summaryrefslogtreecommitdiff
path: root/lib/Integers.v
blob: 7d5f016fa762c161359f202fcb9e4d7e0851d0d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Formalizations of machine integers modulo $2^N$ #2<sup>N</sup>#. *)

Require Import Axioms.
Require Import Coqlib.

(** * Comparisons *)

Inductive comparison : Type :=
  | Ceq : comparison               (**r same *)
  | Cne : comparison               (**r different *)
  | Clt : comparison               (**r less than *)
  | Cle : comparison               (**r less than or equal *)
  | Cgt : comparison               (**r greater than *)
  | Cge : comparison.              (**r greater than or equal *)

Definition negate_comparison (c: comparison): comparison :=
  match c with
  | Ceq => Cne
  | Cne => Ceq
  | Clt => Cge
  | Cle => Cgt
  | Cgt => Cle
  | Cge => Clt
  end.

Definition swap_comparison (c: comparison): comparison :=
  match c with
  | Ceq => Ceq
  | Cne => Cne
  | Clt => Cgt
  | Cle => Cge
  | Cgt => Clt
  | Cge => Cle
  end.

(** * Parameterization by the word size, in bits. *)

Module Type WORDSIZE.
  Variable wordsize: nat.
  Axiom wordsize_not_zero: wordsize <> 0%nat.
End WORDSIZE.

Module Make(WS: WORDSIZE).

Definition wordsize: nat := WS.wordsize.
Definition modulus : Z := two_power_nat wordsize.
Definition half_modulus : Z := modulus / 2.
Definition max_unsigned : Z := modulus - 1.
Definition max_signed : Z := half_modulus - 1.
Definition min_signed : Z := - half_modulus.

Remark wordsize_pos:
  Z_of_nat wordsize > 0.
Proof.
  unfold wordsize. generalize WS.wordsize_not_zero. omega.
Qed.

Remark modulus_power:
  modulus = two_p (Z_of_nat wordsize).
Proof.
  unfold modulus. apply two_power_nat_two_p.
Qed.

Remark modulus_pos:
  modulus > 0.
Proof.
  rewrite modulus_power. apply two_p_gt_ZERO. generalize wordsize_pos; omega.
Qed.

(** * Representation of machine integers *)

(** A machine integer (type [int]) is represented as a Coq arbitrary-precision
  integer (type [Z]) plus a proof that it is in the range 0 (included) to
  [modulus] (excluded. *)

Record int: Type := mkint { intval: Z; intrange: 0 <= intval < modulus }.

(** Binary decomposition of integers (type [Z]) *)

Definition Z_bin_decomp (x: Z) : bool * Z :=
  match x with
  | Z0 => (false, 0)
  | Zpos p =>
      match p with
      | xI q => (true, Zpos q)
      | xO q => (false, Zpos q)
      | xH => (true, 0)
      end
  | Zneg p =>
      match p with
      | xI q => (true, Zneg q - 1)
      | xO q => (false, Zneg q)
      | xH => (true, -1)
      end
  end.

Definition Z_bin_comp (b: bool) (x: Z) : Z :=
  if b then Zdouble_plus_one x else Zdouble x.

Lemma Z_bin_comp_eq:
  forall b x, Z_bin_comp b x = 2 * x + (if b then 1 else 0).
Proof.
  unfold Z_bin_comp; intros. destruct b.
  apply Zdouble_plus_one_mult.
  rewrite Zdouble_mult. omega.
Qed.

Lemma Z_bin_comp_decomp:
  forall x, Z_bin_comp (fst (Z_bin_decomp x)) (snd (Z_bin_decomp x)) = x.
Proof.
  destruct x; simpl.
  auto.
  destruct p; auto.
  destruct p; auto. simpl.
  rewrite <- Pplus_one_succ_r. rewrite Pdouble_minus_one_o_succ_eq_xI. auto.
Qed.

Lemma Z_bin_comp_decomp2:
  forall x b y, Z_bin_decomp x = (b, y) -> x = Z_bin_comp b y.
Proof.
  intros. rewrite <- (Z_bin_comp_decomp x). rewrite H; auto.
Qed.

Lemma Z_bin_decomp_comp:
  forall b x, Z_bin_decomp (Z_bin_comp b x) = (b, x).
Proof.
  intros. destruct b; destruct x; simpl; auto.
  destruct p; simpl; auto.
  f_equal. f_equal. rewrite <- Pplus_one_succ_r. apply Psucc_o_double_minus_one_eq_xO.
Qed.

