply IHi.
      rewrite (append_neutral_r j); auto.
    Qed.

  Theorem gmap:
    forall (A B: Set) (f: positive -> A -> B) (i: positive) (m: t A),
    get i (map f m) = option_map (f i) (get i m).
  Proof.
    intros.
    unfold map.
    replace (f i) with (f (append xH i)).
    apply xgmap.
    rewrite append_neutral_l; auto.
  Qed.

    Fixpoint xcombine_l (A : Set) (f : option A -> option A -> option A)
                       (m : t A) {struct m} : t A :=
      match m with
      | Leaf => Leaf
      | Node l o r => Node (xcombine_l f l) (f o None) (xcombine_l f r)
      end.

    Lemma xgcombine_l :
          forall (A : Set) (f : option A -> option A -> option A)
                 (i : positive) (m : t A),
          f None None = None -> get i (xcombine_l f m) = f (get i m) None.
    Proof.
      induction i; intros; destruct m; simpl; auto.
    Qed.

    Fixpoint xcombine_r (A : Set) (f : option A -> option A -> option A)
                       (m : t A) {struct m} : t A :=
      match m with
      | Leaf => Leaf
      | Node l o r => Node (xcombine_r f l) (f None o) (xcombine_r f r)
      end.

    Lemma xgcombine_r :
          forall (A : Set) (f : option A -> option A -> option A)
                 (i : positive) (m : t A),
          f None None = None -> get i (xcombine_r f m) = f None (get i m).
    Proof.
      induction i; intros; destruct m; simpl; auto.
    Qed.

  Fixpoint combine (A : Set) (f : option A -> option A -> option A)
                   (m1 m2 : t A) {struct m1} : t A :=
    match m1 with
    | Leaf => xcombine_r f m2
    | Node l1 o1 r1 =>
        match m2 with
        | Leaf => xcombine_l f m1
        | Node l2 o2 r2 => Node (combine f l1 l2) (f o1 o2) (combine f r1 r2)
        end
    end.

    Lemma xgcombine:
      forall (A: Set) (f: option A -> option A -> option A) (i: positive)
             (m1 m2: t A),
      f None None = None ->
      get i (combine f m1 m2) = f (get i m1) (get i m2).
    Proof.
      induction i; intros; destruct m1; destruct m2; simpl; auto;
      try apply xgcombine_r; try apply xgcombine_l; auto.
    Qed.

  Theorem gcombine:
    forall (A: Set) (f: option A -> option A -> option A)
           (m1 m2: t A) (i: positive),
    f None None = None ->
    get i (combine f m1 m2) = f (get i m1) (get i m2).
  Proof.
    intros A f m1 m2 i H; exact (xgcombine f i m1 m2 H).
  Qed.

    Lemma xcombine_lr :
      forall (A : Set) (f g : option A -> option A -> option A) (m : t A),
      (forall (i j : option A), f i j = g j i) ->
      xcombine_l f m = xcombine_r g m.
    Proof.
      induction m; intros; simpl; auto.
      rewrite IHm1; auto.
      rewrite IHm2; auto.
      rewrite H; auto.
    Qed.

  Theorem combine_commut:
    forall (A: Set) (f g: option A -> option A -> option A),
    (forall (i j: option A), f i j = g j i) ->
    forall (m1 m2: t A),
    combine f m1 m2 = combine g m2 m1.
  Proof.
    intros A f g EQ1.
    assert (EQ2: forall (i j: option A), g i j = f j i).
      intros; auto.
    induction m1; intros; destruct m2; simpl;
      try rewrite EQ1;
      repeat rewrite (xcombine_lr f g);
      repeat rewrite (xcombine_lr g f);
      auto.
     rewrite IHm1_1.
     rewrite IHm1_2.
     auto. 
  Qed.

    Fixpoint xelements (A : Set) (m : t A) (i : positive) {struct m}
             : list (positive * A) :=
      match m with
      | Leaf => nil
      | Node l None r =>
          (xelements l (append i (xO xH))) ++ (xelements r (append i (xI xH)))
      | Node l (Some x) r =>
          (xelements l (append i (xO xH)))
          ++ ((i, x) :: xelements r (append i (xI xH)))
      end.

