1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Applicative finite maps are the main data structure used in this
project. A finite map associates data to keys. The two main operations
are [set k d m], which returns a map identical to [m] except that [d]
is associated to [k], and [get k m] which returns the data associated
to key [k] in map [m]. In this library, we distinguish two kinds of maps:
- Trees: the [get] operation returns an option type, either [None]
if no data is associated to the key, or [Some d] otherwise.
- Maps: the [get] operation always returns a data. If no data was explicitly
associated with the key, a default data provided at map initialization time
is returned.
In this library, we provide efficient implementations of trees and
maps whose keys range over the type [positive] of binary positive
integers or any type that can be injected into [positive]. The
implementation is based on radix-2 search trees (uncompressed
Patricia trees) and guarantees logarithmic-time operations. An
inefficient implementation of maps as functions is also provided.
*)
Require Import Equivalence EquivDec.
Require Import Coqlib.
(* To avoid useless definitions of inductors in extracted code. *)
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Set Implicit Arguments.
(** * The abstract signatures of trees *)
Module Type TREE.
Variable elt: Type.
Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
Variable t: Type -> Type.
Variable empty: forall (A: Type), t A.
Variable get: forall (A: Type), elt -> t A -> option A.
Variable set: forall (A: Type), elt -> A -> t A -> t A.
Variable remove: forall (A: Type), elt -> t A -> t A.
(** The ``good variables'' properties for trees, expressing
commutations between [get], [set] and [remove]. *)
Hypothesis gempty:
forall (A: Type) (i: elt), get i (empty A) = None.
Hypothesis gss:
forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = Some x.
Hypothesis gso:
forall (A: Type) (i j: elt) (x: A) (m: t A),
i <> j -> get i (set j x m) = get i m.
Hypothesis gsspec:
forall (A: Type) (i j: elt) (x: A) (m: t A),
get i (set j x m) = if elt_eq i j then Some x else get i m.
Hypothesis gsident:
forall (A: Type) (i: elt) (m: t A) (v: A),
get i m = Some v -> set i v m = m.
(* We could implement the following, but it's not needed for the moment.
Hypothesis grident:
forall (A: Type) (i: elt) (m: t A) (v: A),
get i m = None -> remove i m = m.
*)
Hypothesis grs:
forall (A: Type) (i: elt) (m: t A), get i (remove i m) = None.
Hypothesis gro:
forall (A: Type) (i j: elt) (m: t A),
i <> j -> get i (remove j m) = get i m.
Hypothesis grspec:
forall (A: Type) (i j: elt) (m: t A),
get i (remove j m) = if elt_eq i j then None else get i m.
(** Extensional equality between trees. *)
Variable beq: forall (A: Type), (A -> A -> bool) -> t A -> t A -> bool.
Hypothesis beq_correct:
forall (A: Type) (eqA: A -> A -> bool) (t1 t2: t A),
beq eqA t1 t2 = true <->
(forall (x: elt),
match get x t1, get x t2 with
| None, None => True
| Some y1, Some y2 => eqA y1 y2 = true
| _, _ => False
end).
(** Applying a function to all data of a tree. *)
Variable map:
forall (A B: Type), (elt -> A -> B) -> t A -> t B.
Hypothesis gmap:
forall (A B: Type) (f: elt -> A -> B) (i: elt) (m: t A),
get i (map f m) = option_map (f i) (get i m).
(** Same as [map], but the function does not receive the [elt] argument. *)
Variable map1:
forall (A B: Type), (A -> B) -> t A -> t B.
Hypothesis gmap1:
forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
get i (map1 f m) = option_map f (get i m).
(** Applying a function pairwise to all data of two trees. *)
Variable combine:
forall (A B C: Type), (option A -> option B -> option C) -> t A -> t B -> t C.
Hypothesis gcombine:
forall (A B C: Type) (f: option A -> option B -> option C),
f None None = None ->
forall (m1: t A) (m2: t B) (i: elt),
get i (combine f m1 m2) = f (get i m1) (get i m2).
Hypothesis combine_commut:
forall (A B: Type) (f g: option A -> option A -> option B),
(forall (i j: option A), f i j = g j i) ->
forall (m1 m2: t A),
combine f m1 m2 = combine g m2 m1.
(** Enumerating the bindings of a tree. *)
Variable elements:
forall (A: Type), t A -> list (elt * A).
Hypothesis elements_correct:
forall (A: Type) (m: t A) (i: elt) (v: A),
get i m = Some v -> In (i, v) (elements m).
Hypothesis elements_complete:
forall (A: Type) (m: t A) (i: elt) (v: A),
In (i, v) (elements m) -> get i m = Some v.
Hypothesis elements_keys_norepet:
forall (A: Type) (m: t A),
list_norepet (List.map (@fst elt A) (elements m)).
(** Folding a function over all bindings of a tree. *)
Variable fold:
forall (A B: Type), (B -> elt -> A -> B) -> t A -> B -> B.
Hypothesis fold_spec:
forall (A B: Type) (f: B -> elt -> A -> B) (v: B) (m: t A),
fold f m v =
List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
(** Same as [fold], but the function does not receive the [elt] argument. *)
Variable fold1:
forall (A B: Type), (B -> A -> B) -> t A -> B -> B.
Hypothesis fold1_spec:
forall (A B: Type) (f: B -> A -> B) (v: B) (m: t A),
fold1 f m v =
List.fold_left (fun a p => f a (snd p)) (elements m) v.
End TREE.
(** * The abstract signatures of maps *)
Module Type MAP.
Variable elt: Type.
Variable elt_eq: forall (a b: elt), {a = b} + {a <> b}.
Variable t: Type -> Type.
Variable init: forall (A: Type), A -> t A.
Variable get: forall (A: Type), elt -> t A -> A.
Variable set: forall (A: Type), elt -> A -> t A -> t A.
Hypothesis gi:
forall (A: Type) (i: elt) (x: A), get i (init x) = x.
Hypothesis gss:
forall (A: Type) (i: elt) (x: A) (m: t A), get i (set i x m) = x.
Hypothesis gso:
forall (A: Type) (i j: elt) (x: A) (m: t A),
i <> j -> get i (set j x m) = get i m.
Hypothesis gsspec:
forall (A: Type) (i j: elt) (x: A) (m: t A),
get i (set j x m) = if elt_eq i j then x else get i m.
Hypothesis gsident:
forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
Variable map: forall (A B: Type), (A -> B) -> t A -> t B.
Hypothesis gmap:
forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
get i (map f m) = f(get i m).
End MAP.
(** * An implementation of trees over type [positive] *)
Module PTree <: TREE.
Definition elt := positive.
Definition elt_eq := peq.
Inductive tree (A : Type) : Type :=
| Leaf : tree A
| Node : tree A -> option A -> tree A -> tree A.
Implicit Arguments Leaf [A].
Implicit Arguments Node [A].
Scheme tree_ind := Induction for tree Sort Prop.
Definition t := tree.
Definition empty (A : Type) := (Leaf : t A).
Fixpoint get (A : Type) (i : positive) (m : t A) {struct i} : option A :=
match m with
| Leaf => None
| Node l o r =>
match i with
| xH => o
| xO ii => get ii l
| xI ii => get ii r
end
end.
