summaryrefslogtreecommitdiff
path: root/lib/Integers.v
blob: 2d548fb66ed50f10f6c5ca931e37d74da9ef8ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Formalizations of integers modulo $2^32$ #2<sup>32</sup>#. *)

Require Import Coqlib.

Definition wordsize : nat := 32%nat.
Definition modulus : Z := two_power_nat wordsize.
Definition half_modulus : Z := modulus / 2.

(** * Comparisons *)

Inductive comparison : Set :=
  | Ceq : comparison               (**r same *)
  | Cne : comparison               (**r different *)
  | Clt : comparison               (**r less than *)
  | Cle : comparison               (**r less than or equal *)
  | Cgt : comparison               (**r greater than *)
  | Cge : comparison.              (**r greater than or equal *)

Definition negate_comparison (c: comparison): comparison :=
  match c with
  | Ceq => Cne
  | Cne => Ceq
  | Clt => Cge
  | Cle => Cgt
  | Cgt => Cle
  | Cge => Clt
  end.

Definition swap_comparison (c: comparison): comparison :=
  match c with
  | Ceq => Ceq
  | Cne => Cne
  | Clt => Cgt
  | Cle => Cge
  | Cgt => Clt
  | Cge => Cle
  end.

(** * Representation of machine integers *)

(** A machine integer (type [int]) is represented as a Coq arbitrary-precision
  integer (type [Z]) plus a proof that it is in the range 0 (included) to
  [modulus] (excluded. *)

Record int: Set := mkint { intval: Z; intrange: 0 <= intval < modulus }.

Module Int.

Definition max_unsigned : Z := modulus - 1.
Definition max_signed : Z := half_modulus - 1.
Definition min_signed : Z := - half_modulus.

(** The [unsigned] and [signed] functions return the Coq integer corresponding
  to the given machine integer, interpreted as unsigned or signed 
  respectively. *)

Definition unsigned (n: int) : Z := intval n.

Definition signed (n: int) : Z :=
  if zlt (unsigned n) half_modulus
  then unsigned n
  else unsigned n - modulus.

Lemma mod_in_range:
  forall x, 0 <= Zmod x modulus < modulus.
Proof.
  intro.
  exact (Z_mod_lt x modulus (two_power_nat_pos wordsize)).
Qed.

(** Conversely, [repr] takes a Coq integer and returns the corresponding
  machine integer.  The argument is treated modulo [modulus]. *)

Definition repr (x: Z) : int := 
  mkint (Zmod x modulus) (mod_in_range x).

Definition zero := repr 0.
Definition one  := repr 1.
Definition mone := repr (-1).

Lemma mkint_eq:
  forall x y Px Py, x = y -> mkint x Px = mkint y Py.
Proof.
  intros. subst y. 
  generalize (proof_irrelevance _ Px Py); intro.
  subst Py. reflexivity.
Qed.

Lemma eq_dec: forall (x y: int), {x = y} + {x <> y}.
Proof.
  intros. destruct x; destruct y. case (zeq intval0 intval1); intro.
  left. apply mkint_eq. auto.
  right. red; intro. injection H. exact n.
Qed.

(** * Arithmetic and logical operations over machine integers *)

Definition eq (x y: int) : bool := 
  if zeq (unsigned x) (unsigned y) then true else false.
Definition lt (x y: int) : bool :=
  if zlt (signed x) (signed y) then true else false.
Definition ltu (x y: int) : bool :=
  if zlt (unsigned x) (unsigned y) then true else false.

Definition neg (x: int) : int := repr (- unsigned x).
Definition cast8signed (x: int) : int :=
  let y := Zmod (unsigned x) 256 in
  if zlt y 128 then repr y else repr (y - 256).
Definition cast8unsigned (x: int) : int :=
  repr (Zmod (unsigned x) 256).
Definition cast16signed (x: int) : int :=
  let y := Zmod (unsigned x) 65536 in
  if zlt y 32768 then repr y else repr (y - 65536).
Definition cast16unsigned (x: int) : int :=
  repr (Zmod (unsigned x) 65536).

Definition add (x y: int) : int :=
  repr (unsigned x + unsigned y).
Definition sub (x y: int) : int :=
  repr (unsigned x - unsigned y).
Definition mul (x y: int) : int :=
  repr (unsigned x * unsigned y).

Definition Zdiv_round (x y: Z) : Z :=
  if zlt x 0 then
    if zlt y 0 then (-x) / (-y) else - ((-x) / y)
  else
    if zlt y 0 then -(x / (-y)) else x / y.

Definition Zmod_round (x y: Z) : Z :=
  x - (Zdiv_round x y) * y.

Definition divs (x y: int) : int :=
  repr (Zdiv_round (signed x) (signed y)).
Definition mods (x y: int) : int :=
  repr (Zmod_round (signed x) (signed y)).
Definition divu (x y: int) : int :=
  repr (unsigned x / unsigned y).
Definition modu (x y: int) : int :=
  repr (Zmod (unsigned x) (unsigned y)).

(** For bitwise operations, we need to convert between Coq integers [Z]
  and their bit-level representations.  Bit-level representations are
  represented as characteristic functions, that is, functions [f]
  of type [nat -> bool] such that [f i] is the value of the [i]-th bit
  of the number.  The values of characteristic functions for [i] greater
  than 32 are ignored. *)

Definition Z_shift_add (b: bool) (x: Z) :=
  if b then 2 * x + 1 else 2 * x.

Definition Z_bin_decomp (x: Z) : bool * Z :=
  match x with
  | Z0 => (false, 0)
  | Zpos p =>
      match p with
      | xI q => (true, Zpos q)
      | xO q => (false, Zpos q)
      | xH => (true, 0)
      end
  | Zneg p =>
      match p with
      | xI q => (true, Zneg q - 1)
      | xO q => (false, Zneg q)
      | xH => (true, -1)
      end
  end.

Fixpoint bits_of_Z (n: nat) (x: Z) {struct n}: Z -> bool :=
  match n with
  | O =>
      (fun i: Z => false)
  | S m =>
      let (b, y) := Z_bin_decomp x in
      let f := bits_of_Z m y in
      (fun i: Z => if zeq i 0 then b else f (i - 1))
  end.

Fixpoint Z_of_bits (n: nat) (f: Z -> bool) {struct n}: Z :=
  match n with
  | O => 0
  | S m => Z_shift_add (f 0) (Z_of_bits m (fun i => f (i + 1)))
  end.

(** Bitwise logical ``and'', ``or'' and ``xor'' operations. *)

Definition bitwise_binop (f: bool -> bool -> bool) (x y: int) :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let fy := bits_of_Z wordsize (unsigned y) in
  repr (Z_of_bits wordsize (fun i => f (fx i) (fy i))).

Definition and (x y: int): int := bitwise_binop andb x y.
Definition or (x y: int): int := bitwise_binop orb x y.
Definition xor (x y: int) : int := bitwise_binop xorb x y.

Definition not (x: int) : int := xor x mone.

(** Shifts and rotates. *)

Definition shl (x y: int): int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let vy := unsigned y in
  repr (Z_of_bits wordsize (fun i => fx (i - vy))).

Definition shru (x y: int): int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let vy := unsigned y in
  repr (Z_of_bits wordsize (fun i => fx (i + vy))).

(** Arithmetic right shift is defined as signed division by a power of two.
  Two such shifts are defined: [shr] rounds towards minus infinity
  (standard behaviour for arithmetic right shift) and
  [shrx] rounds towards zero. *)

Definition shr (x y: int): int :=
  repr (signed x / two_p (unsigned y)).
Definition shrx (x y: int): int :=
  divs x (shl one y).

Definition shr_carry (x y: int) :=
  sub (shrx x y) (shr x y).

Definition rol (x y: int) : int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let vy := unsigned y in
  repr (Z_of_bits wordsize
         (fun i => fx (Zmod (i - vy) (Z_of_nat wordsize)))).

Definition rolm (x a m: int): int := and (rol x a) m.

(** Decomposition of a number as a sum of powers of two. *)

Fixpoint Z_one_bits (n: nat) (x: Z) (i: Z) {struct n}: list Z :=
  match n with
  | O => nil
  | S m =>
      let (b, y) := Z_bin_decomp x in
      if b then i :: Z_one_bits m y (i+1) else Z_one_bits m y (i+1)
  end.

Definition one_bits (x: int) : list int :=
  List.map repr (Z_one_bits wordsize (unsigned x) 0).

(** Recognition of powers of two. *)

Definition is_power2 (x: int) : option int :=
  match Z_one_bits wordsize (unsigned x) 0 with
  | i :: nil => Some (repr i)
  | _ => None
  end.

(** Recognition of integers that are acceptable as immediate operands
  to the [rlwim] PowerPC instruction.  These integers are of the form
  [000011110000] or [111100001111], that is, a run of one bits
  surrounded by zero bits, or conversely.  We recognize these integers by
  running the following automaton on the bits.  The accepting states are
  2, 3, 4, 5, and 6.
<<
               0          1          0
              / \        / \        / \
              \ /        \ /        \ /
        -0--> [1] --1--> [2] --0--> [3]
       /     
     [0]
       \
        -1--> [4] --0--> [5] --1--> [6]
              / \        / \        / \
              \ /        \ /        \ /
               1          0          1
>>
*)

Inductive rlw_state: Set :=
  | RLW_S0 : rlw_state
  | RLW_S1 : rlw_state
  | RLW_S2 : rlw_state
  | RLW_S3 : rlw_state
  | RLW_S4 : rlw_state
  | RLW_S5 : rlw_state
  | RLW_S6 : rlw_state
  | RLW_Sbad : rlw_state.

Definition rlw_transition (s: rlw_state) (b: bool) : rlw_state :=
  match s, b with
  | RLW_S0, false => RLW_S1
  | RLW_S0, true  => RLW_S4
  | RLW_S1, false => RLW_S1
  | RLW_S1, true  => RLW_S2
  | RLW_S2, false => RLW_S3
  | RLW_S2, true  => RLW_S2
  | RLW_S3, false => RLW_S3
  | RLW_S3, true  => RLW_Sbad
  | RLW_S4, false => RLW_S5
  | RLW_S4, true  => RLW_S4
  | RLW_S5, false => RLW_S5
  | RLW_S5, true  => RLW_S6
  | RLW_S6, false => RLW_Sbad
  | RLW_S6, true  => RLW_S6
  | RLW_Sbad, _ => RLW_Sbad
  end.