Lemma Z_bin_comp_inj:
  forall b1 b2 x1 x2, Z_bin_comp b1 x1 = Z_bin_comp b2 x2 -> (b1, x1) = (b2, x2).
Proof.
  intros. repeat rewrite Z_bin_comp_eq in H. 
  destruct b1; destruct b2.
  f_equal. omega.
  omegaContradiction.
  omegaContradiction.
  f_equal. omega.
Qed.

(** Fast normalization modulo [2^n]. *)

Fixpoint Z_mod_two_p (x: Z) (n: nat) {struct n} : Z :=
  match n with
  | O => 0
  | S m => let (b, y) := Z_bin_decomp x in Z_bin_comp b (Z_mod_two_p y m)
  end.

Lemma Z_mod_two_p_range:
  forall n x, 0 <= Z_mod_two_p x n < two_power_nat n.
Proof.
  induction n; simpl; intros.
  rewrite two_power_nat_O. omega.
  rewrite two_power_nat_S. destruct (Z_bin_decomp x) as [b y]_eqn. 
  rewrite Z_bin_comp_eq. generalize (IHn y). destruct b; omega.
Qed.

Lemma Z_mod_two_p_eq:
  forall n x, Z_mod_two_p x n = Zmod x (two_power_nat n).
Proof.
  assert (forall n x, exists y, x = y * two_power_nat n + Z_mod_two_p x n).
    induction n; simpl; intros.
    rewrite two_power_nat_O. exists x. ring.
    rewrite two_power_nat_S.
    destruct (Z_bin_decomp x) as [b y]_eqn.
    destruct (IHn y) as [z EQ]. 
    exists z. rewrite (Z_bin_comp_decomp2 _ _ _ Heqp). 
    repeat rewrite Z_bin_comp_eq. rewrite EQ at 1. ring.
  intros. 
  destruct (H n x) as [y EQ]. 
  symmetry. apply Zmod_unique with y. auto. apply Z_mod_two_p_range.
Qed.

(** The [unsigned] and [signed] functions return the Coq integer corresponding
  to the given machine integer, interpreted as unsigned or signed 
  respectively. *)

Definition unsigned (n: int) : Z := intval n.

Definition signed (n: int) : Z :=
  if zlt (unsigned n) half_modulus
  then unsigned n
  else unsigned n - modulus.

(** Conversely, [repr] takes a Coq integer and returns the corresponding
  machine integer.  The argument is treated modulo [modulus]. *)

Definition repr (x: Z) : int := 
  mkint (Z_mod_two_p x wordsize) (Z_mod_two_p_range wordsize x).

Definition zero := repr 0.
Definition one  := repr 1.
Definition mone := repr (-1).
Definition iwordsize := repr (Z_of_nat wordsize).

Lemma mkint_eq:
  forall x y Px Py, x = y -> mkint x Px = mkint y Py.
Proof.
  intros. subst y. 
  generalize (proof_irr Px Py); intro.
  subst Py. reflexivity.
Qed.

Lemma eq_dec: forall (x y: int), {x = y} + {x <> y}.
Proof.
  intros. destruct x; destruct y. case (zeq intval0 intval1); intro.
  left. apply mkint_eq. auto.
  right. red; intro. injection H. exact n.
Qed.

(** * Arithmetic and logical operations over machine integers *)

Definition eq (x y: int) : bool := 
  if zeq (unsigned x) (unsigned y) then true else false.
Definition lt (x y: int) : bool :=
  if zlt (signed x) (signed y) then true else false.
Definition ltu (x y: int) : bool :=
  if zlt (unsigned x) (unsigned y) then true else false.

Definition neg (x: int) : int := repr (- unsigned x).

Definition add (x y: int) : int :=
  repr (unsigned x + unsigned y).
Definition sub (x y: int) : int :=
  repr (unsigned x - unsigned y).
Definition mul (x y: int) : int :=
  repr (unsigned x * unsigned y).

(** [Zdiv_round] and [Zmod_round] implement signed division and modulus
  with round-towards-zero behavior. *)

Definition Zdiv_round (x y: Z) : Z :=
  if zlt x 0 then
    if zlt y 0 then (-x) / (-y) else - ((-x) / y)
  else
    if zlt y 0 then -(x / (-y)) else x / y.