Fixpoint set (A : Type) (i : positive) (v : A) (m : t A) {struct i} : t A :=
match m with
| Leaf =>
match i with
| xH => Node Leaf (Some v) Leaf
| xO ii => Node (set ii v Leaf) None Leaf
| xI ii => Node Leaf None (set ii v Leaf)
end
| Node l o r =>
match i with
| xH => Node l (Some v) r
| xO ii => Node (set ii v l) o r
| xI ii => Node l o (set ii v r)
end
end.
Fixpoint remove (A : Type) (i : positive) (m : t A) {struct i} : t A :=
match i with
| xH =>
match m with
| Leaf => Leaf
| Node Leaf o Leaf => Leaf
| Node l o r => Node l None r
end
| xO ii =>
match m with
| Leaf => Leaf
| Node l None Leaf =>
match remove ii l with
| Leaf => Leaf
| mm => Node mm None Leaf
end
| Node l o r => Node (remove ii l) o r
end
| xI ii =>
match m with
| Leaf => Leaf
| Node Leaf None r =>
match remove ii r with
| Leaf => Leaf
| mm => Node Leaf None mm
end
| Node l o r => Node l o (remove ii r)
end
end.
Theorem gempty:
forall (A: Type) (i: positive), get i (empty A) = None.
Proof.
induction i; simpl; auto.
Qed.
Theorem gss:
forall (A: Type) (i: positive) (x: A) (m: t A), get i (set i x m) = Some x.
Proof.
induction i; destruct m; simpl; auto.
Qed.
Lemma gleaf : forall (A : Type) (i : positive), get i (Leaf : t A) = None.
Proof. exact gempty. Qed.
Theorem gso:
forall (A: Type) (i j: positive) (x: A) (m: t A),
i <> j -> get i (set j x m) = get i m.
Proof.
induction i; intros; destruct j; destruct m; simpl;
try rewrite <- (gleaf A i); auto; try apply IHi; congruence.
Qed.
Theorem gsspec:
forall (A: Type) (i j: positive) (x: A) (m: t A),
get i (set j x m) = if peq i j then Some x else get i m.
Proof.
intros.
destruct (peq i j); [ rewrite e; apply gss | apply gso; auto ].
Qed.
Theorem gsident:
forall (A: Type) (i: positive) (m: t A) (v: A),
get i m = Some v -> set i v m = m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
rewrite (IHi m2 v H); congruence.
rewrite (IHi m1 v H); congruence.
Qed.
Theorem set2:
forall (A: Type) (i: elt) (m: t A) (v1 v2: A),
set i v2 (set i v1 m) = set i v2 m.
Proof.
induction i; intros; destruct m; simpl; try (rewrite IHi); auto.
Qed.
Lemma rleaf : forall (A : Type) (i : positive), remove i (Leaf : t A) = Leaf.
Proof. destruct i; simpl; auto. Qed.
Theorem grs:
forall (A: Type) (i: positive) (m: t A), get i (remove i m) = None.
Proof.
induction i; destruct m.
simpl; auto.
destruct m1; destruct o; destruct m2 as [ | ll oo rr]; simpl; auto.
rewrite (rleaf A i); auto.
cut (get i (remove i (Node ll oo rr)) = None).
destruct (remove i (Node ll oo rr)); auto; apply IHi.
apply IHi.
simpl; auto.
destruct m1 as [ | ll oo rr]; destruct o; destruct m2; simpl; auto.
rewrite (rleaf A i); auto.
cut (get i (remove i (Node ll oo rr)) = None).
destruct (remove i (Node ll oo rr)); auto; apply IHi.
apply IHi.
simpl; auto.
destruct m1; destruct m2; simpl; auto.
Qed.
Theorem gro:
forall (A: Type) (i j: positive) (m: t A),
i <> j -> get i (remove j m) = get i m.
Proof.
induction i; intros; destruct j; destruct m;
try rewrite (rleaf A (xI j));
try rewrite (rleaf A (xO j));
try rewrite (rleaf A 1); auto;
destruct m1; destruct o; destruct m2;
simpl;
try apply IHi; try congruence;
try rewrite (rleaf A j); auto;
try rewrite (gleaf A i); auto.
cut (get i (remove j (Node m2_1 o m2_2)) = get i (Node m2_1 o m2_2));
[ destruct (remove j (Node m2_1 o m2_2)); try rewrite (gleaf A i); auto
| apply IHi; congruence ].
destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf A i);
auto.
destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf A i);
auto.
cut (get i (remove j (Node m1_1 o0 m1_2)) = get i (Node m1_1 o0 m1_2));
[ destruct (remove j (Node m1_1 o0 m1_2)); try rewrite (gleaf A i); auto
| apply IHi; congruence ].
destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf A i);
auto.
destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf A i);
auto.
Qed.
Theorem grspec:
forall (A: Type) (i j: elt) (m: t A),
get i (remove j m) = if elt_eq i j then None else get i m.
Proof.
intros. destruct (elt_eq i j). subst j. apply grs. apply gro; auto.
Qed.
Section BOOLEAN_EQUALITY.
Variable A: Type.
Variable beqA: A -> A -> bool.
Fixpoint bempty (m: t A) : bool :=
match m with
| Leaf => true
| Node l None r => bempty l && bempty r
| Node l (Some _) r => false
end.
Fixpoint beq (m1 m2: t A) {struct m1} : bool :=
match m1, m2 with
| Leaf, _ => bempty m2
| _, Leaf => bempty m1
| Node l1 o1 r1, Node l2 o2 r2 =>
match o1, o2 with
| None, None => true
| Some y1, Some y2 => beqA y1 y2
| _, _ => false
end
&& beq l1 l2 && beq r1 r2
end.
Lemma bempty_correct:
forall m, bempty m = true <-> (forall x, get x m = None).
Proof.
induction m; simpl.
split; intros. apply gleaf. auto.
destruct o; split; intros.
congruence.
generalize (H xH); simpl; congruence.
destruct (andb_prop _ _ H). rewrite IHm1 in H0. rewrite IHm2 in H1.
destruct x; simpl; auto.
apply andb_true_intro; split.
apply IHm1. intros; apply (H (xO x)).
apply IHm2. intros; apply (H (xI x)).
Qed.
Lemma beq_correct:
forall m1 m2,
beq m1 m2 = true <->
(forall (x: elt),
match get x m1, get x m2 with
| None, None => True
| Some y1, Some y2 => beqA y1 y2 = true
| _, _ => False
end).
Proof.
induction m1; intros.
- simpl. rewrite bempty_correct. split; intros.
rewrite gleaf. rewrite H. auto.
generalize (H x). rewrite gleaf. destruct (get x m2); tauto.
- destruct m2.
+ unfold beq. rewrite bempty_correct. split; intros.
rewrite H. rewrite gleaf. auto.
generalize (H x). rewrite gleaf. destruct (get x (Node m1_1 o m1_2)); tauto.
+ simpl. split; intros.
* destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0).
rewrite IHm1_1 in H3. rewrite IHm1_2 in H1.
destruct x; simpl. apply H1. apply H3.
destruct o; destruct o0; auto || congruence.