  (* Note: function [xelements] above is inefficient.  We should apply
     deforestation to it, but that makes the proofs even harder. *)

  Definition elements A (m : t A) := xelements m xH.

    Lemma xelements_correct:
      forall (A: Set) (m: t A) (i j : positive) (v: A),
      get i m = Some v -> In (append j i, v) (xelements m j).
    Proof.
      induction m; intros.
       rewrite (gleaf A i) in H; congruence.
       destruct o; destruct i; simpl; simpl in H.
        rewrite append_assoc_1; apply in_or_app; right; apply in_cons;
          apply IHm2; auto.
        rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
        rewrite append_neutral_r; apply in_or_app; injection H;
          intro EQ; rewrite EQ; right; apply in_eq.
        rewrite append_assoc_1; apply in_or_app; right; apply IHm2; auto.
        rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
        congruence.
    Qed.

  Theorem elements_correct:
    forall (A: Set) (m: t A) (i: positive) (v: A),
    get i m = Some v -> In (i, v) (elements m).
  Proof.
    intros A m i v H.
    exact (xelements_correct m i xH H).
  Qed.

    Fixpoint xget (A : Set) (i j : positive) (m : t A) {struct j} : option A :=
      match i, j with
      | _, xH => get i m
      | xO ii, xO jj => xget ii jj m
      | xI ii, xI jj => xget ii jj m
      | _, _ => None
      end.

    Lemma xget_left :
      forall (A : Set) (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
      xget i (append j (xO xH)) m1 = Some v -> xget i j (Node m1 o m2) = Some v.
    Proof.
      induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
      destruct i; congruence.
    Qed.

    Lemma xelements_ii :
      forall (A: Set) (m: t A) (i j : positive) (v: A),
      In (xI i, v) (xelements m (xI j)) -> In (i, v) (xelements m j).
    Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
         apply in_or_app.
        left; apply IHm1; auto.
        right; destruct (in_inv H0).
         injection H1; intros EQ1 EQ2; rewrite EQ1; rewrite EQ2; apply in_eq.
         apply in_cons; apply IHm2; auto.
        left; apply IHm1; auto.
        right; apply IHm2; auto.
    Qed.

    Lemma xelements_io :
      forall (A: Set) (m: t A) (i j : positive) (v: A),
      ~In (xI i, v) (xelements m (xO j)).
    Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        apply (IHm1 _ _ _ H0).
        destruct (in_inv H0).
         congruence.
         apply (IHm2 _ _ _ H1).
        apply (IHm1 _ _ _ H0).
        apply (IHm2 _ _ _ H0).
    Qed.

    Lemma xelements_oo :
      forall (A: Set) (m: t A) (i j : positive) (v: A),
      In (xO i, v) (xelements m (xO j)) -> In (i, v) (xelements m j).
    Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
         apply in_or_app.
        left; apply IHm1; auto.
        right; destruct (in_inv H0).
         injection H1; intros EQ1 EQ2; rewrite EQ1; rewrite EQ2; apply in_eq.
         apply in_cons; apply IHm2; auto.
        left; apply IHm1; auto.
        right; apply IHm2; auto.
    Qed.

    Lemma xelements_oi :
      forall (A: Set) (m: t A) (i j : positive) (v: A),
      ~In (xO i, v) (xelements m (xI j)).
    Proof.
      induction m.
       simpl; auto.
       intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        apply (IHm1 _ _ _ H0).
        destruct (in_inv H0).
         congruence.
         apply (IHm2 _ _ _ H1).
        apply (IHm1 _ _ _ H0).
        apply (IHm2 _ _ _ H0).
    Qed.

    Lemma xelements_ih :
      forall (A: Set) (m1 m2: t A) (o: option A) (i : positive) (v: A),
      In (xI i, v) (xelements (Node m1 o m2) xH) -> In (i, v) (xelements m2 xH).
    Proof.
      destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
        absurd (In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
        destruct (in_inv H0).
         congruence.
         apply xelements_ii; auto.
        absurd (In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
        apply xelements_ii; auto.
    Qed.