Definition rlw_accepting (s: rlw_state) : bool :=
  match s with
  | RLW_S0 => false
  | RLW_S1 => false
  | RLW_S2 => true
  | RLW_S3 => true
  | RLW_S4 => true
  | RLW_S5 => true
  | RLW_S6 => true
  | RLW_Sbad => false
  end.

Fixpoint is_rlw_mask_rec (n: nat) (s: rlw_state) (x: Z) {struct n} : bool :=
  match n with
  | O =>
      rlw_accepting s
  | S m =>
      let (b, y) := Z_bin_decomp x in
      is_rlw_mask_rec m (rlw_transition s b) y
  end.

Definition is_rlw_mask (x: int) : bool :=
  is_rlw_mask_rec wordsize RLW_S0 (unsigned x).

(** Comparisons. *)

Definition cmp (c: comparison) (x y: int) : bool :=
  match c with
  | Ceq => eq x y
  | Cne => negb (eq x y)
  | Clt => lt x y
  | Cle => negb (lt y x)
  | Cgt => lt y x
  | Cge => negb (lt x y)
  end.

Definition cmpu (c: comparison) (x y: int) : bool :=
  match c with
  | Ceq => eq x y
  | Cne => negb (eq x y)
  | Clt => ltu x y
  | Cle => negb (ltu y x)
  | Cgt => ltu y x
  | Cge => negb (ltu x y)
  end.

Definition is_false (x: int) : Prop := x = zero.
Definition is_true  (x: int) : Prop := x <> zero.
Definition notbool  (x: int) : int  := if eq x zero then one else zero.

(** * Properties of integers and integer arithmetic *)

(** ** Properties of equality *)

Theorem one_not_zero: Int.one <> Int.zero.
Proof.
  compute. congruence. 
Qed.

Theorem eq_sym:
  forall x y, eq x y = eq y x.
Proof.
  intros; unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
  rewrite e. rewrite zeq_true. auto.
  rewrite zeq_false. auto. auto.
Qed.

Theorem eq_spec: forall (x y: int), if eq x y then x = y else x <> y.
Proof.
  intros; unfold eq. case (eq_dec x y); intro.
  subst y. rewrite zeq_true. auto.
  rewrite zeq_false. auto. 
  destruct x; destruct y.
  simpl. red; intro. elim n. apply mkint_eq. auto.
Qed.

Theorem eq_true: forall x, eq x x = true.
Proof.
  intros. generalize (eq_spec x x); case (eq x x); intros; congruence.
Qed.

Theorem eq_false: forall x y, x <> y -> eq x y = false.
Proof.
  intros. generalize (eq_spec x y); case (eq x y); intros; congruence.
Qed.

(** ** Modulo arithmetic *)

(** We define and state properties of equality and arithmetic modulo a
  positive integer. *)

Section EQ_MODULO.

Variable modul: Z.
Hypothesis modul_pos: modul > 0.

Definition eqmod (x y: Z) : Prop := exists k, x = k * modul + y.

Lemma eqmod_refl: forall x, eqmod x x.
Proof.
  intros; red. exists 0. omega.
Qed.

Lemma eqmod_refl2: forall x y, x = y -> eqmod x y.
Proof.
  intros. subst y. apply eqmod_refl.
Qed.

Lemma eqmod_sym: forall x y, eqmod x y -> eqmod y x.
Proof.
  intros x y [k EQ]; red. exists (-k). subst x. ring.
Qed.

Lemma eqmod_trans: forall x y z, eqmod x y -> eqmod y z -> eqmod x z.
Proof.
  intros x y z [k1 EQ1] [k2 EQ2]; red.
  exists (k1 + k2). subst x; subst y. ring.
Qed.

Lemma eqmod_small_eq:
  forall x y, eqmod x y -> 0 <= x < modul -> 0 <= y < modul -> x = y.
Proof.
  intros x y [k EQ] I1 I2.
  generalize (Zdiv_unique _ _ _ _ EQ I2). intro.
  rewrite (Zdiv_small x modul I1) in H. subst k. omega.
Qed.

Lemma eqmod_mod_eq:
  forall x y, eqmod x y -> x mod modul = y mod modul.
Proof.
  intros x y [k EQ]. subst x. 
  rewrite Zplus_comm. apply Z_mod_plus. auto.
Qed.

Lemma eqmod_mod:
  forall x, eqmod x (x mod modul).
Proof.
  intros; red. exists (x / modul). 
  rewrite Zmult_comm. apply Z_div_mod_eq. auto.
Qed.

Lemma eqmod_add:
  forall a b c d, eqmod a b -> eqmod c d -> eqmod (a + c) (b + d).
Proof.
  intros a b c d [k1 EQ1] [k2 EQ2]; red.
  subst a; subst c. exists (k1 + k2). ring.
Qed.

Lemma eqmod_neg:
  forall x y, eqmod x y -> eqmod (-x) (-y).
Proof.
  intros x y [k EQ]; red. exists (-k). rewrite EQ. ring. 
Qed.

Lemma eqmod_sub:
  forall a b c d, eqmod a b -> eqmod c d -> eqmod (a - c) (b - d).
Proof.
  intros a b c d [k1 EQ1] [k2 EQ2]; red.
  subst a; subst c. exists (k1 - k2). ring.
Qed.

Lemma eqmod_mult:
  forall a b c d, eqmod a c -> eqmod b d -> eqmod (a * b) (c * d).
Proof.
  intros a b c d [k1 EQ1] [k2 EQ2]; red.
  subst a; subst b.
  exists (k1 * k2 * modul + c * k2 + k1 * d).
  ring.
Qed.

End EQ_MODULO.

(** We then specialize these definitions to equality modulo 
  $2^32$ #2<sup>32</sup>#. *)

Lemma modulus_pos:
  modulus > 0.
Proof.
  unfold modulus. apply two_power_nat_pos. 
Qed.
Hint Resolve modulus_pos: ints.

Definition eqm := eqmod modulus.

Lemma eqm_refl: forall x, eqm x x.
Proof (eqmod_refl modulus).
Hint Resolve eqm_refl: ints.

Lemma eqm_refl2:
  forall x y, x = y -> eqm x y.
Proof (eqmod_refl2 modulus).
Hint Resolve eqm_refl2: ints.

Lemma eqm_sym: forall x y, eqm x y -> eqm y x.
Proof (eqmod_sym modulus).
Hint Resolve eqm_sym: ints.

Lemma eqm_trans: forall x y z, eqm x y -> eqm y z -> eqm x z.
Proof (eqmod_trans modulus).
Hint Resolve eqm_trans: ints.

Lemma eqm_samerepr: forall x y, eqm x y -> repr x = repr y.
Proof.
  intros. unfold repr. apply mkint_eq. 
  apply eqmod_mod_eq. auto with ints. exact H.
Qed.

Lemma eqm_small_eq:
  forall x y, eqm x y -> 0 <= x < modulus -> 0 <= y < modulus -> x = y.
Proof (eqmod_small_eq modulus).
Hint Resolve eqm_small_eq: ints.

Lemma eqm_add:
  forall a b c d, eqm a b -> eqm c d -> eqm (a + c) (b + d).
Proof (eqmod_add modulus).
Hint Resolve eqm_add: ints.

Lemma eqm_neg:
  forall x y, eqm x y -> eqm (-x) (-y).
Proof (eqmod_neg modulus).
Hint Resolve eqm_neg: ints.

Lemma eqm_sub:
  forall a b c d, eqm a b -> eqm c d -> eqm (a - c) (b - d).
Proof (eqmod_sub modulus).
Hint Resolve eqm_sub: ints.

Lemma eqm_mult:
  forall a b c d, eqm a c -> eqm b d -> eqm (a * b) (c * d).
Proof (eqmod_mult modulus).
Hint Resolve eqm_mult: ints.

(** ** Properties of the coercions between [Z] and [int] *)

Lemma eqm_unsigned_repr:
  forall z, eqm z (unsigned (repr z)).
Proof.
  unfold eqm, repr, unsigned; intros; simpl.
  apply eqmod_mod. auto with ints.
Qed.
Hint Resolve eqm_unsigned_repr: ints.

Lemma eqm_unsigned_repr_l:
  forall a b, eqm a b -> eqm (unsigned (repr a)) b.
Proof.
  intros. apply eqm_trans with a. 
  apply eqm_sym. apply eqm_unsigned_repr. auto.
Qed.
Hint Resolve eqm_unsigned_repr_l: ints.

Lemma eqm_unsigned_repr_r:
  forall a b, eqm a b -> eqm a (unsigned (repr b)).
Proof.
  intros. apply eqm_trans with b. auto.
  apply eqm_unsigned_repr. 
Qed.
Hint Resolve eqm_unsigned_repr_r: ints.

Lemma eqm_signed_unsigned:
  forall x, eqm (signed x) (unsigned x).
Proof.
  intro; red; unfold signed. set (y := unsigned x).
  case (zlt y half_modulus); intro.
  apply eqmod_refl. red; exists (-1); ring. 
Qed.

Theorem unsigned_range:
  forall i, 0 <= unsigned i < modulus.
Proof.
  destruct i; simpl. auto.
Qed.
Hint Resolve unsigned_range: ints.

Theorem unsigned_range_2:
  forall i, 0 <= unsigned i <= max_unsigned.
Proof.
  intro; unfold max_unsigned. 
  generalize (unsigned_range i). omega.
Qed.
Hint Resolve unsigned_range_2: ints.

Theorem signed_range:
  forall i, min_signed <= signed i <= max_signed.
Proof.
  intros. unfold signed. 
  generalize (unsigned_range i). set (n := unsigned i). intros.
  case (zlt n half_modulus); intro.
  unfold max_signed. assert (min_signed < 0). compute. auto.
  omega. 
  unfold min_signed, max_signed. change modulus with (2 * half_modulus).
  change modulus with (2 * half_modulus) in H. omega.
Qed.  

Theorem repr_unsigned:
  forall i, repr (unsigned i) = i.
Proof.
  destruct i; simpl. unfold repr. apply mkint_eq.
  apply Zmod_small. auto.
Qed.
Hint Resolve repr_unsigned: ints.

Lemma repr_signed:
  forall i, repr (signed i) = i.
Proof.
  intros. transitivity (repr (unsigned i)). 
  apply eqm_samerepr. apply eqm_signed_unsigned. auto with ints.
Qed.
Hint Resolve repr_unsigned: ints.