* apply andb_true_intro. split. apply andb_true_intro. split.
generalize (H xH); simpl. destruct o; destruct o0; tauto.
apply IHm1_1. intros; apply (H (xO x)).
apply IHm1_2. intros; apply (H (xI x)).
Qed.
End BOOLEAN_EQUALITY.
Fixpoint append (i j : positive) {struct i} : positive :=
match i with
| xH => j
| xI ii => xI (append ii j)
| xO ii => xO (append ii j)
end.
Lemma append_assoc_0 : forall (i j : positive),
append i (xO j) = append (append i (xO xH)) j.
Proof.
induction i; intros; destruct j; simpl;
try rewrite (IHi (xI j));
try rewrite (IHi (xO j));
try rewrite <- (IHi xH);
auto.
Qed.
Lemma append_assoc_1 : forall (i j : positive),
append i (xI j) = append (append i (xI xH)) j.
Proof.
induction i; intros; destruct j; simpl;
try rewrite (IHi (xI j));
try rewrite (IHi (xO j));
try rewrite <- (IHi xH);
auto.
Qed.
Lemma append_neutral_r : forall (i : positive), append i xH = i.
Proof.
induction i; simpl; congruence.
Qed.
Lemma append_neutral_l : forall (i : positive), append xH i = i.
Proof.
simpl; auto.
Qed.
Fixpoint xmap (A B : Type) (f : positive -> A -> B) (m : t A) (i : positive)
{struct m} : t B :=
match m with
| Leaf => Leaf
| Node l o r => Node (xmap f l (append i (xO xH)))
(option_map (f i) o)
(xmap f r (append i (xI xH)))
end.
Definition map (A B : Type) (f : positive -> A -> B) m := xmap f m xH.
Lemma xgmap:
forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A),
get i (xmap f m j) = option_map (f (append j i)) (get i m).
Proof.
induction i; intros; destruct m; simpl; auto.
rewrite (append_assoc_1 j i); apply IHi.
rewrite (append_assoc_0 j i); apply IHi.
rewrite (append_neutral_r j); auto.
Qed.
Theorem gmap:
forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A),
get i (map f m) = option_map (f i) (get i m).
Proof.
intros.
unfold map.
replace (f i) with (f (append xH i)).
apply xgmap.
rewrite append_neutral_l; auto.
Qed.
Fixpoint map1 (A B: Type) (f: A -> B) (m: t A) {struct m} : t B :=
match m with
| Leaf => Leaf
| Node l o r => Node (map1 f l) (option_map f o) (map1 f r)
end.
Theorem gmap1:
forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
get i (map1 f m) = option_map f (get i m).
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Definition Node' (A: Type) (l: t A) (x: option A) (r: t A): t A :=
match l, x, r with
| Leaf, None, Leaf => Leaf
| _, _, _ => Node l x r
end.
Lemma gnode':
forall (A: Type) (l r: t A) (x: option A) (i: positive),
get i (Node' l x r) = get i (Node l x r).
Proof.
intros. unfold Node'.
destruct l; destruct x; destruct r; auto.
destruct i; simpl; auto; rewrite gleaf; auto.
Qed.
Fixpoint filter1 (A: Type) (pred: A -> bool) (m: t A) {struct m} : t A :=
match m with
| Leaf => Leaf
| Node l o r =>
let o' := match o with None => None | Some x => if pred x then o else None end in
Node' (filter1 pred l) o' (filter1 pred r)
end.
Theorem gfilter1:
forall (A: Type) (pred: A -> bool) (i: elt) (m: t A),
get i (filter1 pred m) =
match get i m with None => None | Some x => if pred x then Some x else None end.
Proof.
intros until m. revert m i. induction m; simpl; intros.
rewrite gleaf; auto.
rewrite gnode'. destruct i; simpl; auto. destruct o; auto.
Qed.
Section COMBINE.
Variables A B C: Type.
Variable f: option A -> option B -> option C.
Hypothesis f_none_none: f None None = None.
Fixpoint xcombine_l (m : t A) {struct m} : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node' (xcombine_l l) (f o None) (xcombine_l r)
end.
Lemma xgcombine_l :
forall (m: t A) (i : positive),
get i (xcombine_l m) = f (get i m) None.
Proof.
induction m; intros; simpl.
repeat rewrite gleaf. auto.
rewrite gnode'. destruct i; simpl; auto.
Qed.
Fixpoint xcombine_r (m : t B) {struct m} : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node' (xcombine_r l) (f None o) (xcombine_r r)
end.
Lemma xgcombine_r :
forall (m: t B) (i : positive),
get i (xcombine_r m) = f None (get i m).
Proof.
induction m; intros; simpl.
repeat rewrite gleaf. auto.
rewrite gnode'. destruct i; simpl; auto.
Qed.
Fixpoint combine (m1: t A) (m2: t B) {struct m1} : t C :=
match m1 with
| Leaf => xcombine_r m2
| Node l1 o1 r1 =>
match m2 with
| Leaf => xcombine_l m1
| Node l2 o2 r2 => Node' (combine l1 l2) (f o1 o2) (combine r1 r2)
end
end.
Theorem gcombine:
forall (m1: t A) (m2: t B) (i: positive),
get i (combine m1 m2) = f (get i m1) (get i m2).
Proof.
induction m1; intros; simpl.
rewrite gleaf. apply xgcombine_r.
destruct m2; simpl.
rewrite gleaf. rewrite <- xgcombine_l. auto.
repeat rewrite gnode'. destruct i; simpl; auto.
Qed.
End COMBINE.
Lemma xcombine_lr :
forall (A B: Type) (f g : option A -> option A -> option B) (m : t A),
(forall (i j : option A), f i j = g j i) ->
xcombine_l f m = xcombine_r g m.
Proof.
induction m; intros; simpl; auto.
rewrite IHm1; auto.
rewrite IHm2; auto.
rewrite H; auto.
Qed.
Theorem combine_commut:
forall (A B: Type) (f g: option A -> option A -> option B),
(forall (i j: option A), f i j = g j i) ->
forall (m1 m2: t A),
combine f m1 m2 = combine g m2 m1.
Proof.
intros A B f g EQ1.
assert (EQ2: forall (i j: option A), g i j = f j i).
intros; auto.
induction m1; intros; destruct m2; simpl;
try rewrite EQ1;
repeat rewrite (xcombine_lr f g);
repeat rewrite (xcombine_lr g f);
auto.
rewrite IHm1_1.
rewrite IHm1_2.
auto.
Qed.
Fixpoint xelements (A : Type) (m : t A) (i : positive)
(k: list (positive * A)) {struct m}
: list (positive * A) :=
match m with
| Leaf => k
| Node l None r =>
xelements l (append i (xO xH)) (xelements r (append i (xI xH)) k)
| Node l (Some x) r =>
xelements l (append i (xO xH))
((i, x) :: xelements r (append i (xI xH)) k)
end.
Definition elements (A: Type) (m : t A) := xelements m xH nil.
Lemma xelements_incl:
forall (A: Type) (m: t A) (i : positive) k x,
In x k -> In x (xelements m i k).