Definition Zmod_round (x y: Z) : Z :=
  x - (Zdiv_round x y) * y.

Definition divs (x y: int) : int :=
  repr (Zdiv_round (signed x) (signed y)).
Definition mods (x y: int) : int :=
  repr (Zmod_round (signed x) (signed y)).

Definition divu (x y: int) : int :=
  repr (unsigned x / unsigned y).
Definition modu (x y: int) : int :=
  repr (Zmod (unsigned x) (unsigned y)).

Definition add_carry (x y cin: int): int :=
  if zlt (unsigned x + unsigned y + unsigned cin) modulus
  then zero
  else one.

(** For bitwise operations, we need to convert between Coq integers [Z]
  and their bit-level representations.  Bit-level representations are
  represented as characteristic functions, that is, functions [f]
  of type [nat -> bool] such that [f i] is the value of the [i]-th bit
  of the number.  For [i] less than 0 or greater or equal to [wordsize],
  the characteristic function is [false]. *)

Fixpoint bits_of_Z (n: nat) (x: Z) {struct n}: Z -> bool :=
  match n with
  | O =>
      (fun i: Z => false)
  | S m =>
      let (b, y) := Z_bin_decomp x in
      let f := bits_of_Z m y in
      (fun i: Z => if zeq i 0 then b else f (i - 1))
  end.

Fixpoint Z_of_bits (n: nat) (f: Z -> bool) (i: Z) {struct n}: Z :=
  match n with
  | O => 0
  | S m => Z_bin_comp (f i) (Z_of_bits m f (Zsucc i))
  end.

(** Bitwise logical "and", "or" and "xor" operations. *)

Definition bitwise_binop (f: bool -> bool -> bool) (x y: int) :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let fy := bits_of_Z wordsize (unsigned y) in
  repr(Z_of_bits wordsize (fun i => f (fx i) (fy i)) 0).

Definition and (x y: int): int := bitwise_binop andb x y.
Definition or (x y: int): int := bitwise_binop orb x y.
Definition xor (x y: int) : int := bitwise_binop xorb x y.

Definition not (x: int) : int := xor x mone.

(** Shifts and rotates. *)

Definition shl (x y: int): int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  repr (Z_of_bits wordsize fx (- unsigned y)).

Definition shru (x y: int): int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  repr (Z_of_bits wordsize fx (unsigned y)).

Definition shr (x y: int): int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let sx := fun i => fx (if zlt i (Z_of_nat wordsize) then i else Z_of_nat wordsize - 1) in
  repr (Z_of_bits wordsize sx (unsigned y)).

Definition rol (x y: int) : int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let rx := fun i => fx (Zmod i (Z_of_nat wordsize)) in
  repr (Z_of_bits wordsize rx (-unsigned y)).

Definition ror (x y: int) : int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  let rx := fun i => fx (Zmod i (Z_of_nat wordsize)) in
  repr (Z_of_bits wordsize rx (unsigned y)).

Definition rolm (x a m: int): int := and (rol x a) m.

(** Viewed as signed divisions by powers of two, [shrx] rounds towards
  zero, while [shr] rounds towards minus infinity. *)

Definition shrx (x y: int): int :=
  divs x (shl one y).

(** [shr_carry x y] is 1 if [x] is negative and at least one 1 bit is shifted away. *)

Definition shr_carry (x y: int) :=
  if lt x zero && negb (eq (and x (sub (shl one y) one)) zero) then one else zero.

(** Zero and sign extensions *)

Definition zero_ext (n: Z) (x: int) : int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  repr (Z_of_bits wordsize (fun i => if zlt i n then fx i else false) 0).

Definition sign_ext (n: Z) (x: int) : int :=
  let fx := bits_of_Z wordsize (unsigned x) in
  repr (Z_of_bits wordsize (fun i => if zlt i n then fx i else fx (n - 1)) 0).

(** Decomposition of a number as a sum of powers of two. *)

Fixpoint Z_one_bits (n: nat) (x: Z) (i: Z) {struct n}: list Z :=
  match n with
  | O => nil
  | S m =>
      let (b, y) := Z_bin_decomp x in
      if b then i :: Z_one_bits m y (i+1) else Z_one_bits m y (i+1)
  end.

Definition one_bits (x: int) : list int :=
  List.map repr (Z_one_bits wordsize (unsigned x) 0).