Theorem unsigned_repr:
  forall z, 0 <= z <= max_unsigned -> unsigned (repr z) = z.
Proof.
  intros. unfold repr, unsigned; simpl. 
  apply Zmod_small. unfold max_unsigned in H. omega.
Qed.
Hint Resolve unsigned_repr: ints.

Theorem signed_repr:
  forall z, min_signed <= z <= max_signed -> signed (repr z) = z.
Proof.
  intros. unfold signed. case (zle 0 z); intro.
  replace (unsigned (repr z)) with z.
  rewrite zlt_true. auto. unfold max_signed in H. omega.
  symmetry. apply unsigned_repr. 
  split. auto. apply Zle_trans with max_signed. tauto.
  compute; intro; discriminate.
  pose (z' := z + modulus).
  replace (repr z) with (repr z').
  replace (unsigned (repr z')) with z'.
  rewrite zlt_false. unfold z'. omega.
  unfold z'. unfold min_signed in H. 
  change modulus with (half_modulus + half_modulus). omega.
  symmetry. apply unsigned_repr.
  unfold z', max_unsigned. unfold min_signed, max_signed in H.
  change modulus with (half_modulus + half_modulus).
  omega. 
  apply eqm_samerepr. unfold z'; red. exists 1. omega.
Qed.

(** ** Properties of addition *)

Theorem add_unsigned: forall x y, add x y = repr (unsigned x + unsigned y).
Proof. intros; reflexivity.
Qed.

Theorem add_signed: forall x y, add x y = repr (signed x + signed y).
Proof. 
  intros. rewrite add_unsigned. apply eqm_samerepr.
  apply eqm_add; apply eqm_sym; apply eqm_signed_unsigned.
Qed.

Theorem add_commut: forall x y, add x y = add y x.
Proof. intros; unfold add. decEq. omega. Qed.

Theorem add_zero: forall x, add x zero = x.
Proof. 
  intros; unfold add, zero. change (unsigned (repr 0)) with 0.
  rewrite Zplus_0_r. apply repr_unsigned.
Qed.

Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z).
Proof.
  intros; unfold add.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_samerepr. 
  apply eqm_trans with ((x' + y') + z').
  auto with ints.
  rewrite <- Zplus_assoc. auto with ints.
Qed.

Theorem add_permut: forall x y z, add x (add y z) = add y (add x z).
Proof.
  intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut. 
Qed.

Theorem add_neg_zero: forall x, add x (neg x) = zero.
Proof.
  intros; unfold add, neg, zero. apply eqm_samerepr.
  replace 0 with (unsigned x + (- (unsigned x))).
  auto with ints. omega.
Qed.

(** ** Properties of negation *)

Theorem neg_repr: forall z, neg (repr z) = repr (-z).
Proof.
  intros; unfold neg. apply eqm_samerepr. auto with ints.
Qed.

Theorem neg_zero: neg zero = zero.
Proof.
  unfold neg, zero. compute. apply mkint_eq. auto.
Qed.

Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y).
Proof.
  intros; unfold neg, add. apply eqm_samerepr.
  apply eqm_trans with (- (unsigned x + unsigned y)).
  auto with ints.
  replace (- (unsigned x + unsigned y))
     with ((- unsigned x) + (- unsigned y)).
  auto with ints. omega.
Qed.

(** ** Properties of subtraction *)

Theorem sub_zero_l: forall x, sub x zero = x.
Proof.
  intros; unfold sub. change (unsigned zero) with 0.
  replace (unsigned x - 0) with (unsigned x). apply repr_unsigned.
  omega.
Qed.

Theorem sub_zero_r: forall x, sub zero x = neg x.
Proof.
  intros; unfold sub, neg. change (unsigned zero) with 0.
  replace (0 - unsigned x) with (- unsigned x). auto.
  omega.
Qed.

Theorem sub_add_opp: forall x y, sub x y = add x (neg y).
Proof.
  intros; unfold sub, add, neg.
  replace (unsigned x - unsigned y)
     with (unsigned x + (- unsigned y)).
  apply eqm_samerepr. auto with ints. omega.
Qed.

Theorem sub_idem: forall x, sub x x = zero.
Proof.
  intros; unfold sub. replace (unsigned x - unsigned x) with 0.
  reflexivity. omega.
Qed.

Theorem sub_add_l: forall x y z, sub (add x y) z = add (sub x z) y.
Proof.
  intros. repeat rewrite sub_add_opp. 
  repeat rewrite add_assoc. decEq. apply add_commut.
Qed.

Theorem sub_add_r: forall x y z, sub x (add y z) = add (sub x z) (neg y).
Proof.
  intros. repeat rewrite sub_add_opp.
  rewrite neg_add_distr. rewrite add_permut. apply add_commut.
Qed.

Theorem sub_shifted:
  forall x y z,
  sub (add x z) (add y z) = sub x y.
Proof.
  intros. rewrite sub_add_opp. rewrite neg_add_distr.
  rewrite add_assoc. 
  rewrite (add_commut (neg y) (neg z)).
  rewrite <- (add_assoc z). rewrite add_neg_zero.
  rewrite (add_commut zero). rewrite add_zero.
  symmetry. apply sub_add_opp.
Qed.

(** ** Properties of multiplication *)

Theorem mul_commut: forall x y, mul x y = mul y x.
Proof.
  intros; unfold mul. decEq. ring. 
Qed.

Theorem mul_zero: forall x, mul x zero = zero.
Proof.
  intros; unfold mul. change (unsigned zero) with 0.
  unfold zero. decEq. ring.
Qed.

Theorem mul_one: forall x, mul x one = x.
Proof.
  intros; unfold mul. change (unsigned one) with 1.
  transitivity (repr (unsigned x)). decEq. ring.
  apply repr_unsigned.
Qed.

Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z).
Proof.
  intros; unfold mul.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_samerepr. apply eqm_trans with ((x' * y') * z').
  auto with ints.
  rewrite <- Zmult_assoc. auto with ints.
Qed.

Theorem mul_add_distr_l:
  forall x y z, mul (add x y) z = add (mul x z) (mul y z).
Proof.
  intros; unfold mul, add.
  apply eqm_samerepr.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_trans with ((x' + y') * z').
  auto with ints.
  replace ((x' + y') * z') with (x' * z' + y' * z').
  auto with ints.
  ring.
Qed.

Theorem mul_add_distr_r:
  forall x y z, mul x (add y z) = add (mul x y) (mul x z).
Proof.
  intros. rewrite mul_commut. rewrite mul_add_distr_l. 
  decEq; apply mul_commut.
Qed. 

Theorem neg_mul_distr_l: 
  forall x y, neg(mul x y) = mul (neg x) y.
Proof.
  intros. unfold mul, neg.
  set (x' := unsigned x).  set (y' := unsigned y).
  apply eqm_samerepr. apply eqm_trans with (- (x' * y')).
  auto with ints.
  replace (- (x' * y')) with ((-x') * y') by ring.
  auto with ints.
Qed.

Theorem neg_mul_distr_r:
   forall x y, neg(mul x y) = mul x (neg y).
Proof.
  intros. rewrite (mul_commut x y). rewrite (mul_commut x (neg y)).
  apply neg_mul_distr_l. 
Qed.

(** ** Properties of binary decompositions *)

Lemma Z_shift_add_bin_decomp:
  forall x,
  Z_shift_add (fst (Z_bin_decomp x)) (snd (Z_bin_decomp x)) = x.
Proof.
  destruct x; simpl.
  auto.
  destruct p; reflexivity.
  destruct p; try reflexivity. simpl. 
  assert (forall z, 2 * (z + 1) - 1 = 2 * z + 1). intro; omega.
  generalize (H (Zpos p)); simpl. congruence.
Qed.

Lemma Z_shift_add_inj:
  forall b1 x1 b2 x2,
  Z_shift_add b1 x1 = Z_shift_add b2 x2 -> b1 = b2 /\ x1 = x2.
Proof.
  intros until x2.
  unfold Z_shift_add.
  destruct b1; destruct b2; intros;
  ((split; [reflexivity|omega]) || omegaContradiction).
Qed.

Lemma Z_of_bits_exten:
  forall n f1 f2,
  (forall z, 0 <= z < Z_of_nat n -> f1 z = f2 z) ->
  Z_of_bits n f1 = Z_of_bits n f2.
Proof.
  induction n; intros.
  reflexivity.
  simpl. rewrite inj_S in H. decEq. apply H. omega. 
  apply IHn. intros; apply H. omega.
Qed.

Opaque Zmult.

Lemma Z_of_bits_of_Z:
  forall x, eqm (Z_of_bits wordsize (bits_of_Z wordsize x)) x.
Proof.
  assert (forall n x, exists k,
    Z_of_bits n (bits_of_Z n x) = k * two_power_nat n + x).
  induction n; intros.
  rewrite two_power_nat_O. simpl. exists (-x). omega.
  rewrite two_power_nat_S. simpl.
  caseEq (Z_bin_decomp x). intros b y ZBD. simpl. 
  replace (Z_of_bits n (fun i => if zeq (i + 1) 0 then b else bits_of_Z n y (i + 1 - 1)))
     with (Z_of_bits n (bits_of_Z n y)).
  elim (IHn y). intros k1 EQ1. rewrite EQ1.
  rewrite <- (Z_shift_add_bin_decomp x). 
  rewrite ZBD. simpl. 
  exists k1.
  case b; unfold Z_shift_add; ring.
  apply Z_of_bits_exten. intros.
  rewrite zeq_false. decEq. omega. omega. 
  intro. exact (H wordsize x).
Qed.

Lemma bits_of_Z_zero:
  forall n x, bits_of_Z n 0 x = false.
Proof.
  induction n; simpl; intros.
  auto.
  case (zeq x 0); intro. auto. auto.
Qed.

Remark Z_bin_decomp_2xm1:
  forall x, Z_bin_decomp (2 * x - 1) = (true, x - 1).
Proof.
  intros. caseEq (Z_bin_decomp (2 * x - 1)). intros b y EQ.
  generalize (Z_shift_add_bin_decomp (2 * x - 1)).
  rewrite EQ; simpl.
  replace (2 * x - 1) with (Z_shift_add true (x - 1)).
  intro. elim (Z_shift_add_inj _ _ _ _ H); intros.
  congruence. unfold Z_shift_add. omega.
Qed.