Proof.
induction m; intros; simpl.
auto.
destruct o.
apply IHm1. simpl; right; auto.
auto.
Qed.
Lemma xelements_correct:
forall (A: Type) (m: t A) (i j : positive) (v: A) k,
get i m = Some v -> In (append j i, v) (xelements m j k).
Proof.
induction m; intros.
rewrite (gleaf A i) in H; congruence.
destruct o; destruct i; simpl; simpl in H.
rewrite append_assoc_1. apply xelements_incl. right. auto.
rewrite append_assoc_0. auto.
inv H. apply xelements_incl. left. rewrite append_neutral_r; auto.
rewrite append_assoc_1. apply xelements_incl. auto.
rewrite append_assoc_0. auto.
inv H.
Qed.
Theorem elements_correct:
forall (A: Type) (m: t A) (i: positive) (v: A),
get i m = Some v -> In (i, v) (elements m).
Proof.
intros A m i v H.
exact (xelements_correct m i xH nil H).
Qed.
Fixpoint xget (A : Type) (i j : positive) (m : t A) {struct j} : option A :=
match i, j with
| _, xH => get i m
| xO ii, xO jj => xget ii jj m
| xI ii, xI jj => xget ii jj m
| _, _ => None
end.
Lemma xget_diag :
forall (A : Type) (i : positive) (m1 m2 : t A) (o : option A),
xget i i (Node m1 o m2) = o.
Proof.
induction i; intros; simpl; auto.
Qed.
Lemma xget_left :
forall (A : Type) (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
xget i (append j (xO xH)) m1 = Some v -> xget i j (Node m1 o m2) = Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
destruct i; congruence.
Qed.
Lemma xget_right :
forall (A : Type) (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
xget i (append j (xI xH)) m2 = Some v -> xget i j (Node m1 o m2) = Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
destruct i; congruence.
Qed.
Lemma xelements_complete:
forall (A: Type) (m: t A) (i j : positive) (v: A) k,
In (i, v) (xelements m j k) -> xget i j m = Some v \/ In (i, v) k.
Proof.
induction m; simpl; intros.
auto.
destruct o.
edestruct IHm1; eauto. left; apply xget_left; auto.
destruct H0. inv H0. left; apply xget_diag.
edestruct IHm2; eauto. left; apply xget_right; auto.
edestruct IHm1; eauto. left; apply xget_left; auto.
edestruct IHm2; eauto. left; apply xget_right; auto.
Qed.
Lemma get_xget_h :
forall (A: Type) (m: t A) (i: positive), get i m = xget i xH m.
Proof.
destruct i; simpl; auto.
Qed.
Theorem elements_complete:
forall (A: Type) (m: t A) (i: positive) (v: A),
In (i, v) (elements m) -> get i m = Some v.
Proof.
intros A m i v H. unfold elements in H.
edestruct xelements_complete; eauto.
rewrite get_xget_h. auto.
contradiction.
Qed.
Lemma in_xelements:
forall (A: Type) (m: t A) (i k: positive) (v: A) l,
In (k, v) (xelements m i l) ->
(exists j, k = append i j) \/ In (k, v) l.
Proof.
induction m; simpl; intros.
auto.
destruct o.
edestruct IHm1 as [[j EQ] | IN]; eauto.
rewrite <- append_assoc_0 in EQ. left; econstructor; eauto.
destruct IN.
inv H0. left; exists xH; symmetry; apply append_neutral_r.
edestruct IHm2 as [[j EQ] | IN]; eauto.
rewrite <- append_assoc_1 in EQ. left; econstructor; eauto.
edestruct IHm1 as [[j EQ] | IN]; eauto.
rewrite <- append_assoc_0 in EQ. left; econstructor; eauto.
edestruct IHm2 as [[j EQ] | IN']; eauto.
rewrite <- append_assoc_1 in EQ. left; econstructor; eauto.
Qed.
Definition xkeys (A: Type) (m: t A) (i: positive) (l: list (positive * A)) :=
List.map (@fst positive A) (xelements m i l).
Lemma in_xkeys:
forall (A: Type) (m: t A) (i k: positive) l,
In k (xkeys m i l) ->
(exists j, k = append i j) \/ In k (List.map fst l).
Proof.
unfold xkeys; intros.
exploit list_in_map_inv; eauto. intros [[k1 v1] [EQ IN]].
simpl in EQ; subst k1.
exploit in_xelements; eauto. intros [EX | IN'].
auto.
right. change k with (fst (k, v1)). apply List.in_map; auto.
Qed.
Lemma append_injective:
forall i j1 j2, append i j1 = append i j2 -> j1 = j2.
Proof.
induction i; simpl; intros.
apply IHi. congruence.
apply IHi. congruence.
auto.
Qed.
Lemma xelements_keys_norepet:
forall (A: Type) (m: t A) (i: positive) l,
(forall k v, get k m = Some v -> ~In (append i k) (List.map fst l)) ->
list_norepet (List.map fst l) ->
list_norepet (xkeys m i l).
Proof.
unfold xkeys; induction m; simpl; intros.
auto.
destruct o.
apply IHm1.
intros; red; intros IN. rewrite <- append_assoc_0 in IN. simpl in IN; destruct IN.
exploit (append_injective i k~0 xH). rewrite append_neutral_r. auto.
congruence.
exploit in_xkeys; eauto. intros [[j EQ] | IN].
rewrite <- append_assoc_1 in EQ. exploit append_injective; eauto. congruence.
elim (H (xO k) v); auto.
simpl. constructor.
red; intros IN. exploit in_xkeys; eauto. intros [[j EQ] | IN'].
rewrite <- append_assoc_1 in EQ.
exploit (append_injective i j~1 xH). rewrite append_neutral_r. auto. congruence.
elim (H xH a). auto. rewrite append_neutral_r. auto.
apply IHm2; auto. intros. rewrite <- append_assoc_1. eapply H; eauto.
apply IHm1.
intros; red; intros IN. rewrite <- append_assoc_0 in IN.
exploit in_xkeys; eauto. intros [[j EQ] | IN'].
rewrite <- append_assoc_1 in EQ. exploit append_injective; eauto. congruence.
elim (H (xO k) v); auto.
apply IHm2; auto. intros. rewrite <- append_assoc_1. eapply H; eauto.
Qed.
Theorem elements_keys_norepet:
forall (A: Type) (m: t A),
list_norepet (List.map (@fst elt A) (elements m)).
Proof.
intros. change (list_norepet (xkeys m 1 nil)). apply xelements_keys_norepet.
intros; red; intros. elim H0. constructor.
Qed.
Remark xelements_empty:
forall (A: Type) (m: t A) i l, (forall i, get i m = None) -> xelements m i l = l.
Proof.
induction m; simpl; intros.
auto.
destruct o. generalize (H xH); simpl; congruence.
rewrite IHm1. apply IHm2.
intros. apply (H (xI i0)).
intros. apply (H (xO i0)).
Qed.
Theorem elements_canonical_order:
forall (A B: Type) (R: A -> B -> Prop) (m: t A) (n: t B),
(forall i x, get i m = Some x -> exists y, get i n = Some y /\ R x y) ->
(forall i y, get i n = Some y -> exists x, get i m = Some x /\ R x y) ->
list_forall2
(fun i_x i_y => fst i_x = fst i_y /\ R (snd i_x) (snd i_y))
(elements m) (elements n).