(** Recognition of powers of two. *)

Definition is_power2 (x: int) : option int :=
  match Z_one_bits wordsize (unsigned x) 0 with
  | i :: nil => Some (repr i)
  | _ => None
  end.

(** Comparisons. *)

Definition cmp (c: comparison) (x y: int) : bool :=
  match c with
  | Ceq => eq x y
  | Cne => negb (eq x y)
  | Clt => lt x y
  | Cle => negb (lt y x)
  | Cgt => lt y x
  | Cge => negb (lt x y)
  end.

Definition cmpu (c: comparison) (x y: int) : bool :=
  match c with
  | Ceq => eq x y
  | Cne => negb (eq x y)
  | Clt => ltu x y
  | Cle => negb (ltu y x)
  | Cgt => ltu y x
  | Cge => negb (ltu x y)
  end.

Definition is_false (x: int) : Prop := x = zero.
Definition is_true  (x: int) : Prop := x <> zero.
Definition notbool  (x: int) : int  := if eq x zero then one else zero.

(** * Properties of integers and integer arithmetic *)

(** ** Properties of [modulus], [max_unsigned], etc. *)

Remark half_modulus_power:
  half_modulus = two_p (Z_of_nat wordsize - 1).
Proof.
  unfold half_modulus. rewrite modulus_power. 
  set (ws1 := Z_of_nat wordsize - 1). 
  replace (Z_of_nat wordsize) with (Zsucc ws1).
  rewrite two_p_S. rewrite Zmult_comm. apply Z_div_mult. omega.
  unfold ws1. generalize wordsize_pos; omega.
  unfold ws1. omega.
Qed.

Remark half_modulus_modulus: modulus = 2 * half_modulus.
Proof.
  rewrite half_modulus_power. rewrite modulus_power. 
  rewrite <- two_p_S. decEq. omega. 
  generalize wordsize_pos; omega.
Qed.

(** Relative positions, from greatest to smallest:
<<
      max_unsigned
      max_signed
      2*wordsize-1
      wordsize
      0
      min_signed
>>
*)

Remark half_modulus_pos: half_modulus > 0.
Proof.
  rewrite half_modulus_power. apply two_p_gt_ZERO. generalize wordsize_pos; omega.
Qed.

Remark min_signed_neg: min_signed < 0.
Proof.
  unfold min_signed. generalize half_modulus_pos. omega.
Qed.

Remark max_signed_pos: max_signed >= 0.
Proof.
  unfold max_signed. generalize half_modulus_pos. omega.
Qed.

Remark wordsize_max_unsigned: Z_of_nat wordsize <= max_unsigned.
Proof.
  assert (Z_of_nat wordsize < modulus).
    rewrite modulus_power. apply two_p_strict. 
    generalize wordsize_pos. omega. 
  unfold max_unsigned. omega.
Qed.

Remark two_wordsize_max_unsigned: 2 * Z_of_nat wordsize - 1 <= max_unsigned.
Proof.
  assert (2 * Z_of_nat wordsize - 1 < modulus).
    rewrite modulus_power. apply two_p_strict_2. generalize wordsize_pos; omega.
  unfold max_unsigned; omega.
Qed.

Remark max_signed_unsigned: max_signed < max_unsigned.
Proof.
  unfold max_signed, max_unsigned. rewrite half_modulus_modulus. 
  generalize half_modulus_pos. omega.
Qed.

Lemma unsigned_repr_eq:
  forall x, unsigned (repr x) = Zmod x modulus.
Proof.
  intros. simpl. apply Z_mod_two_p_eq. 
Qed.

Lemma signed_repr_eq:
  forall x, signed (repr x) = if zlt (Zmod x modulus) half_modulus then Zmod x modulus else Zmod x modulus - modulus.
Proof.
  intros. unfold signed. rewrite unsigned_repr_eq. auto.
Qed.

(** ** Modulo arithmetic *)

(** We define and state properties of equality and arithmetic modulo a
  positive integer. *)

Section EQ_MODULO.

Variable modul: Z.
Hypothesis modul_pos: modul > 0.

Definition eqmod (x y: Z) : Prop := exists k, x = k * modul + y.

Lemma eqmod_refl: forall x, eqmod x x.
Proof.
  intros; red. exists 0. omega.
Qed.

Lemma eqmod_refl2: forall x y, x = y -> eqmod x y.
Proof.
  intros. subst y. apply eqmod_refl.
Qed.