Lemma bits_of_Z_mone:
  forall n x,
  0 <= x < Z_of_nat n -> 
  bits_of_Z n (two_power_nat n - 1) x = true.
Proof.
  induction n; intros.
  simpl in H. omegaContradiction.
  unfold bits_of_Z; fold bits_of_Z.
  rewrite two_power_nat_S. rewrite Z_bin_decomp_2xm1.
  rewrite inj_S in H. case (zeq x 0); intro. auto.
  apply IHn. omega. 
Qed.

Lemma Z_bin_decomp_shift_add:
  forall b x, Z_bin_decomp (Z_shift_add b x) = (b, x).
Proof.
  intros. caseEq (Z_bin_decomp (Z_shift_add b x)); intros b' x' EQ.
  generalize (Z_shift_add_bin_decomp (Z_shift_add b x)).
  rewrite EQ; simpl fst; simpl snd. intro.
  elim (Z_shift_add_inj _ _ _ _ H); intros.
  congruence.
Qed.

Lemma bits_of_Z_of_bits:
  forall n f i,
  0 <= i < Z_of_nat n ->
  bits_of_Z n (Z_of_bits n f) i = f i.
Proof.
  induction n; intros; simpl.
  simpl in H. omegaContradiction.
  rewrite Z_bin_decomp_shift_add.
  case (zeq i 0); intro.
  congruence.
  rewrite IHn. decEq. omega. rewrite inj_S in H. omega.
Qed.  

Lemma Z_of_bits_range:
  forall f, 0 <= Z_of_bits wordsize f < modulus.
Proof.
  unfold max_unsigned, modulus.
  generalize wordsize. induction n; simpl; intros.
  rewrite two_power_nat_O. omega.
  rewrite two_power_nat_S. generalize (IHn (fun i => f (i + 1))).
  set (x := Z_of_bits n (fun i => f (i + 1))).
  intro. destruct (f 0); unfold Z_shift_add; omega.
Qed.
Hint Resolve Z_of_bits_range: ints.

Lemma Z_of_bits_range_2:
  forall f, 0 <= Z_of_bits wordsize f <= max_unsigned.
Proof.
  intros. unfold max_unsigned.
  generalize (Z_of_bits_range f). omega.
Qed.
Hint Resolve Z_of_bits_range_2: ints.

Lemma bits_of_Z_below:
  forall n x i, i < 0 -> bits_of_Z n x i = false.
Proof.
  induction n; simpl; intros.
  reflexivity.
  destruct (Z_bin_decomp x). rewrite zeq_false. apply IHn.
  omega. omega.
Qed.

Lemma bits_of_Z_above:
  forall n x i, i >= Z_of_nat n -> bits_of_Z n x i = false.
Proof.
  induction n; intros; simpl.
  reflexivity.
  destruct (Z_bin_decomp x). rewrite zeq_false. apply IHn.
  rewrite inj_S in H. omega. rewrite inj_S in H. omega.
Qed.

Opaque Zmult.

Lemma Z_of_bits_excl:
  forall n f g h,
  (forall i, 0 <= i < Z_of_nat n -> f i && g i = false) ->
  (forall i, 0 <= i < Z_of_nat n -> f i || g i = h i) ->
  Z_of_bits n f + Z_of_bits n g = Z_of_bits n h.
Proof.
  induction n.
  intros; reflexivity.
  intros. simpl. rewrite inj_S in H. rewrite inj_S in H0.
  rewrite <- (IHn (fun i => f(i+1)) (fun i => g(i+1)) (fun i => h(i+1))).
  assert (0 <= 0 < Zsucc(Z_of_nat n)). omega.
  unfold Z_shift_add.
  rewrite <- H0; auto.
  set (F := Z_of_bits n (fun i => f(i + 1))).
  set (G := Z_of_bits n (fun i => g(i + 1))).
  caseEq (f 0); intros; caseEq (g 0); intros; simpl.
  generalize (H 0 H1). rewrite H2; rewrite H3. simpl. intros; discriminate.
  omega. omega. omega.
  intros; apply H. omega.
  intros; apply H0. omega.
Qed.

(** ** Properties of bitwise and, or, xor *)

Lemma bitwise_binop_commut:
  forall f,
  (forall a b, f a b = f b a) ->
  forall x y,
  bitwise_binop f x y = bitwise_binop f y x.
Proof.
  unfold bitwise_binop; intros.
  decEq. apply Z_of_bits_exten; intros. auto.
Qed.

Lemma bitwise_binop_assoc:
  forall f,
  (forall a b c, f a (f b c) = f (f a b) c) ->
  forall x y z,
  bitwise_binop f (bitwise_binop f x y) z =
  bitwise_binop f x (bitwise_binop f y z).
Proof.
  unfold bitwise_binop; intros.
  repeat rewrite unsigned_repr; auto with ints.
  decEq. apply Z_of_bits_exten; intros.
  repeat (rewrite bits_of_Z_of_bits; auto).
Qed.

Lemma bitwise_binop_idem:
  forall f,
  (forall a, f a a = a) ->
  forall x,
  bitwise_binop f x x = x.
Proof.
  unfold bitwise_binop; intros.
  transitivity (repr (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)))).
  decEq. apply Z_of_bits_exten; intros. auto.
  transitivity (repr (unsigned x)).
  apply eqm_samerepr. apply Z_of_bits_of_Z. apply repr_unsigned.
Qed.

Theorem and_commut: forall x y, and x y = and y x.
Proof (bitwise_binop_commut andb andb_comm).

Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z).
Proof (bitwise_binop_assoc andb andb_assoc).

Theorem and_zero: forall x, and x zero = zero.
Proof.
  unfold and, bitwise_binop, zero; intros. 
  transitivity (repr (Z_of_bits wordsize (bits_of_Z wordsize 0))).
  decEq. apply Z_of_bits_exten. intros.
  change (unsigned (repr 0)) with 0.
  rewrite bits_of_Z_zero. apply andb_b_false.
  auto with ints.
Qed.

Lemma mone_max_unsigned:
  mone = repr max_unsigned.
Proof.
  unfold mone. apply eqm_samerepr. exists (-1).
  unfold max_unsigned. omega.
Qed.

Theorem and_mone: forall x, and x mone = x.
Proof.
  unfold and, bitwise_binop; intros. 
  rewrite mone_max_unsigned. unfold max_unsigned, modulus.
  transitivity (repr (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)))).
  decEq. apply Z_of_bits_exten. intros.
  rewrite unsigned_repr. rewrite bits_of_Z_mone. 
  apply andb_b_true. omega. compute. intuition congruence.
  transitivity (repr (unsigned x)). 
  apply eqm_samerepr. apply Z_of_bits_of_Z.
  apply repr_unsigned.
Qed.

Theorem and_idem: forall x, and x x = x.
Proof.
  assert (forall b, b && b = b).
    destruct b; reflexivity.
  exact (bitwise_binop_idem andb H).
Qed.

Theorem or_commut: forall x y, or x y = or y x.
Proof (bitwise_binop_commut orb orb_comm).

Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z).
Proof (bitwise_binop_assoc orb orb_assoc).

Theorem or_zero: forall x, or x zero = x.
Proof.
  unfold or, bitwise_binop, zero; intros. 
  transitivity (repr (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)))).
  decEq. apply Z_of_bits_exten. intros.
  change (unsigned (repr 0)) with 0.
  rewrite bits_of_Z_zero. apply orb_b_false.
  transitivity (repr (unsigned x)); auto with ints.
  apply eqm_samerepr. apply Z_of_bits_of_Z.
Qed.

Theorem or_mone: forall x, or x mone = mone.
Proof.
  rewrite mone_max_unsigned. 
  unfold or, bitwise_binop; intros.
  decEq. 
  transitivity (Z_of_bits wordsize (bits_of_Z wordsize max_unsigned)).
  apply Z_of_bits_exten. intros.
  change (unsigned (repr max_unsigned)) with max_unsigned.
  unfold max_unsigned, modulus. rewrite bits_of_Z_mone; auto.
  apply orb_b_true. 
  apply eqm_small_eq; auto with ints. compute; intuition congruence.
Qed.

Theorem or_idem: forall x, or x x = x.
Proof.
  assert (forall b, b || b = b).
    destruct b; reflexivity.
  exact (bitwise_binop_idem orb H).
Qed.

Theorem and_or_distrib:
  forall x y z,
  and x (or y z) = or (and x y) (and x z).
Proof.
  intros; unfold and, or, bitwise_binop.
  decEq. repeat rewrite unsigned_repr; auto with ints.
  apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; auto.
  apply demorgan1.
Qed.  

Theorem xor_commut: forall x y, xor x y = xor y x.
Proof (bitwise_binop_commut xorb xorb_comm).

Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z).
Proof.
  assert (forall a b c, xorb a (xorb b c) = xorb (xorb a b) c).
  symmetry. apply xorb_assoc.
  exact (bitwise_binop_assoc xorb H).
Qed.

Theorem xor_zero: forall x, xor x zero = x.
Proof.
  unfold xor, bitwise_binop, zero; intros. 
  transitivity (repr (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)))).
  decEq. apply Z_of_bits_exten. intros.
  change (unsigned (repr 0)) with 0.
  rewrite bits_of_Z_zero. apply xorb_false.
  transitivity (repr (unsigned x)); auto with ints.
  apply eqm_samerepr. apply Z_of_bits_of_Z.
Qed.

Theorem xor_zero_one: xor zero one = one.
Proof. reflexivity. Qed.

Theorem xor_one_one: xor one one = zero.
Proof. reflexivity. Qed.

Theorem and_xor_distrib:
  forall x y z,
  and x (xor y z) = xor (and x y) (and x z).
Proof.
  intros; unfold and, xor, bitwise_binop.
  decEq. repeat rewrite unsigned_repr; auto with ints.
  apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; auto.
  assert (forall a b c, a && (xorb b c) = xorb (a && b) (a && c)).
    destruct a; destruct b; destruct c; reflexivity.
  auto.
Qed.  