Proof.
intros until R.
assert (forall m n j l1 l2,
(forall i x, get i m = Some x -> exists y, get i n = Some y /\ R x y) ->
(forall i y, get i n = Some y -> exists x, get i m = Some x /\ R x y) ->
list_forall2
(fun i_x i_y => fst i_x = fst i_y /\ R (snd i_x) (snd i_y))
l1 l2 ->
list_forall2
(fun i_x i_y => fst i_x = fst i_y /\ R (snd i_x) (snd i_y))
(xelements m j l1) (xelements n j l2)).
{
induction m; simpl; intros.
rewrite xelements_empty. auto.
intros. destruct (get i n) eqn:E; auto. exploit H0; eauto.
intros [x [P Q]]. rewrite gleaf in P; congruence.
destruct o.
destruct n. exploit (H xH a); auto. simpl. intros [y [P Q]]; congruence.
exploit (H xH a); auto. intros [y [P Q]]. simpl in P. subst o.
simpl. apply IHm1.
intros i x. exact (H (xO i) x).
intros i x. exact (H0 (xO i) x).
constructor. simpl; auto.
apply IHm2.
intros i x. exact (H (xI i) x).
intros i x. exact (H0 (xI i) x).
auto.
destruct n. simpl.
rewrite ! xelements_empty. auto.
intros. destruct (get i m2) eqn:E; auto. exploit (H (xI i)); eauto.
rewrite gleaf. intros [y [P Q]]; congruence.
intros. destruct (get i m1) eqn:E; auto. exploit (H (xO i)); eauto.
rewrite gleaf. intros [y [P Q]]; congruence.
destruct o.
exploit (H0 xH); simpl; eauto. intros [y [P Q]]; congruence.
simpl. apply IHm1.
intros i x. exact (H (xO i) x).
intros i x. exact (H0 (xO i) x).
apply IHm2.
intros i x. exact (H (xI i) x).
intros i x. exact (H0 (xI i) x).
auto.
}
intros. apply H. auto. auto. constructor.
Qed.
Theorem elements_extensional:
forall (A: Type) (m n: t A),
(forall i, get i m = get i n) ->
elements m = elements n.
Proof.
intros.
exploit (elements_canonical_order (fun (x y: A) => x = y) m n).
intros. rewrite H in H0. exists x; auto.
intros. rewrite <- H in H0. exists y; auto.
induction 1. auto. destruct a1 as [a2 a3]; destruct b1 as [b2 b3]; simpl in *.
destruct H0. congruence.
Qed.
Fixpoint xfold (A B: Type) (f: B -> positive -> A -> B)
(i: positive) (m: t A) (v: B) {struct m} : B :=
match m with
| Leaf => v
| Node l None r =>
let v1 := xfold f (append i (xO xH)) l v in
xfold f (append i (xI xH)) r v1
| Node l (Some x) r =>
let v1 := xfold f (append i (xO xH)) l v in
let v2 := f v1 i x in
xfold f (append i (xI xH)) r v2
end.
Definition fold (A B : Type) (f: B -> positive -> A -> B) (m: t A) (v: B) :=
xfold f xH m v.
Lemma xfold_xelements:
forall (A B: Type) (f: B -> positive -> A -> B) m i v l,
List.fold_left (fun a p => f a (fst p) (snd p)) l (xfold f i m v) =
List.fold_left (fun a p => f a (fst p) (snd p)) (xelements m i l) v.
Proof.
induction m; intros.
simpl. auto.
destruct o; simpl.
rewrite <- IHm1. simpl. rewrite <- IHm2. auto.
rewrite <- IHm1. rewrite <- IHm2. auto.
Qed.
Theorem fold_spec:
forall (A B: Type) (f: B -> positive -> A -> B) (v: B) (m: t A),
fold f m v =
List.fold_left (fun a p => f a (fst p) (snd p)) (elements m) v.
Proof.
intros. unfold fold, elements. rewrite <- xfold_xelements. auto.
Qed.
Fixpoint fold1 (A B: Type) (f: B -> A -> B) (m: t A) (v: B) {struct m} : B :=
match m with
| Leaf => v
| Node l None r =>
let v1 := fold1 f l v in
fold1 f r v1
| Node l (Some x) r =>
let v1 := fold1 f l v in
let v2 := f v1 x in
fold1 f r v2
end.
Lemma fold1_xelements:
forall (A B: Type) (f: B -> A -> B) m i v l,
List.fold_left (fun a p => f a (snd p)) l (fold1 f m v) =
List.fold_left (fun a p => f a (snd p)) (xelements m i l) v.
Proof.
induction m; intros.
simpl. auto.
destruct o; simpl.
rewrite <- IHm1. simpl. rewrite <- IHm2. auto.
rewrite <- IHm1. rewrite <- IHm2. auto.
Qed.
Theorem fold1_spec:
forall (A B: Type) (f: B -> A -> B) (v: B) (m: t A),
fold1 f m v =
List.fold_left (fun a p => f a (snd p)) (elements m) v.
Proof.
intros. apply fold1_xelements with (l := @nil (positive * A)).
Qed.
End PTree.
(** * An implementation of maps over type [positive] *)
Module PMap <: MAP.
Definition elt := positive.
Definition elt_eq := peq.
Definition t (A : Type) : Type := (A * PTree.t A)%type.
Definition init (A : Type) (x : A) :=
(x, PTree.empty A).
Definition get (A : Type) (i : positive) (m : t A) :=
match PTree.get i (snd m) with
| Some x => x
| None => fst m
end.
Definition set (A : Type) (i : positive) (x : A) (m : t A) :=
(fst m, PTree.set i x (snd m)).
Theorem gi:
forall (A: Type) (i: positive) (x: A), get i (init x) = x.
Proof.
intros. unfold init. unfold get. simpl. rewrite PTree.gempty. auto.
Qed.
Theorem gss:
forall (A: Type) (i: positive) (x: A) (m: t A), get i (set i x m) = x.
Proof.
intros. unfold get. unfold set. simpl. rewrite PTree.gss. auto.
Qed.
Theorem gso:
forall (A: Type) (i j: positive) (x: A) (m: t A),
i <> j -> get i (set j x m) = get i m.
Proof.
intros. unfold get. unfold set. simpl. rewrite PTree.gso; auto.
Qed.
Theorem gsspec:
forall (A: Type) (i j: positive) (x: A) (m: t A),
get i (set j x m) = if peq i j then x else get i m.
Proof.
intros. destruct (peq i j).
rewrite e. apply gss. auto.
apply gso. auto.
Qed.
Theorem gsident:
forall (A: Type) (i j: positive) (m: t A),
get j (set i (get i m) m) = get j m.
Proof.
intros. destruct (peq i j).
rewrite e. rewrite gss. auto.
rewrite gso; auto.
Qed.
Definition map (A B : Type) (f : A -> B) (m : t A) : t B :=
(f (fst m), PTree.map1 f (snd m)).