    Lemma xelements_oh :
      forall (A: Set) (m1 m2: t A) (o: option A) (i : positive) (v: A),
      In (xO i, v) (xelements (Node m1 o m2) xH) -> In (i, v) (xelements m1 xH).
    Proof.
      destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
        apply xelements_oo; auto.
        destruct (in_inv H0).
         congruence.
         absurd (In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
        apply xelements_oo; auto.
        absurd (In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
    Qed.

    Lemma xelements_hi :
      forall (A: Set) (m: t A) (i : positive) (v: A),
      ~In (xH, v) (xelements m (xI i)).
    Proof.
      induction m; intros.
       simpl; auto.
       destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        generalize H0; apply IHm1; auto.
        destruct (in_inv H0).
         congruence.
         generalize H1; apply IHm2; auto.
        generalize H0; apply IHm1; auto.
        generalize H0; apply IHm2; auto.
    Qed.

    Lemma xelements_ho :
      forall (A: Set) (m: t A) (i : positive) (v: A),
      ~In (xH, v) (xelements m (xO i)).
    Proof.
      induction m; intros.
       simpl; auto.
       destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
        generalize H0; apply IHm1; auto.
        destruct (in_inv H0).
         congruence.
         generalize H1; apply IHm2; auto.
        generalize H0; apply IHm1; auto.
        generalize H0; apply IHm2; auto.
    Qed.

    Lemma get_xget_h :
      forall (A: Set) (m: t A) (i: positive), get i m = xget i xH m.
    Proof.
      destruct i; simpl; auto.
    Qed.

    Lemma xelements_complete:
      forall (A: Set) (i j : positive) (m: t A) (v: A),
      In (i, v) (xelements m j) -> xget i j m = Some v.
    Proof.
      induction i; simpl; intros; destruct j; simpl.
       apply IHi; apply xelements_ii; auto.
       absurd (In (xI i, v) (xelements m (xO j))); auto; apply xelements_io.
       destruct m.
        simpl in H; tauto.
        rewrite get_xget_h. apply IHi. apply (xelements_ih _ _ _ _ _ H).
       absurd (In (xO i, v) (xelements m (xI j))); auto; apply xelements_oi.
       apply IHi; apply xelements_oo; auto.
       destruct m.
        simpl in H; tauto.
        rewrite get_xget_h. apply IHi. apply (xelements_oh _ _ _ _ _ H).
       absurd (In (xH, v) (xelements m (xI j))); auto; apply xelements_hi.
       absurd (In (xH, v) (xelements m (xO j))); auto; apply xelements_ho.
       destruct m.
        simpl in H; tauto.
        destruct o; simpl in H; destruct (in_app_or _ _ _ H).
         absurd (In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
         destruct (in_inv H0).
          congruence.
          absurd (In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
         absurd (In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
         absurd (In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
    Qed.

  Theorem elements_complete:
    forall (A: Set) (m: t A) (i: positive) (v: A),
    In (i, v) (elements m) -> get i m = Some v.
  Proof.
    intros A m i v H.
    unfold elements in H.
    rewrite get_xget_h.
    exact (xelements_complete i xH m v H).
  Qed.

  Lemma in_xelements:
    forall (A: Set) (m: t A) (i k: positive) (v: A),
    In (k, v) (xelements m i) ->
    exists j, k = append i j.
  Proof.
    induction m; simpl; intros.
    tauto.
    assert (k = i \/ In (k, v) (xelements m1 (append i 2))
                  \/ In (k, v) (xelements m2 (append i 3))).
      destruct o.
      elim (in_app_or _ _ _ H); simpl; intuition.
      replace k with i. tauto. congruence.
      elim (in_app_or _ _ _ H); simpl; intuition.
    elim H0; intro.
    exists xH. rewrite append_neutral_r. auto.
    elim H1; intro.
    elim (IHm1 _ _ _ H2). intros k1 EQ. rewrite EQ.
    rewrite <- append_assoc_0. exists (xO k1); auto.
    elim (IHm2 _ _ _ H2). intros k1 EQ. rewrite EQ.
    rewrite <- append_assoc_1. exists (xI k1); auto.
  Qed.