(** ** Properties of shifts and rotates *)

Lemma Z_of_bits_shift:
  forall n f,
  exists k,
  Z_of_bits n (fun i => f (i - 1)) =
    k * two_power_nat n + Z_shift_add (f (-1)) (Z_of_bits n f).
Proof.
  induction n; intros.
  simpl. rewrite two_power_nat_O. unfold Z_shift_add.
  exists (if f (-1) then (-1) else 0).
  destruct (f (-1)); omega.
  rewrite two_power_nat_S. simpl. 
  elim (IHn (fun i => f (i + 1))). intros k' EQ.
  replace (Z_of_bits n (fun i => f (i - 1 + 1)))
     with (Z_of_bits n (fun i => f (i + 1 - 1))) in EQ.
  rewrite EQ.
  change (-1 + 1) with 0.
  exists k'.
  unfold Z_shift_add; destruct (f (-1)); destruct (f 0); ring.
  apply Z_of_bits_exten; intros.
  decEq. omega.
Qed.

Lemma Z_of_bits_shifts:
  forall m f,
  0 <= m ->
  (forall i, i < 0 -> f i = false) ->
  eqm (Z_of_bits wordsize (fun i => f (i - m)))
      (two_p m * Z_of_bits wordsize f).
Proof.
  intros. pattern m. apply natlike_ind.
  apply eqm_refl2. transitivity (Z_of_bits wordsize f).
  apply Z_of_bits_exten; intros. decEq. omega.
  simpl two_p. omega.
  intros. rewrite two_p_S; auto.
  set (f' := fun i => f (i - x)).
  apply eqm_trans with (Z_of_bits wordsize (fun i => f' (i - 1))).
  apply eqm_refl2. apply Z_of_bits_exten; intros.
  unfold f'. decEq. omega.
  apply eqm_trans with (Z_shift_add (f' (-1)) (Z_of_bits wordsize f')).
  exact (Z_of_bits_shift wordsize f').
  unfold f'. unfold Z_shift_add. rewrite H0. 
  rewrite <- Zmult_assoc. apply eqm_mult. apply eqm_refl.
  apply H2. omega. assumption.
Qed.

Lemma shl_mul_two_p:
  forall x y,
  shl x y = mul x (repr (two_p (unsigned y))).
Proof.
  intros. unfold shl, mul. 
  apply eqm_samerepr. 
  eapply eqm_trans.
  apply Z_of_bits_shifts.
  generalize (unsigned_range y). omega.
  intros; apply bits_of_Z_below; auto.
  rewrite Zmult_comm. apply eqm_mult.
  apply Z_of_bits_of_Z. apply eqm_unsigned_repr.
Qed.

Theorem shl_zero: forall x, shl x zero = x.
Proof.
  intros. rewrite shl_mul_two_p. 
  change (repr (two_p (unsigned zero))) with one.
  apply mul_one.
Qed.

Theorem shl_mul:
  forall x y,
  shl x y = mul x (shl one y).
Proof.
  intros. 
  assert (shl one y = repr (two_p (unsigned y))).
  rewrite shl_mul_two_p. rewrite mul_commut. rewrite mul_one. auto.
  rewrite H. apply shl_mul_two_p.
Qed.

Theorem shl_rolm:
  forall x n,
  ltu n (repr (Z_of_nat wordsize)) = true ->
  shl x n = rolm x n (shl mone n).
Proof.
  intros x n. unfold ltu. 
  rewrite unsigned_repr. case (zlt (unsigned n) (Z_of_nat wordsize)); intros LT XX.
  unfold shl, rolm, rol, and, bitwise_binop.
  decEq. apply Z_of_bits_exten; intros.
  repeat rewrite unsigned_repr; auto with ints.
  repeat rewrite bits_of_Z_of_bits; auto. 
  case (zlt z (unsigned n)); intro LT2.
  assert (z - unsigned n < 0). omega.
  rewrite (bits_of_Z_below wordsize (unsigned x) _ H0).
  rewrite (bits_of_Z_below wordsize (unsigned mone) _ H0).
  symmetry. apply andb_b_false. 
  assert (z - unsigned n < Z_of_nat wordsize).
    generalize (unsigned_range n). omega. 
  replace (unsigned mone) with (two_power_nat wordsize - 1).
  rewrite bits_of_Z_mone. rewrite andb_b_true. decEq.
  rewrite Zmod_small. auto. omega. omega. 
  rewrite mone_max_unsigned. reflexivity. 
  discriminate.
  compute; intuition congruence. 
Qed.

Lemma bitwise_binop_shl:
  forall f x y n,
  f false false = false ->
  bitwise_binop f (shl x n) (shl y n) = shl (bitwise_binop f x y) n.
Proof.
  intros. unfold bitwise_binop, shl.
  decEq. repeat rewrite unsigned_repr; auto with ints.
  apply Z_of_bits_exten; intros.
  case (zlt (z - unsigned n) 0); intro.
  transitivity false. repeat rewrite bits_of_Z_of_bits; auto.
  repeat rewrite bits_of_Z_below; auto.
  rewrite bits_of_Z_below; auto.
  repeat rewrite bits_of_Z_of_bits; auto.
  generalize (unsigned_range n). omega.
Qed.

Lemma and_shl:
  forall x y n,
  and (shl x n) (shl y n) = shl (and x y) n.
Proof.
  unfold and; intros. apply bitwise_binop_shl. reflexivity.
Qed.

Theorem shru_rolm:
  forall x n,
  ltu n (repr (Z_of_nat wordsize)) = true ->
  shru x n = rolm x (sub (repr (Z_of_nat wordsize)) n) (shru mone n).
Proof.
  intros x n. unfold ltu. 
  rewrite unsigned_repr. 
  case (zlt (unsigned n) (Z_of_nat wordsize)); intros LT XX.
  unfold shru, rolm, rol, and, bitwise_binop.
  decEq. apply Z_of_bits_exten; intros.
  repeat rewrite unsigned_repr; auto with ints.
  repeat rewrite bits_of_Z_of_bits; auto. 
  unfold sub. 
  change (unsigned (repr (Z_of_nat wordsize)))
    with (Z_of_nat wordsize).
  rewrite unsigned_repr. 
  case (zlt (z + unsigned n) (Z_of_nat wordsize)); intro LT2.
  replace (unsigned mone) with (two_power_nat wordsize - 1).
  rewrite bits_of_Z_mone. rewrite andb_b_true.
  decEq. 
  replace (z - (Z_of_nat wordsize - unsigned n))
     with ((z + unsigned n) + (-1) * Z_of_nat wordsize).
  rewrite Z_mod_plus. symmetry. apply Zmod_small.
  generalize (unsigned_range n). omega. omega. omega. 
  generalize (unsigned_range n). omega. 
  reflexivity.
  rewrite (bits_of_Z_above wordsize (unsigned x) _ LT2).
  rewrite (bits_of_Z_above wordsize (unsigned mone) _ LT2).
  symmetry. apply andb_b_false.
  split. omega. apply Zle_trans with (Z_of_nat wordsize).
  generalize (unsigned_range n); omega. compute; intuition congruence.
  discriminate.
  split. omega. compute; intuition congruence.
Qed.

Lemma bitwise_binop_shru:
  forall f x y n,
  f false false = false ->
  bitwise_binop f (shru x n) (shru y n) = shru (bitwise_binop f x y) n.
Proof.
  intros. unfold bitwise_binop, shru.
  decEq. repeat rewrite unsigned_repr; auto with ints.
  apply Z_of_bits_exten; intros.
  case (zlt (z + unsigned n) (Z_of_nat wordsize)); intro.
  repeat rewrite bits_of_Z_of_bits; auto.
  generalize (unsigned_range n); omega.
  transitivity false. repeat rewrite bits_of_Z_of_bits; auto.
  repeat rewrite bits_of_Z_above; auto.
  rewrite bits_of_Z_above; auto.
Qed.

Lemma and_shru:
  forall x y n,
  and (shru x n) (shru y n) = shru (and x y) n.
Proof.
  unfold and; intros. apply bitwise_binop_shru. reflexivity.
Qed.

Theorem rol_zero:
  forall x,
  rol x zero = x.
Proof.
  intros. unfold rol. transitivity (repr (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)))).
  decEq. 
  transitivity (repr (unsigned x)).
  decEq. apply eqm_small_eq. apply Z_of_bits_of_Z. 
  auto with ints. auto with ints. auto with ints. 
Qed.

Lemma bitwise_binop_rol:
  forall f x y n,
  bitwise_binop f (rol x n) (rol y n) = rol (bitwise_binop f x y) n.
Proof.
  intros. unfold bitwise_binop, rol.
  decEq. repeat (rewrite unsigned_repr; auto with ints).
  apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; auto.
  apply Z_mod_lt. compute. auto. 
Qed.

Theorem rol_and:
  forall x y n,
  rol (and x y) n = and (rol x n) (rol y n).
Proof.
  intros. symmetry. unfold and. apply bitwise_binop_rol.
Qed.

Theorem rol_rol:
  forall x n m,
  rol (rol x n) m = rol x (modu (add n m) (repr (Z_of_nat wordsize))).
Proof.
  intros. unfold rol. decEq.
  repeat (rewrite unsigned_repr; auto with ints).
  apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; auto.
  decEq. unfold modu, add. 
  set (W := Z_of_nat wordsize).
  set (M := unsigned m); set (N := unsigned n).
  assert (W > 0). compute; auto.
  assert (forall a, eqmod W a (unsigned (repr a))).
    intro. elim (eqm_unsigned_repr a). intros k EQ.
    red. exists (k * (modulus / W)). 
    replace (k * (modulus / W) * W) with (k * modulus). auto.
    rewrite <- Zmult_assoc. reflexivity.
  apply eqmod_mod_eq. auto.
  change (unsigned (repr W)) with W.
  apply eqmod_trans with (z - (N + M) mod W).
  apply eqmod_trans with ((z - M) - N).
  apply eqmod_sub. apply eqmod_sym. apply eqmod_mod. auto.
  apply eqmod_refl. 
  replace (z - M - N) with (z - (N + M)).
  apply eqmod_sub. apply eqmod_refl. apply eqmod_mod. auto.
  omega.
  apply eqmod_sub. apply eqmod_refl. 
  eapply eqmod_trans; [idtac|apply H1].
  eapply eqmod_trans; [idtac|apply eqmod_mod].
  apply eqmod_sym. eapply eqmod_trans; [idtac|apply eqmod_mod].
  apply eqmod_sym. apply H1. auto. auto. 
  apply Z_mod_lt. compute; auto.
Qed.

Theorem rolm_zero:
  forall x m,
  rolm x zero m = and x m.
Proof.
  intros. unfold rolm. rewrite rol_zero. auto.
Qed.