Theorem gmap:
forall (A B: Type) (f: A -> B) (i: positive) (m: t A),
get i (map f m) = f(get i m).
Proof.
intros. unfold map. unfold get. simpl. rewrite PTree.gmap1.
unfold option_map. destruct (PTree.get i (snd m)); auto.
Qed.
Theorem set2:
forall (A: Type) (i: elt) (x y: A) (m: t A),
set i y (set i x m) = set i y m.
Proof.
intros. unfold set. simpl. decEq. apply PTree.set2.
Qed.
End PMap.
(** * An implementation of maps over any type that injects into type [positive] *)
Module Type INDEXED_TYPE.
Variable t: Type.
Variable index: t -> positive.
Hypothesis index_inj: forall (x y: t), index x = index y -> x = y.
Variable eq: forall (x y: t), {x = y} + {x <> y}.
End INDEXED_TYPE.
Module IMap(X: INDEXED_TYPE).
Definition elt := X.t.
Definition elt_eq := X.eq.
Definition t : Type -> Type := PMap.t.
Definition init (A: Type) (x: A) := PMap.init x.
Definition get (A: Type) (i: X.t) (m: t A) := PMap.get (X.index i) m.
Definition set (A: Type) (i: X.t) (v: A) (m: t A) := PMap.set (X.index i) v m.
Definition map (A B: Type) (f: A -> B) (m: t A) : t B := PMap.map f m.
Lemma gi:
forall (A: Type) (x: A) (i: X.t), get i (init x) = x.
Proof.
intros. unfold get, init. apply PMap.gi.
Qed.
Lemma gss:
forall (A: Type) (i: X.t) (x: A) (m: t A), get i (set i x m) = x.
Proof.
intros. unfold get, set. apply PMap.gss.
Qed.
Lemma gso:
forall (A: Type) (i j: X.t) (x: A) (m: t A),
i <> j -> get i (set j x m) = get i m.
Proof.
intros. unfold get, set. apply PMap.gso.
red. intro. apply H. apply X.index_inj; auto.
Qed.
Lemma gsspec:
forall (A: Type) (i j: X.t) (x: A) (m: t A),
get i (set j x m) = if X.eq i j then x else get i m.
Proof.
intros. unfold get, set.
rewrite PMap.gsspec.
case (X.eq i j); intro.
subst j. rewrite peq_true. reflexivity.
rewrite peq_false. reflexivity.
red; intro. elim n. apply X.index_inj; auto.
Qed.
Lemma gmap:
forall (A B: Type) (f: A -> B) (i: X.t) (m: t A),
get i (map f m) = f(get i m).
Proof.
intros. unfold map, get. apply PMap.gmap.
Qed.
Lemma set2:
forall (A: Type) (i: elt) (x y: A) (m: t A),
set i y (set i x m) = set i y m.
Proof.
intros. unfold set. apply PMap.set2.
Qed.
End IMap.
Module ZIndexed.
Definition t := Z.
Definition index (z: Z): positive :=
match z with
| Z0 => xH
| Zpos p => xO p
| Zneg p => xI p
end.
Lemma index_inj: forall (x y: Z), index x = index y -> x = y.
Proof.
unfold index; destruct x; destruct y; intros;
try discriminate; try reflexivity.
congruence.
congruence.
Qed.
Definition eq := zeq.
End ZIndexed.
Module ZMap := IMap(ZIndexed).
Module NIndexed.
Definition t := N.
Definition index (n: N): positive :=
match n with
| N0 => xH
| Npos p => xO p
end.
Lemma index_inj: forall (x y: N), index x = index y -> x = y.
Proof.
unfold index; destruct x; destruct y; intros;
try discriminate; try reflexivity.
congruence.
Qed.
Lemma eq: forall (x y: N), {x = y} + {x <> y}.
Proof.
decide equality. apply peq.
Qed.
End NIndexed.
Module NMap := IMap(NIndexed).
(** * An implementation of maps over any type with decidable equality *)
Module Type EQUALITY_TYPE.
Variable t: Type.
Variable eq: forall (x y: t), {x = y} + {x <> y}.
End EQUALITY_TYPE.
Module EMap(X: EQUALITY_TYPE) <: MAP.
Definition elt := X.t.
Definition elt_eq := X.eq.
Definition t (A: Type) := X.t -> A.
Definition init (A: Type) (v: A) := fun (_: X.t) => v.
Definition get (A: Type) (x: X.t) (m: t A) := m x.
Definition set (A: Type) (x: X.t) (v: A) (m: t A) :=
fun (y: X.t) => if X.eq y x then v else m y.
Lemma gi:
forall (A: Type) (i: elt) (x: A), init x i = x.
Proof.
intros. reflexivity.
Qed.
Lemma gss:
forall (A: Type) (i: elt) (x: A) (m: t A), (set i x m) i = x.
Proof.
intros. unfold set. case (X.eq i i); intro.
reflexivity. tauto.
Qed.
Lemma gso:
forall (A: Type) (i j: elt) (x: A) (m: t A),
i <> j -> (set j x m) i = m i.
Proof.
intros. unfold set. case (X.eq i j); intro.
congruence. reflexivity.
Qed.
Lemma gsspec:
forall (A: Type) (i j: elt) (x: A) (m: t A),
get i (set j x m) = if elt_eq i j then x else get i m.
Proof.
intros. unfold get, set, elt_eq. reflexivity.
Qed.
Lemma gsident:
forall (A: Type) (i j: elt) (m: t A), get j (set i (get i m) m) = get j m.
Proof.
intros. unfold get, set. case (X.eq j i); intro.
congruence. reflexivity.
Qed.
Definition map (A B: Type) (f: A -> B) (m: t A) :=
fun (x: X.t) => f(m x).
Lemma gmap:
forall (A B: Type) (f: A -> B) (i: elt) (m: t A),
get i (map f m) = f(get i m).
Proof.
intros. unfold get, map. reflexivity.
Qed.
End EMap.
(** * Additional properties over trees *)
Module Tree_Properties(T: TREE).
(** An induction principle over [fold]. *)
Section TREE_FOLD_IND.
Variables V A: Type.
Variable f: A -> T.elt -> V -> A.
Variable P: T.t V -> A -> Prop.
Variable init: A.
Variable m_final: T.t V.
Hypothesis P_compat:
forall m m' a,
(forall x, T.get x m = T.get x m') ->
P m a -> P m' a.
Hypothesis H_base:
P (T.empty _) init.
Hypothesis H_rec:
forall m a k v,
T.get k m = None -> T.get k m_final = Some v -> P m a -> P (T.set k v m) (f a k v).
Let f' (a: A) (p : T.elt * V) := f a (fst p) (snd p).
Let P' (l: list (T.elt * V)) (a: A) : Prop :=
forall m, list_equiv l (T.elements m) -> P m a.
Remark H_base':
P' nil init.
Proof.
red; intros. apply P_compat with (T.empty _); auto.
intros. rewrite T.gempty. symmetry. case_eq (T.get x m); intros; auto.
assert (In (x, v) nil). rewrite (H (x, v)). apply T.elements_correct. auto.
contradiction.
Qed.