  Definition xkeys (A: Set) (m: t A) (i: positive) :=
    List.map (@fst positive A) (xelements m i).

  Lemma in_xkeys:
    forall (A: Set) (m: t A) (i k: positive),
    In k (xkeys m i) ->
    exists j, k = append i j.
  Proof.
    unfold xkeys; intros. 
    elim (list_in_map_inv _ _ _ H). intros [k1 v1] [EQ IN].
    simpl in EQ; subst k1. apply in_xelements with A m v1. auto.
  Qed.

  Remark list_append_cons_norepet:
    forall (A: Set) (l1 l2: list A) (x: A),
    list_norepet l1 -> list_norepet l2 -> list_disjoint l1 l2 ->
    ~In x l1 -> ~In x l2 ->
    list_norepet (l1 ++ x :: l2).
  Proof.
    intros. apply list_norepet_append_commut. simpl; constructor.
    red; intros. elim (in_app_or _ _ _ H4); intro; tauto.
    apply list_norepet_append; auto. 
    apply list_disjoint_sym; auto.
  Qed.

  Lemma append_injective:
    forall i j1 j2, append i j1 = append i j2 -> j1 = j2.
  Proof.
    induction i; simpl; intros.
    apply IHi. congruence.
    apply IHi. congruence.
    auto.
  Qed.

  Lemma xelements_keys_norepet:
    forall (A: Set) (m: t A) (i: positive),
    list_norepet (xkeys m i).
  Proof.
    induction m; unfold xkeys; simpl; fold xkeys; intros.
    constructor.
    assert (list_disjoint (xkeys m1 (append i 2)) (xkeys m2 (append i 3))).
      red; intros; red; intro. subst y. 
      elim (in_xkeys _ _ _ H); intros j1 EQ1.
      elim (in_xkeys _ _ _ H0); intros j2 EQ2.
      rewrite EQ1 in EQ2. 
      rewrite <- append_assoc_0 in EQ2. 
      rewrite <- append_assoc_1 in EQ2. 
      generalize (append_injective _ _ _ EQ2). congruence.
    assert (forall (m: t A) j,
            j = 2%positive \/ j = 3%positive ->
            ~In i (xkeys m (append i j))).
      intros; red; intros. 
      elim (in_xkeys _ _ _ H1); intros k EQ.
      assert (EQ1: append i xH = append (append i j) k).
        rewrite append_neutral_r. auto.
      elim H0; intro; subst j;
      try (rewrite <- append_assoc_0 in EQ1);
      try (rewrite <- append_assoc_1 in EQ1);
      generalize (append_injective _ _ _ EQ1); congruence.
    destruct o; rewrite list_append_map; simpl;
    change (List.map (@fst positive A) (xelements m1 (append i 2)))
      with (xkeys m1 (append i 2));
    change (List.map (@fst positive A) (xelements m2 (append i 3)))
      with (xkeys m2 (append i 3)).
    apply list_append_cons_norepet; auto. 
    apply list_norepet_append; auto.
  Qed.

  Theorem elements_keys_norepet:
    forall (A: Set) (m: t A), 
    list_norepet (List.map (@fst elt A) (elements m)).
  Proof.
    intros. change (list_norepet (xkeys m 1)). apply xelements_keys_norepet.
  Qed.

  Definition fold (A B : Set) (f: B -> positive -> A -> B) (tr: t A) (v: B) :=
     List.fold_left (fun a p => f a (fst p) (snd p)) (elements tr) v.

  Theorem fold_spec:
    forall (A B: Set) (f: B -> positive -> A -> B) (v: B) (m: t A),
    fold f m v =
    List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
  Proof.
    intros; unfold fold; auto.
  Qed.

End PTree.

(** * An implementation of maps over type [positive] *)

Module PMap <: MAP.
  Definition elt := positive.
  Definition elt_eq := peq.