Theorem rolm_rolm:
  forall x n1 m1 n2 m2,
  rolm (rolm x n1 m1) n2 m2 =
    rolm x (modu (add n1 n2) (repr (Z_of_nat wordsize)))
           (and (rol m1 n2) m2).
Proof.
  intros.
  unfold rolm. rewrite rol_and. rewrite and_assoc. 
  rewrite rol_rol. reflexivity.
Qed.

Theorem rol_or:
  forall x y n,
  rol (or x y) n = or (rol x n) (rol y n).
Proof.
  intros. symmetry. unfold or. apply bitwise_binop_rol.
Qed.

Theorem or_rolm:
  forall x n m1 m2,
  or (rolm x n m1) (rolm x n m2) = rolm x n (or m1 m2).
Proof.
  intros; unfold rolm. symmetry. apply and_or_distrib. 
Qed.

(** ** Relation between shifts and powers of 2 *)

Fixpoint powerserie (l: list Z): Z :=
  match l with
  | nil => 0
  | x :: xs => two_p x + powerserie xs
  end.

Lemma Z_bin_decomp_range:
  forall x n,
  0 <= x < 2 * n -> 0 <= snd (Z_bin_decomp x) < n.
Proof.
  intros. rewrite <- (Z_shift_add_bin_decomp x) in H.
  unfold Z_shift_add in H. destruct (fst (Z_bin_decomp x)); omega.
Qed.

Lemma Z_one_bits_powerserie:
  forall x, 0 <= x < modulus -> x = powerserie (Z_one_bits wordsize x 0).
Proof.
  assert (forall n x i, 
    0 <= i ->
    0 <= x < two_power_nat n ->
    x * two_p i = powerserie (Z_one_bits n x i)).
  induction n; intros.
  simpl. rewrite two_power_nat_O in H0. 
  assert (x = 0). omega. subst x. omega.
  rewrite two_power_nat_S in H0. simpl Z_one_bits.
  generalize (Z_shift_add_bin_decomp x).
  generalize (Z_bin_decomp_range x _ H0).
  case (Z_bin_decomp x). simpl. intros b y RANGE SHADD. 
  subst x. unfold Z_shift_add.
  destruct b. simpl powerserie. rewrite <- IHn. 
  rewrite two_p_is_exp. change (two_p 1) with 2. ring.
  auto. omega. omega. auto.
  rewrite <- IHn. 
  rewrite two_p_is_exp. change (two_p 1) with 2. ring.
  auto. omega. omega. auto.
  intros. rewrite <- H. change (two_p 0) with 1. omega.
  omega. exact H0.
Qed.

Lemma Z_one_bits_range:
  forall x i, In i (Z_one_bits wordsize x 0) -> 0 <= i < Z_of_nat wordsize.
Proof.
  assert (forall n x i j,
    In j (Z_one_bits n x i) -> i <= j < i + Z_of_nat n).
  induction n; simpl In.
  intros; elim H.
  intros x i j. destruct (Z_bin_decomp x). case b.
  rewrite inj_S. simpl. intros [A|B]. subst j. omega.
  generalize (IHn _ _ _ B). omega.
  intros B. rewrite inj_S. generalize (IHn _ _ _ B). omega.
  intros. generalize (H wordsize x 0 i H0). omega.
Qed.

Lemma is_power2_rng:
  forall n logn,
  is_power2 n = Some logn ->
  0 <= unsigned logn < Z_of_nat wordsize.
Proof.
  intros n logn. unfold is_power2.
  generalize (Z_one_bits_range (unsigned n)).
  destruct (Z_one_bits wordsize (unsigned n) 0).
  intros; discriminate.
  destruct l.
  intros. injection H0; intro; subst logn; clear H0.
  assert (0 <= z < Z_of_nat wordsize).
  apply H. auto with coqlib.
  rewrite unsigned_repr. auto.
  assert (Z_of_nat wordsize < max_unsigned). compute. auto.
  omega.
  intros; discriminate.
Qed.

Theorem is_power2_range:
  forall n logn,
  is_power2 n = Some logn -> ltu logn (repr (Z_of_nat wordsize)) = true.
Proof.
  intros. unfold ltu.
  change (unsigned (repr (Z_of_nat wordsize))) with (Z_of_nat wordsize).
  generalize (is_power2_rng _ _ H). 
  case (zlt (unsigned logn) (Z_of_nat wordsize)); intros.
  auto. omegaContradiction. 
Qed. 

Lemma is_power2_correct:
  forall n logn,
  is_power2 n = Some logn ->
  unsigned n = two_p (unsigned logn).
Proof.
  intros n logn. unfold is_power2.
  generalize (Z_one_bits_powerserie (unsigned n) (unsigned_range n)).
  generalize (Z_one_bits_range (unsigned n)).
  destruct (Z_one_bits wordsize (unsigned n) 0).
  intros; discriminate.
  destruct l.
  intros. simpl in H0. injection H1; intros; subst logn; clear H1.
  rewrite unsigned_repr. replace (two_p z) with (two_p z + 0).
  auto. omega. elim (H z); intros. 
  assert (Z_of_nat wordsize < max_unsigned). compute; auto.
  omega. auto with coqlib. 
  intros; discriminate.
Qed.

Theorem mul_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  mul x n = shl x logn.
Proof.
  intros. generalize (is_power2_correct n logn H); intro.
  rewrite shl_mul_two_p. rewrite <- H0. rewrite repr_unsigned.
  auto.
Qed.

Lemma Z_of_bits_shift_rev:
  forall n f,
  (forall i, i >= Z_of_nat n -> f i = false) ->
  Z_of_bits n f = Z_shift_add (f 0) (Z_of_bits n (fun i => f(i + 1))).
Proof.
  induction n; intros.
  simpl. rewrite H. reflexivity. unfold Z_of_nat. omega.
  simpl. rewrite (IHn (fun i => f (i + 1))).
  reflexivity. 
  intros. apply H. rewrite inj_S. omega.
Qed.

Lemma Z_of_bits_shifts_rev:
  forall m f,
  0 <= m ->
  (forall i, i >= Z_of_nat wordsize -> f i = false) ->
  exists k,
  Z_of_bits wordsize f = k + two_p m * Z_of_bits wordsize (fun i => f(i + m))
  /\ 0 <= k < two_p m.
Proof.
  intros. pattern m. apply natlike_ind.
  exists 0. change (two_p 0) with 1. split.
  transitivity (Z_of_bits wordsize (fun i => f (i + 0))).
  apply Z_of_bits_exten. intros. decEq. omega.
  omega. omega.
  intros x POSx [k [EQ1 RANGE1]].
  set (f' := fun i => f (i + x)) in *.
  assert (forall i, i >= Z_of_nat wordsize -> f' i = false).
  intros. unfold f'. apply H0. omega.  
  generalize (Z_of_bits_shift_rev wordsize f' H1). intro.
  rewrite EQ1. rewrite H2. 
  set (z := Z_of_bits wordsize (fun i => f (i + Zsucc x))).
  replace (Z_of_bits wordsize (fun i => f' (i + 1))) with z.
  rewrite two_p_S.
  case (f' 0); unfold Z_shift_add.
  exists (k + two_p x). split. ring. omega. 
  exists k. split. ring. omega.
  auto. 
  unfold z. apply Z_of_bits_exten; intros. unfold f'.
  decEq. omega. 
  auto.
Qed.

Lemma shru_div_two_p:
  forall x y,
  shru x y = repr (unsigned x / two_p (unsigned y)).
Proof.
  intros. unfold shru. 
  set (x' := unsigned x). set (y' := unsigned y).
  elim (Z_of_bits_shifts_rev y' (bits_of_Z wordsize x')).
  intros k [EQ RANGE].
  replace (Z_of_bits wordsize (bits_of_Z wordsize x')) with x' in EQ.
  rewrite Zplus_comm in EQ. rewrite Zmult_comm in EQ.
  generalize (Zdiv_unique _ _ _ _ EQ RANGE). intros.
  rewrite H. auto.
  apply eqm_small_eq. apply eqm_sym. apply Z_of_bits_of_Z. 
  unfold x'. apply unsigned_range. 
  auto with ints.
  generalize (unsigned_range y). unfold y'. omega.
  intros. apply bits_of_Z_above. auto.
Qed.

Theorem shru_zero:
  forall x, shru x zero = x.
Proof.
  intros. rewrite shru_div_two_p. change (two_p (unsigned zero)) with 1.
  transitivity (repr (unsigned x)). decEq. apply Zdiv_unique with 0.
  omega. omega. auto with ints.
Qed.

Theorem shr_zero:
  forall x, shr x zero = x.
Proof.
  intros. unfold shr. change (two_p (unsigned zero)) with 1.
  replace (signed x / 1) with (signed x).
  apply repr_signed.
  symmetry. apply Zdiv_unique with 0. omega. omega. 
Qed.

Theorem divu_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  divu x n = shru x logn.
Proof.
  intros. generalize (is_power2_correct n logn H). intro.
  symmetry. unfold divu. rewrite H0. apply shru_div_two_p.
Qed.

Lemma modu_divu_Euclid:
  forall x y, y <> zero -> x = add (mul (divu x y) y) (modu x y).
Proof.
  intros. unfold add, mul, divu, modu.
  transitivity (repr (unsigned x)). auto with ints. 
  apply eqm_samerepr. 
  set (x' := unsigned x). set (y' := unsigned y).
  apply eqm_trans with ((x' / y') * y' + x' mod y').
  apply eqm_refl2. rewrite Zmult_comm. apply Z_div_mod_eq.
  generalize (unsigned_range y); intro.
  assert (unsigned y <> 0). red; intro. 
  elim H. rewrite <- (repr_unsigned y). unfold zero. congruence.
  unfold y'. omega.
  auto with ints.
Qed.

Theorem modu_divu:
  forall x y, y <> zero -> modu x y = sub x (mul (divu x y) y).
Proof.
  intros. 
  assert (forall a b c, a = add b c -> c = sub a b).
  intros. subst a. rewrite sub_add_l. rewrite sub_idem.
  rewrite add_commut. rewrite add_zero. auto.
  apply H0. apply modu_divu_Euclid. auto.
Qed.