Remark H_rec':
forall k v l a,
~In k (List.map (@fst T.elt V) l) ->
In (k, v) (T.elements m_final) ->
P' l a ->
P' (l ++ (k, v) :: nil) (f a k v).
Proof.
unfold P'; intros.
set (m0 := T.remove k m).
apply P_compat with (T.set k v m0).
intros. unfold m0. rewrite T.gsspec. destruct (T.elt_eq x k).
symmetry. apply T.elements_complete. rewrite <- (H2 (x, v)).
apply in_or_app. simpl. intuition congruence.
apply T.gro. auto.
apply H_rec. unfold m0. apply T.grs. apply T.elements_complete. auto.
apply H1. red. intros [k' v'].
split; intros.
apply T.elements_correct. unfold m0. rewrite T.gro. apply T.elements_complete.
rewrite <- (H2 (k', v')). apply in_or_app. auto.
red; intro; subst k'. elim H. change k with (fst (k, v')). apply in_map. auto.
assert (T.get k' m0 = Some v'). apply T.elements_complete. auto.
unfold m0 in H4. rewrite T.grspec in H4. destruct (T.elt_eq k' k). congruence.
assert (In (k', v') (T.elements m)). apply T.elements_correct; auto.
rewrite <- (H2 (k', v')) in H5. destruct (in_app_or _ _ _ H5). auto.
simpl in H6. intuition congruence.
Qed.
Lemma fold_rec_aux:
forall l1 l2 a,
list_equiv (l2 ++ l1) (T.elements m_final) ->
list_disjoint (List.map (@fst T.elt V) l1) (List.map (@fst T.elt V) l2) ->
list_norepet (List.map (@fst T.elt V) l1) ->
P' l2 a -> P' (l2 ++ l1) (List.fold_left f' l1 a).
Proof.
induction l1; intros; simpl.
rewrite <- List.app_nil_end. auto.
destruct a as [k v]; simpl in *. inv H1.
change ((k, v) :: l1) with (((k, v) :: nil) ++ l1). rewrite <- List.app_ass. apply IHl1.
rewrite app_ass. auto.
red; intros. rewrite map_app in H3. destruct (in_app_or _ _ _ H3). apply H0; auto with coqlib.
simpl in H4. intuition congruence.
auto.
unfold f'. simpl. apply H_rec'; auto. eapply list_disjoint_notin; eauto with coqlib.
rewrite <- (H (k, v)). apply in_or_app. simpl. auto.
Qed.
Theorem fold_rec:
P m_final (T.fold f m_final init).
Proof.
intros. rewrite T.fold_spec. fold f'.
assert (P' (nil ++ T.elements m_final) (List.fold_left f' (T.elements m_final) init)).
apply fold_rec_aux.
simpl. red; intros; tauto.
simpl. red; intros. elim H0.
apply T.elements_keys_norepet.
apply H_base'.
simpl in H. red in H. apply H. red; intros. tauto.
Qed.
End TREE_FOLD_IND.
(** A nonnegative measure over trees *)
Section MEASURE.
Variable V: Type.
Definition cardinal (x: T.t V) : nat := List.length (T.elements x).
Remark list_incl_length:
forall (A: Type) (l1: list A), list_norepet l1 ->
forall (l2: list A), List.incl l1 l2 -> (List.length l1 <= List.length l2)%nat.
Proof.
induction 1; simpl; intros.
omega.
exploit (List.in_split hd l2). auto with coqlib. intros [l3 [l4 EQ]]. subst l2.
assert (length tl <= length (l3 ++ l4))%nat.
apply IHlist_norepet. red; intros.
exploit (H1 a); auto with coqlib.
repeat rewrite in_app_iff. simpl. intuition. subst. contradiction.
repeat rewrite app_length in *. simpl. omega.
Qed.
Remark list_length_incl:
forall (A: Type) (l1: list A), list_norepet l1 ->
forall l2, List.incl l1 l2 -> List.length l1 = List.length l2 -> List.incl l2 l1.
Proof.
induction 1; simpl; intros.
destruct l2; simpl in *. auto with coqlib. discriminate.
exploit (List.in_split hd l2). auto with coqlib. intros [l3 [l4 EQ]]. subst l2.
assert (incl (l3 ++ l4) tl).
apply IHlist_norepet. red; intros.
exploit (H1 a); auto with coqlib.
repeat rewrite in_app_iff. simpl. intuition. subst. contradiction.
repeat rewrite app_length in *. simpl in H2. omega.
red; simpl; intros. rewrite in_app_iff in H4; simpl in H4. intuition.
Qed.
Remark list_strict_incl_length:
forall (A: Type) (l1 l2: list A) (x: A),
list_norepet l1 -> List.incl l1 l2 -> ~In x l1 -> In x l2 ->
(List.length l1 < List.length l2)%nat.
Proof.
intros. exploit list_incl_length; eauto. intros.
assert (length l1 = length l2 \/ length l1 < length l2)%nat by omega.
destruct H4; auto. elim H1. eapply list_length_incl; eauto.
Qed.
Remark list_norepet_map:
forall (A B: Type) (f: A -> B) (l: list A),
list_norepet (List.map f l) -> list_norepet l.
Proof.
induction l; simpl; intros.
constructor.
inv H. constructor; auto. red; intros; elim H2. apply List.in_map; auto.
Qed.
Theorem cardinal_remove:
forall x m y, T.get x m = Some y -> (cardinal (T.remove x m) < cardinal m)%nat.
Proof.
unfold cardinal; intros. apply list_strict_incl_length with (x := (x, y)).
apply list_norepet_map with (f := @fst T.elt V). apply T.elements_keys_norepet.
red; intros. destruct a as [x' y']. exploit T.elements_complete; eauto.
rewrite T.grspec. destruct (T.elt_eq x' x); intros; try discriminate.
apply T.elements_correct; auto.
red; intros. exploit T.elements_complete; eauto. rewrite T.grspec. rewrite dec_eq_true. congruence.
apply T.elements_correct; auto.
Qed.
End MEASURE.
(** Forall and exists *)
Section FORALL_EXISTS.
Variable A: Type.
Definition for_all (m: T.t A) (f: T.elt -> A -> bool) : bool :=
T.fold (fun b x a => b && f x a) m true.
Lemma for_all_correct:
forall m f,
for_all m f = true <-> (forall x a, T.get x m = Some a -> f x a = true).
Proof.
intros m0 f.
unfold for_all. apply fold_rec; intros.
- (* Extensionality *)
rewrite H0. split; intros. rewrite <- H in H2; auto. rewrite H in H2; auto.
- (* Base case *)
split; intros. rewrite T.gempty in H0; congruence. auto.
- (* Inductive case *)
split; intros.
destruct (andb_prop _ _ H2). rewrite T.gsspec in H3. destruct (T.elt_eq x k).
inv H3. auto.
apply H1; auto.
apply andb_true_intro. split.
rewrite H1. intros. apply H2. rewrite T.gso; auto. congruence.
apply H2. apply T.gss.
Qed.
Definition exists_ (m: T.t A) (f: T.elt -> A -> bool) : bool :=
T.fold (fun b x a => b || f x a) m false.