  Definition t (A : Set) : Set := (A * PTree.t A)%type.

  Definition init (A : Set) (x : A) :=
    (x, PTree.empty A).

  Definition get (A : Set) (i : positive) (m : t A) :=
    match PTree.get i (snd m) with
    | Some x => x
    | None => fst m
    end.

  Definition set (A : Set) (i : positive) (x : A) (m : t A) :=
    (fst m, PTree.set i x (snd m)).

  Theorem gi:
    forall (A: Set) (i: positive) (x: A), get i (init x) = x.
  Proof.
    intros. unfold init. unfold get. simpl. rewrite PTree.gempty. auto.
  Qed.

  Theorem gss:
    forall (A: Set) (i: positive) (x: A) (m: t A), get i (set i x m) = x.
  Proof.
    intros. unfold get. unfold set. simpl. rewrite PTree.gss. auto.
  Qed.

  Theorem gso:
    forall (A: Set) (i j: positive) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Proof.
    intros. unfold get. unfold set. simpl. rewrite PTree.gso; auto.
  Qed.

  Theorem gsspec:
    forall (A: Set) (i j: positive) (x: A) (m: t A),
    get i (set j x m) = if peq i j then x else get i m.
  Proof.
    intros. destruct (peq i j).
     rewrite e. apply gss. auto.
     apply gso. auto.
  Qed.

  Theorem gsident:
    forall (A: Set) (i j: positive) (m: t A),
    get j (set i (get i m) m) = get j m.
  Proof.
    intros. destruct (peq i j).
     rewrite e. rewrite gss. auto.
     rewrite gso; auto.
  Qed.

  Definition map (A B : Set) (f : A -> B) (m : t A) : t B :=
    (f (fst m), PTree.map (fun _ => f) (snd m)).

  Theorem gmap:
    forall (A B: Set) (f: A -> B) (i: positive) (m: t A),
    get i (map f m) = f(get i m).
  Proof.
    intros. unfold map. unfold get. simpl. rewrite PTree.gmap.
    unfold option_map. destruct (PTree.get i (snd m)); auto.
  Qed.

End PMap.

(** * An implementation of maps over any type that injects into type [positive] *)

Module Type INDEXED_TYPE.
  Variable t: Set.
  Variable index: t -> positive.
  Hypothesis index_inj: forall (x y: t), index x = index y -> x = y.
  Variable eq: forall (x y: t), {x = y} + {x <> y}.
End INDEXED_TYPE.

Module IMap(X: INDEXED_TYPE).

  Definition elt := X.t.
  Definition elt_eq := X.eq.
  Definition t : Set -> Set := PMap.t.
  Definition init (A: Set) (x: A) := PMap.init x.
  Definition get (A: Set) (i: X.t) (m: t A) := PMap.get (X.index i) m.
  Definition set (A: Set) (i: X.t) (v: A) (m: t A) := PMap.set (X.index i) v m.
  Definition map (A B: Set) (f: A -> B) (m: t A) : t B := PMap.map f m.

  Lemma gi:
    forall (A: Set) (x: A) (i: X.t), get i (init x) = x.
  Proof.
    intros. unfold get, init. apply PMap.gi. 
  Qed.

  Lemma gss:
    forall (A: Set) (i: X.t) (x: A) (m: t A), get i (set i x m) = x.
  Proof.
    intros. unfold get, set. apply PMap.gss.
  Qed.

  Lemma gso:
    forall (A: Set) (i j: X.t) (x: A) (m: t A),
    i <> j -> get i (set j x m) = get i m.
  Proof.
    intros. unfold get, set. apply PMap.gso. 
    red. intro. apply H. apply X.index_inj; auto. 
  Qed.

  Lemma gsspec:
    forall (A: Set) (i j: X.t) (x: A) (m: t A),
    get i (set j x m) = if X.eq i j then x else get i m.
  Proof.
    intros. unfold get, set. 
    rewrite PMap.gsspec.
    case (X.eq i j); intro.
    subst j. rewrite peq_true. reflexivity.
    rewrite peq_false. reflexivity. 
    red; intro. elim n. apply X.index_inj; auto.
  Qed.