Lemma eqmod_sym: forall x y, eqmod x y -> eqmod y x.
Proof.
  intros x y [k EQ]; red. exists (-k). subst x. ring.
Qed.

Lemma eqmod_trans: forall x y z, eqmod x y -> eqmod y z -> eqmod x z.
Proof.
  intros x y z [k1 EQ1] [k2 EQ2]; red.
  exists (k1 + k2). subst x; subst y. ring.
Qed.

Lemma eqmod_small_eq:
  forall x y, eqmod x y -> 0 <= x < modul -> 0 <= y < modul -> x = y.
Proof.
  intros x y [k EQ] I1 I2.
  generalize (Zdiv_unique _ _ _ _ EQ I2). intro.
  rewrite (Zdiv_small x modul I1) in H. subst k. omega.
Qed.

Lemma eqmod_mod_eq:
  forall x y, eqmod x y -> x mod modul = y mod modul.
Proof.
  intros x y [k EQ]. subst x. 
  rewrite Zplus_comm. apply Z_mod_plus. auto.
Qed.

Lemma eqmod_mod:
  forall x, eqmod x (x mod modul).
Proof.
  intros; red. exists (x / modul). 
  rewrite Zmult_comm. apply Z_div_mod_eq. auto.
Qed.

Lemma eqmod_add:
  forall a b c d, eqmod a b -> eqmod c d -> eqmod (a + c) (b + d).
Proof.
  intros a b c d [k1 EQ1] [k2 EQ2]; red.
  subst a; subst c. exists (k1 + k2). ring.
Qed.

Lemma eqmod_neg:
  forall x y, eqmod x y -> eqmod (-x) (-y).
Proof.
  intros x y [k EQ]; red. exists (-k). rewrite EQ. ring. 
Qed.

Lemma eqmod_sub:
  forall a b c d, eqmod a b -> eqmod c d -> eqmod (a - c) (b - d).
Proof.
  intros a b c d [k1 EQ1] [k2 EQ2]; red.
  subst a; subst c. exists (k1 - k2). ring.
Qed.

Lemma eqmod_mult:
  forall a b c d, eqmod a c -> eqmod b d -> eqmod (a * b) (c * d).
Proof.
  intros a b c d [k1 EQ1] [k2 EQ2]; red.
  subst a; subst b.
  exists (k1 * k2 * modul + c * k2 + k1 * d).
  ring.
Qed.

End EQ_MODULO.

Lemma eqmod_divides:
  forall n m x y, eqmod n x y -> Zdivide m n -> eqmod m x y.
Proof.
  intros. destruct H as [k1 EQ1]. destruct H0 as [k2 EQ2]. 
  exists (k1*k2). rewrite <- Zmult_assoc. rewrite <- EQ2. auto.
Qed. 

(** We then specialize these definitions to equality modulo 
  $2^{wordsize}$ #2<sup>wordsize</sup>#. *)

Hint Resolve modulus_pos: ints.

Definition eqm := eqmod modulus.

Lemma eqm_refl: forall x, eqm x x.
Proof (eqmod_refl modulus).
Hint Resolve eqm_refl: ints.

Lemma eqm_refl2:
  forall x y, x = y -> eqm x y.
Proof (eqmod_refl2 modulus).
Hint Resolve eqm_refl2: ints.

Lemma eqm_sym: forall x y, eqm x y -> eqm y x.
Proof (eqmod_sym modulus).
Hint Resolve eqm_sym: ints.

Lemma eqm_trans: forall x y z, eqm x y -> eqm y z -> eqm x z.
Proof (eqmod_trans modulus).
Hint Resolve eqm_trans: ints.

Lemma eqm_small_eq:
  forall x y, eqm x y -> 0 <= x < modulus -> 0 <= y < modulus -> x = y.
Proof (eqmod_small_eq modulus).
Hint Resolve eqm_small_eq: ints.

Lemma eqm_add:
  forall a b c d, eqm a b -> eqm c d -> eqm (a + c) (b + d).
Proof (eqmod_add modulus).
Hint Resolve eqm_add: ints.

Lemma eqm_neg:
  forall x y, eqm x y -> eqm (-x) (-y).
Proof (eqmod_neg modulus).
Hint Resolve eqm_neg: ints.

Lemma eqm_sub:
  forall a b c d, eqm a b -> eqm c d -> eqm (a - c) (b - d).
Proof (eqmod_sub modulus).
Hint Resolve eqm_sub: ints.