Lemma exists_correct:
forall m f,
exists_ m f = true <-> (exists x a, T.get x m = Some a /\ f x a = true).
Proof.
intros m0 f.
unfold exists_. apply fold_rec; intros.
- (* Extensionality *)
rewrite H0. split; intros (x0 & a0 & P & Q); exists x0; exists a0; split; auto; congruence.
- (* Base case *)
split; intros. congruence. destruct H as (x & a & P & Q). rewrite T.gempty in P; congruence.
- (* Inductive case *)
split; intros.
destruct (orb_true_elim _ _ H2).
rewrite H1 in e. destruct e as (x1 & a1 & P & Q).
exists x1; exists a1; split; auto. rewrite T.gso; auto. congruence.
exists k; exists v; split; auto. apply T.gss.
destruct H2 as (x1 & a1 & P & Q). apply orb_true_intro.
rewrite T.gsspec in P. destruct (T.elt_eq x1 k).
inv P. right; auto.
left. apply H1. exists x1; exists a1; auto.
Qed.
Remark exists_for_all:
forall m f,
exists_ m f = negb (for_all m (fun x a => negb (f x a))).
Proof.
intros. unfold exists_, for_all. rewrite ! T.fold_spec.
change false with (negb true). generalize (T.elements m) true.
induction l; simpl; intros.
auto.
rewrite <- IHl. f_equal.
destruct b; destruct (f (fst a) (snd a)); reflexivity.
Qed.
Remark for_all_exists:
forall m f,
for_all m f = negb (exists_ m (fun x a => negb (f x a))).
Proof.
intros. unfold exists_, for_all. rewrite ! T.fold_spec.
change true with (negb false). generalize (T.elements m) false.
induction l; simpl; intros.
auto.
rewrite <- IHl. f_equal.
destruct b; destruct (f (fst a) (snd a)); reflexivity.
Qed.
Lemma for_all_false:
forall m f,
for_all m f = false <-> (exists x a, T.get x m = Some a /\ f x a = false).
Proof.
intros. rewrite for_all_exists.
rewrite negb_false_iff. rewrite exists_correct.
split; intros (x & a & P & Q); exists x; exists a; split; auto.
rewrite negb_true_iff in Q. auto.
rewrite Q; auto.
Qed.
Lemma exists_false:
forall m f,
exists_ m f = false <-> (forall x a, T.get x m = Some a -> f x a = false).
Proof.
intros. rewrite exists_for_all.
rewrite negb_false_iff. rewrite for_all_correct.
split; intros. apply H in H0. rewrite negb_true_iff in H0. auto. rewrite H; auto.
Qed.
End FORALL_EXISTS.
(** More about [beq] *)
Section BOOLEAN_EQUALITY.
Variable A: Type.
Variable beqA: A -> A -> bool.
Theorem beq_false:
forall m1 m2,
T.beq beqA m1 m2 = false <->
exists x, match T.get x m1, T.get x m2 with
| None, None => False
| Some a1, Some a2 => beqA a1 a2 = false
| _, _ => True
end.
Proof.
intros; split; intros.
- (* beq = false -> existence *)
set (p1 := fun x a1 => match T.get x m2 with None => false | Some a2 => beqA a1 a2 end).
set (p2 := fun x a2 => match T.get x m1 with None => false | Some a1 => beqA a1 a2 end).
destruct (for_all m1 p1) eqn:F1; [destruct (for_all m2 p2) eqn:F2 | idtac].
+ cut (T.beq beqA m1 m2 = true). congruence.
rewrite for_all_correct in *. rewrite T.beq_correct; intros.
destruct (T.get x m1) as [a1|] eqn:X1.
generalize (F1 _ _ X1). unfold p1. destruct (T.get x m2); congruence.
destruct (T.get x m2) as [a2|] eqn:X2; auto.
generalize (F2 _ _ X2). unfold p2. rewrite X1. congruence.
+ rewrite for_all_false in F2. destruct F2 as (x & a & P & Q).
exists x. rewrite P. unfold p2 in Q. destruct (T.get x m1); auto.
+ rewrite for_all_false in F1. destruct F1 as (x & a & P & Q).
exists x. rewrite P. unfold p1 in Q. destruct (T.get x m2); auto.
- (* existence -> beq = false *)
destruct H as [x P].
destruct (T.beq beqA m1 m2) eqn:E; auto.
rewrite T.beq_correct in E.
generalize (E x). destruct (T.get x m1); destruct (T.get x m2); tauto || congruence.
Qed.
End BOOLEAN_EQUALITY.
(** Extensional equality between trees *)
Section EXTENSIONAL_EQUALITY.
Variable A: Type.
Variable eqA: A -> A -> Prop.
Hypothesis eqAeq: Equivalence eqA.
Definition Equal (m1 m2: T.t A) : Prop :=
forall x, match T.get x m1, T.get x m2 with
| None, None => True
| Some a1, Some a2 => a1 === a2
| _, _ => False
end.
Lemma Equal_refl: forall m, Equal m m.
Proof.
intros; red; intros. destruct (T.get x m); auto. reflexivity.
Qed.
Lemma Equal_sym: forall m1 m2, Equal m1 m2 -> Equal m2 m1.
Proof.
intros; red; intros. generalize (H x). destruct (T.get x m1); destruct (T.get x m2); auto. intros; symmetry; auto.
Qed.
Lemma Equal_trans: forall m1 m2 m3, Equal m1 m2 -> Equal m2 m3 -> Equal m1 m3.
Proof.
intros; red; intros. generalize (H x) (H0 x).
destruct (T.get x m1); destruct (T.get x m2); try tauto;
destruct (T.get x m3); try tauto.
intros. transitivity a0; auto.
Qed.
Instance Equal_Equivalence : Equivalence Equal := {
Equivalence_Reflexive := Equal_refl;
Equivalence_Symmetric := Equal_sym;
Equivalence_Transitive := Equal_trans
}.
Hypothesis eqAdec: EqDec A eqA.
Program Definition Equal_dec (m1 m2: T.t A) : { m1 === m2 } + { m1 =/= m2 } :=
match T.beq (fun a1 a2 => proj_sumbool (a1 == a2)) m1 m2 with
| true => left _
| false => right _
end.
Next Obligation.
rename Heq_anonymous into B.
symmetry in B. rewrite T.beq_correct in B.
red; intros. generalize (B x).
destruct (T.get x m1); destruct (T.get x m2); auto.
intros. eapply proj_sumbool_true; eauto.
Qed.
Next Obligation.
assert (T.beq (fun a1 a2 => proj_sumbool (a1 == a2)) m1 m2 = true).
apply T.beq_correct; intros.
generalize (H x).
destruct (T.get x m1); destruct (T.get x m2); try tauto.
intros. apply proj_sumbool_is_true; auto.
unfold equiv, complement in H0. congruence.
Qed.
Instance Equal_EqDec : EqDec (T.t A) Equal := Equal_dec.
End EXTENSIONAL_EQUALITY.
End Tree_Properties.
Module PTree_Properties := Tree_Properties(PTree).
(** * Useful notations *)
Notation "a ! b" := (PTree.get b a) (at level 1).
Notation "a !! b" := (PMap.get b a) (at level 1).
|