  Lemma gmap:
    forall (A B: Set) (f: A -> B) (i: X.t) (m: t A),
    get i (map f m) = f(get i m).
  Proof.
    intros. unfold map, get. apply PMap.gmap. 
  Qed.

End IMap.

Module ZIndexed.
  Definition t := Z.
  Definition index (z: Z): positive :=
    match z with
    | Z0 => xH
    | Zpos p => xO p
    | Zneg p => xI p
    end.
  Lemma index_inj: forall (x y: Z), index x = index y -> x = y.
  Proof.
    unfold index; destruct x; destruct y; intros;
    try discriminate; try reflexivity.
    congruence.
    congruence.
  Qed.
  Definition eq := zeq.
End ZIndexed.

Module ZMap := IMap(ZIndexed).

Module NIndexed.
  Definition t := N.
  Definition index (n: N): positive :=
    match n with
    | N0 => xH
    | Npos p => xO p
    end.
  Lemma index_inj: forall (x y: N), index x = index y -> x = y.
  Proof.
    unfold index; destruct x; destruct y; intros;
    try discriminate; try reflexivity.
    congruence.
  Qed.
  Lemma eq: forall (x y: N), {x = y} + {x <> y}.
  Proof.
    decide equality. apply peq.
  Qed.
End NIndexed.

Module NMap := IMap(NIndexed).

(** * An implementation of maps over any type with decidable equality *)

Module Type EQUALITY_TYPE.
  Variable t: Set.
  Variable eq: forall (x y: t), {x = y} + {x <> y}.
End EQUALITY_TYPE.

Module EMap(X: EQUALITY_TYPE) <: MAP.

  Definition elt := X.t.
  Definition elt_eq := X.eq.
  Definition t (A: Set) := X.t -> A.
  Definition init (A: Set) (v: A) := fun (_: X.t) => v.
  Definition get (A: Set) (x: X.t) (m: t A) := m x.
  Definition set (A: Set) (x: X.t) (v: A) (m: t A) :=
    fun (y: X.t) => if X.eq y x then v else m y.
  Lemma gi:
    forall (A: Set) (i: elt) (x: A), init x i = x.
  Proof.
    intros. reflexivity.
  Qed.
  Lemma gss:
    forall (A: Set) (i: elt) (x: A) (m: t A), (set i x m) i = x.
  Proof.
    intros. unfold set. case (X.eq i i); intro.
    reflexivity. tauto.
  Qed.
  Lemma gso:
    forall (A: Set) (i j: elt) (x: A) (m: t A),
    i <> j -> (set j x m) i = m i.
  Proof.
    intros. unfold set. case (X.eq i j); intro.
    congruence. reflexivity.
  Qed.
  Lemma gsspec:
    forall (A: Set) (i j: elt) (x: A) (m: t A),
    get i (set j x m) = if elt_eq i j then x else get i m.
  Proof.
    intros. unfold get, set, elt_eq. reflexivity.
  Qed.
  Lemma gsident:
    forall (A: Set) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
  Proof.
    intros. unfold get, set. case (X.eq j i); intro.
    congruence. reflexivity.
  Qed.
  Definition map (A B: Set) (f: A -> B) (m: t A) :=
    fun (x: X.t) => f(m x).
  Lemma gmap:
    forall (A B: Set) (f: A -> B) (i: elt) (m: t A),
    get i (map f m) = f(get i m).
  Proof.
    intros. unfold get, map. reflexivity.
  Qed.
  Lemma exten:
    forall (A: Set) (m1 m2: t A),
    (forall x: X.t, m1 x = m2 x) -> m1 = m2.
  Proof.
    intros. unfold t. apply extensionality. assumption.
  Qed.
End EMap.

(** * Useful notations *)

Notation "a ! b" := (PTree.get b a) (at level 1).
Notation "a !! b" := (PMap.get b a) (at level 1).

(* $Id: Maps.v,v 1.12.4.4 2006/01/07 11:46:55 xleroy Exp $ *)