Theorem mods_divs:
  forall x y, mods x y = sub x (mul (divs x y) y).
Proof.
  intros; unfold mods, sub, mul, divs.
  apply eqm_samerepr.
  unfold Zmod_round.
  apply eqm_sub. apply eqm_signed_unsigned. 
  apply eqm_unsigned_repr_r. 
  apply eqm_mult. auto with ints. apply eqm_signed_unsigned.
Qed.

Theorem divs_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  divs x n = shrx x logn.
Proof.
  intros. generalize (is_power2_correct _ _ H); intro.
  unfold shrx. rewrite shl_mul_two_p.
  rewrite mul_commut. rewrite mul_one.
  rewrite <- H0. rewrite repr_unsigned. auto.
Qed.

Theorem shrx_carry:
  forall x y,
  add (shr x y) (shr_carry x y) = shrx x y.
Proof.
  intros. unfold shr_carry. 
  rewrite sub_add_opp. rewrite add_permut. 
  rewrite add_neg_zero. apply add_zero.
Qed.

Lemma add_and:
  forall x y z,
  and y z = zero ->
  or y z = mone ->
  add (and x y) (and x z) = x.
Proof.
  intros. unfold add. transitivity (repr (unsigned x)); auto with ints.
  decEq. unfold and, bitwise_binop.
  repeat rewrite unsigned_repr; auto with ints.
  transitivity (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x))).
  apply Z_of_bits_excl. intros. 
  assert (forall a b c, a && b && (a && c) = a && (b && c)).
    destruct a; destruct b; destruct c; reflexivity.
  rewrite H2. 
  replace (bits_of_Z wordsize (unsigned y) i &&
           bits_of_Z wordsize (unsigned z) i)
     with (bits_of_Z wordsize (unsigned (and y z)) i).
  rewrite H. change (unsigned zero) with 0. 
  rewrite bits_of_Z_zero. apply andb_b_false.
  unfold and, bitwise_binop. 
  rewrite unsigned_repr; auto with ints. rewrite bits_of_Z_of_bits. 
  reflexivity. auto. 
  intros. rewrite <- demorgan1. 
  replace (bits_of_Z wordsize (unsigned y) i ||
           bits_of_Z wordsize (unsigned z) i)
     with (bits_of_Z wordsize (unsigned (or y z)) i).
  rewrite H0. change (unsigned mone) with (two_power_nat wordsize - 1).
  rewrite bits_of_Z_mone; auto. apply andb_b_true.
  unfold or, bitwise_binop. 
  rewrite unsigned_repr; auto with ints. rewrite bits_of_Z_of_bits; auto.
  apply eqm_small_eq; auto with ints. apply Z_of_bits_of_Z. 
Qed.

(** To prove equalities involving modulus and bitwise ``and'', we need to
  show complicated integer equalities involving one integer variable
  that ranges between 0 and 31.  Rather than proving these equalities,
  we ask Coq to check them by computing the 32 values of the 
  left and right-hand sides and checking that they are equal.
  This is an instance of proving by reflection. *)

Section REFLECTION.

Variables (f g: int -> int).

Fixpoint check_equal_on_range (n: nat) : bool :=
  match n with
  | O => true
  | S n => if eq (f (repr (Z_of_nat n))) (g (repr (Z_of_nat n)))
           then check_equal_on_range n
           else false
  end.

Lemma check_equal_on_range_correct:
  forall n, 
  check_equal_on_range n = true ->
  forall z, 0 <= z < Z_of_nat n -> f (repr z) = g (repr z).
Proof.
  induction n.
  simpl; intros;  omegaContradiction.
  simpl check_equal_on_range.
  set (fn := f (repr (Z_of_nat n))).
  set (gn := g (repr (Z_of_nat n))).
  generalize (eq_spec fn gn).
  case (eq fn gn); intros.
  rewrite inj_S in H1. 
  assert (0 <= z < Z_of_nat n \/ z = Z_of_nat n). omega.
  elim H2; intro.
  apply IHn. auto. auto.
  subst z; auto. 
  discriminate. 
Qed.

Lemma equal_on_range:
  check_equal_on_range wordsize = true ->
  forall n, 0 <= unsigned n < Z_of_nat wordsize ->
  f n = g n.
Proof.
  intros. replace n with (repr (unsigned n)). 
  apply check_equal_on_range_correct with wordsize; auto.
  apply repr_unsigned.
Qed.

End REFLECTION.

(** Here are the three equalities that we prove by reflection. *)

Remark modu_and_masks_1:
  forall logn, 0 <= unsigned logn < Z_of_nat wordsize ->
  rol (shru mone logn) logn = shl mone logn.
Proof.
  apply (equal_on_range
          (fun l => rol (shru mone l) l)
          (fun l => shl mone l)).
  vm_compute; auto.
Qed.

Remark modu_and_masks_2:
  forall logn, 0 <= unsigned logn < Z_of_nat wordsize ->
  and (shl mone logn) (sub (repr (two_p (unsigned logn))) one) = zero.
Proof.
  apply (equal_on_range
          (fun l => and (shl mone l)
                        (sub (repr (two_p (unsigned l))) one))
          (fun l => zero)).
  vm_compute; auto.
Qed.

Remark modu_and_masks_3:
  forall logn, 0 <= unsigned logn < Z_of_nat wordsize ->
  or (shl mone logn) (sub (repr (two_p (unsigned logn))) one) = mone.
Proof.
  apply (equal_on_range
          (fun l => or (shl mone l)
                        (sub (repr (two_p (unsigned l))) one))
          (fun l => mone)).
  vm_compute; auto.
Qed.

Theorem modu_and:
  forall x n logn,
  is_power2 n = Some logn ->
  modu x n = and x (sub n one).
Proof.
  intros. generalize (is_power2_correct _ _ H); intro.
  generalize (is_power2_rng _ _ H); intro.
  assert (n <> zero). 
    red; intro. subst n. change (unsigned zero) with 0 in H0.
    assert (two_p (unsigned logn) > 0). apply two_p_gt_ZERO. omega.
    omegaContradiction.
  generalize (modu_divu_Euclid x n H2); intro.
  assert (forall a b c, add a b = add a c -> b = c).
    intros. assert (sub (add a b) a = sub (add a c) a). congruence.
    repeat rewrite sub_add_l in H5. repeat rewrite sub_idem in H5.
    rewrite add_commut in H5; rewrite add_zero in H5.
    rewrite add_commut in H5; rewrite add_zero in H5.
    auto.
  apply H4 with (mul (divu x n) n).
  rewrite <- H3. 
  rewrite (divu_pow2 x n logn H). 
  rewrite (mul_pow2 (shru x logn) n logn H). 
  rewrite shru_rolm. rewrite shl_rolm. rewrite rolm_rolm.
  rewrite sub_add_opp. rewrite add_assoc. 
  replace (add (neg logn) logn) with zero.
  rewrite add_zero.
  change (modu (repr (Z_of_nat wordsize)) (repr (Z_of_nat wordsize)))
    with zero.
  rewrite rolm_zero. 
  symmetry.
  replace n with (repr (two_p (unsigned logn))).
  rewrite modu_and_masks_1; auto.
  rewrite and_idem.
  apply add_and. apply modu_and_masks_2; auto. apply modu_and_masks_3; auto.
  transitivity (repr (unsigned n)). decEq. auto. auto with ints.
  rewrite add_commut. rewrite add_neg_zero. auto.
  unfold ltu. apply zlt_true. 
  change (unsigned (repr (Z_of_nat wordsize))) with (Z_of_nat wordsize).
  omega.
  unfold ltu. apply zlt_true. 
  change (unsigned (repr (Z_of_nat wordsize))) with (Z_of_nat wordsize).
  omega.
Qed.

(** ** Properties of integer zero extension and sign extension. *)

Theorem cast8unsigned_and:
  forall x, cast8unsigned x = and x (repr 255).
Proof.
  intros; unfold cast8unsigned. 
  change (repr (unsigned x mod 256)) with (modu x (repr 256)).
  change (repr 255) with (sub (repr 256) one).
  apply modu_and with (repr 8). reflexivity.
Qed.

Theorem cast16unsigned_and:
  forall x, cast16unsigned x = and x (repr 65535).
Proof.
  intros; unfold cast16unsigned. 
  change (repr (unsigned x mod 65536)) with (modu x (repr 65536)).
  change (repr 65535) with (sub (repr 65536) one).
  apply modu_and with (repr 16). reflexivity.
Qed.

Lemma eqmod_256_unsigned_repr:
  forall a, eqmod 256 a (unsigned (repr a)).
Proof.
  intros. generalize (eqm_unsigned_repr a). unfold eqm, eqmod.
  intros [k EQ]. exists (k * (modulus / 256)). 
  replace (k * (modulus / 256) * 256)  
     with (k * ((modulus / 256) * 256)).
  exact EQ. ring. 
Qed.

Lemma eqmod_65536_unsigned_repr:
  forall a, eqmod 65536 a (unsigned (repr a)).
Proof.
  intros. generalize (eqm_unsigned_repr a). unfold eqm, eqmod.
  intros [k EQ]. exists (k * (modulus / 65536)). 
  replace (k * (modulus / 65536) * 65536)  
     with (k * ((modulus / 65536) * 65536)).
  exact EQ. ring. 
Qed.

Theorem cast8_signed_unsigned:
  forall n, cast8signed (cast8unsigned n) = cast8signed n.
Proof.
  intros; unfold cast8signed, cast8unsigned.
  set (N := unsigned n).
  rewrite unsigned_repr. 
  replace ((N mod 256) mod 256) with (N mod 256).
  auto.
  symmetry. apply Zmod_small. apply Z_mod_lt. omega.
  assert (0 <= N mod 256 < 256). apply Z_mod_lt. omega.
  assert (256 < max_unsigned). compute; auto.
  omega.
Qed.

Theorem cast8_unsigned_signed:
  forall n, cast8unsigned (cast8signed n) = cast8unsigned n.
Proof.
  intros; unfold cast8signed, cast8unsigned.
  set (N := unsigned n mod 256).
  assert (0 <= N < 256). unfold N; apply Z_mod_lt. omega.
  assert (N mod 256 = N). apply Zmod_small. auto.
  assert (256 <= max_unsigned). compute; congruence.
  decEq. 
  case (zlt N 128); intro.
  rewrite unsigned_repr. auto. omega.
  transitivity (N mod 256); auto. 
  apply eqmod_mod_eq. omega. 
  apply eqmod_trans with (N - 256). apply eqmod_sym. apply eqmod_256_unsigned_repr.
  assert (eqmod 256 (N - 256) (N - 0)).
    apply eqmod_sub. apply eqmod_refl. 
    red. exists 1; reflexivity.
  replace (N - 0) with N in H2. auto. omega.
Qed.

Theorem cast16_unsigned_signed:
  forall n, cast16unsigned (cast16signed n) = cast16unsigned n.
Proof.
  intros; unfold cast16signed, cast16unsigned.
  set (N := unsigned n mod 65536).
  assert (0 <= N < 65536). unfold N; apply Z_mod_lt. omega.
  assert (N mod 65536 = N). apply Zmod_small. auto.
  assert (65536 <= max_unsigned). compute; congruence.
  decEq. 
  case (zlt N 32768); intro.
  rewrite unsigned_repr. auto. omega.
  transitivity (N mod 65536); auto. 
  apply eqmod_mod_eq. omega. 
  apply eqmod_trans with (N - 65536). apply eqmod_sym. apply eqmod_65536_unsigned_repr.
  assert (eqmod 65536 (N - 65536) (N - 0)).
    apply eqmod_sub. apply eqmod_refl. 
    red. exists 1; reflexivity.
  replace (N - 0) with N in H2. auto. omega.
Qed.

Theorem cast8_unsigned_idem:
  forall n, cast8unsigned (cast8unsigned n) = cast8unsigned n.
Proof.
  intros. repeat rewrite cast8unsigned_and. 
  rewrite and_assoc. reflexivity. 
Qed.

Theorem cast16_unsigned_idem:
  forall n, cast16unsigned (cast16unsigned n) = cast16unsigned n.
Proof.
  intros. repeat rewrite cast16unsigned_and. 
  rewrite and_assoc. reflexivity. 
Qed.

Theorem cast8_signed_idem:
  forall n, cast8signed (cast8signed n) = cast8signed n.
Proof.
  intros; unfold cast8signed.
  set (N := unsigned n mod 256).
  assert (256 < max_unsigned). compute; auto.
  assert (0 <= N < 256). unfold N. apply Z_mod_lt. omega. 
  case (zlt N 128); intro.
  assert (unsigned (repr N) = N).
    apply unsigned_repr. omega.
  rewrite H1.
  replace (N mod 256) with N. apply zlt_true. auto.
  symmetry. apply Zmod_small. auto.
  set (M := (unsigned (repr (N - 256)) mod 256)).
  assert (M = N).
    unfold M, N. apply eqmod_mod_eq. omega. 
    apply eqmod_trans with (unsigned n mod 256 - 256).
    apply eqmod_sym. apply eqmod_256_unsigned_repr. 
    apply eqmod_trans with (unsigned n - 0).
    apply eqmod_sub. 
    apply eqmod_sym. apply eqmod_mod. omega.
    unfold eqmod. exists 1; omega.
    apply eqmod_refl2. omega.
  rewrite H1. rewrite zlt_false; auto.
Qed.

Theorem cast16_signed_idem:
  forall n, cast16signed (cast16signed n) = cast16signed n.
Proof.
  intros; unfold cast16signed.
  set (N := unsigned n mod 65536).
  assert (65536 < max_unsigned). compute; auto.
  assert (0 <= N < 65536). unfold N. apply Z_mod_lt. omega. 
  case (zlt N 32768); intro.
  assert (unsigned (repr N) = N).
    apply unsigned_repr. omega.
  rewrite H1.
  replace (N mod 65536) with N. apply zlt_true. auto.
  symmetry. apply Zmod_small. auto.
  set (M := (unsigned (repr (N - 65536)) mod 65536)).
  assert (M = N).
    unfold M, N. apply eqmod_mod_eq. omega. 
    apply eqmod_trans with (unsigned n mod 65536 - 65536).
    apply eqmod_sym. apply eqmod_65536_unsigned_repr. 
    apply eqmod_trans with (unsigned n - 0).
    apply eqmod_sub. 
    apply eqmod_sym. apply eqmod_mod. omega.
    unfold eqmod. exists 1; omega.
    apply eqmod_refl2. omega.
  rewrite H1. rewrite zlt_false; auto.
Qed.

Theorem cast8_signed_equal_if_unsigned_equal:
  forall x y, 
  cast8unsigned x = cast8unsigned y ->
  cast8signed x = cast8signed y.
Proof.
  unfold cast8unsigned, cast8signed; intros until y.
  set (x' := unsigned x mod 256).
  set (y' := unsigned y mod 256).
  intro. 
  assert (eqm x' y').
    apply eqm_trans with (unsigned (repr x')). apply eqm_unsigned_repr.
    rewrite H. apply eqm_sym. apply eqm_unsigned_repr.
  assert (forall z, 0 <= z mod 256 < modulus).
    intros. 
    assert (0 <= z mod 256 < 256). apply Z_mod_lt. omega.
    assert (256 <= modulus). compute. congruence.
    omega.
  assert (x' = y').
    apply eqm_small_eq; unfold x', y'; auto. 
  rewrite H2. auto.
Qed.

Theorem cast16_signed_equal_if_unsigned_equal:
  forall x y, 
  cast16unsigned x = cast16unsigned y ->
  cast16signed x = cast16signed y.
Proof.
  unfold cast16unsigned, cast16signed; intros until y.
  set (x' := unsigned x mod 65536).
  set (y' := unsigned y mod 65536).
  intro. 
  assert (eqm x' y').
    apply eqm_trans with (unsigned (repr x')). apply eqm_unsigned_repr.
    rewrite H. apply eqm_sym. apply eqm_unsigned_repr.
  assert (forall z, 0 <= z mod 65536 < modulus).
    intros. 
    assert (0 <= z mod 65536 < 65536). apply Z_mod_lt. omega.
    assert (65536 <= modulus). compute. congruence.
    omega.
  assert (x' = y').
    apply eqm_small_eq; unfold x', y'; auto. 
  rewrite H2. auto.
Qed.

(** ** Properties of [one_bits] (decomposition in sum of powers of two) *)

Opaque Z_one_bits. (* Otherwise, next Qed blows up! *)

Theorem one_bits_range:
  forall x i, In i (one_bits x) -> ltu i (repr (Z_of_nat wordsize)) = true.
Proof.
  intros. unfold one_bits in H.
  elim (list_in_map_inv _ _ _ H). intros i0 [EQ IN].
  subst i. unfold ltu. apply zlt_true. 
  generalize (Z_one_bits_range _ _ IN). intros.
  assert (0 <= Z_of_nat wordsize <= max_unsigned).
    compute. intuition congruence.
  repeat rewrite unsigned_repr; omega.
Qed.

Fixpoint int_of_one_bits (l: list int) : int :=
  match l with
  | nil => zero
  | a :: b => add (shl one a) (int_of_one_bits b)
  end.

Theorem one_bits_decomp:
  forall x, x = int_of_one_bits (one_bits x).
Proof.
  intros. 
  transitivity (repr (powerserie (Z_one_bits wordsize (unsigned x) 0))).
  transitivity (repr (unsigned x)).
  auto with ints. decEq. apply Z_one_bits_powerserie.
  auto with ints.
  unfold one_bits. 
  generalize (Z_one_bits_range (unsigned x)).
  generalize (Z_one_bits wordsize (unsigned x) 0).
  induction l.
  intros; reflexivity.
  intros; simpl. rewrite <- IHl. unfold add. apply eqm_samerepr.
  apply eqm_add. rewrite shl_mul_two_p. rewrite mul_commut. 
  rewrite mul_one. apply eqm_unsigned_repr_r. 
  rewrite unsigned_repr. auto with ints.
  generalize (H a (in_eq _ _)). 
  assert (Z_of_nat wordsize < max_unsigned). compute; auto. omega.
  auto with ints.
  intros; apply H; auto with coqlib.
Qed.

(** ** Properties of comparisons *)

Theorem negate_cmp:
  forall c x y, cmp (negate_comparison c) x y = negb (cmp c x y).
Proof.
  intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.

Theorem negate_cmpu:
  forall c x y, cmpu (negate_comparison c) x y = negb (cmpu c x y).
Proof.
  intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.

Theorem swap_cmp:
  forall c x y, cmp (swap_comparison c) x y = cmp c y x.
Proof.
  intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.

Theorem swap_cmpu:
  forall c x y, cmpu (swap_comparison c) x y = cmpu c y x.
Proof.
  intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.

Lemma translate_eq:
  forall x y d,
  eq (add x d) (add y d) = eq x y.
Proof.
  intros. unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
  unfold add. rewrite e. apply zeq_true.
  apply zeq_false. unfold add. red; intro. apply n. 
  apply eqm_small_eq; auto with ints.
  replace (unsigned x) with ((unsigned x + unsigned d) - unsigned d).
  replace (unsigned y) with ((unsigned y + unsigned d) - unsigned d).
  apply eqm_sub. apply eqm_trans with (unsigned (repr (unsigned x + unsigned d))).
  eauto with ints. apply eqm_trans with (unsigned (repr (unsigned y + unsigned d))).
  eauto with ints. eauto with ints. eauto with ints.
  omega. omega.
Qed.

Lemma translate_lt:
  forall x y d,
  min_signed <= signed x + signed d <= max_signed ->
  min_signed <= signed y + signed d <= max_signed ->
  lt (add x d) (add y d) = lt x y.
Proof.
  intros. repeat rewrite add_signed. unfold lt.
  repeat rewrite signed_repr; auto. case (zlt (signed x) (signed y)); intro.
  apply zlt_true. omega.
  apply zlt_false. omega.
Qed.

Theorem translate_cmp:
  forall c x y d,
  min_signed <= signed x + signed d <= max_signed ->
  min_signed <= signed y + signed d <= max_signed ->
  cmp c (add x d) (add y d) = cmp c x y.
Proof.
  intros. unfold cmp.
  rewrite translate_eq. repeat rewrite translate_lt; auto.
Qed.  

Theorem notbool_isfalse_istrue:
  forall x, is_false x -> is_true (notbool x).
Proof.
  unfold is_false, is_true, notbool; intros; subst x. 
  simpl. discriminate.
Qed.

Theorem notbool_istrue_isfalse:
  forall x, is_true x -> is_false (notbool x).
Proof.
  unfold is_false, is_true, notbool; intros.
  generalize (eq_spec x zero). case (eq x zero); intro.
  contradiction. auto.
Qed.

End Int.