Lemma eqm_mult:
  forall a b c d, eqm a c -> eqm b d -> eqm (a * b) (c * d).
Proof (eqmod_mult modulus).
Hint Resolve eqm_mult: ints.

(** ** Properties of the coercions between [Z] and [int] *)

Lemma eqm_samerepr: forall x y, eqm x y -> repr x = repr y.
Proof.
  intros. unfold repr. apply mkint_eq. 
  repeat rewrite Z_mod_two_p_eq. apply eqmod_mod_eq. auto with ints. exact H.
Qed.

Lemma eqm_unsigned_repr:
  forall z, eqm z (unsigned (repr z)).
Proof.
  unfold eqm; intros. rewrite unsigned_repr_eq. apply eqmod_mod. auto with ints.
Qed.
Hint Resolve eqm_unsigned_repr: ints.

Lemma eqm_unsigned_repr_l:
  forall a b, eqm a b -> eqm (unsigned (repr a)) b.
Proof.
  intros. apply eqm_trans with a. 
  apply eqm_sym. apply eqm_unsigned_repr. auto.
Qed.
Hint Resolve eqm_unsigned_repr_l: ints.

Lemma eqm_unsigned_repr_r:
  forall a b, eqm a b -> eqm a (unsigned (repr b)).
Proof.
  intros. apply eqm_trans with b. auto.
  apply eqm_unsigned_repr. 
Qed.
Hint Resolve eqm_unsigned_repr_r: ints.

Lemma eqm_signed_unsigned:
  forall x, eqm (signed x) (unsigned x).
Proof.
  intros; red. unfold signed. set (y := unsigned x).
  case (zlt y half_modulus); intro.
  apply eqmod_refl. red; exists (-1); ring. 
Qed.

Theorem unsigned_range:
  forall i, 0 <= unsigned i < modulus.
Proof.
  destruct i; auto.
Qed.
Hint Resolve unsigned_range: ints.

Theorem unsigned_range_2:
  forall i, 0 <= unsigned i <= max_unsigned.
Proof.
  intro; unfold max_unsigned. 
  generalize (unsigned_range i). omega.
Qed.
Hint Resolve unsigned_range_2: ints.

Theorem signed_range:
  forall i, min_signed <= signed i <= max_signed.
Proof.
  intros. unfold signed. 
  generalize (unsigned_range i). set (n := unsigned i). intros.
  case (zlt n half_modulus); intro.
  unfold max_signed. generalize min_signed_neg. omega.
  unfold min_signed, max_signed.
  rewrite half_modulus_modulus in *. omega. 
Qed.  

Theorem repr_unsigned:
  forall i, repr (unsigned i) = i.
Proof.
  destruct i; simpl. unfold repr. apply mkint_eq.
  rewrite Z_mod_two_p_eq. apply Zmod_small; auto.
Qed.
Hint Resolve repr_unsigned: ints.

Lemma repr_signed:
  forall i, repr (signed i) = i.
Proof.
  intros. transitivity (repr (unsigned i)). 
  apply eqm_samerepr. apply eqm_signed_unsigned. auto with ints.
Qed.
Hint Resolve repr_signed: ints.

Opaque repr.

Lemma eqm_repr_eq: forall x y, eqm x (unsigned y) -> repr x = y.
Proof.
  intros. rewrite <- (repr_unsigned y). apply eqm_samerepr; auto.
Qed.

Theorem unsigned_repr:
  forall z, 0 <= z <= max_unsigned -> unsigned (repr z) = z.
Proof.
  intros. rewrite unsigned_repr_eq. 
  apply Zmod_small. unfold max_unsigned in H. omega.
Qed.
Hint Resolve unsigned_repr: ints.

Theorem signed_repr:
  forall z, min_signed <= z <= max_signed -> signed (repr z) = z.
Proof.
  intros. unfold signed. destruct (zle 0 z).
  replace (unsigned (repr z)) with z.
  rewrite zlt_true. auto. unfold max_signed in H. omega.
  symmetry. apply unsigned_repr. generalize max_signed_unsigned. omega. 
  pose (z' := z + modulus).
  replace (repr z) with (repr z').
  replace (unsigned (repr z')) with z'.
  rewrite zlt_false. unfold z'. omega.
  unfold z'. unfold min_signed in H.
  rewrite half_modulus_modulus. omega. 
  symmetry. apply unsigned_repr.
  unfold z', max_unsigned. unfold min_signed, max_signed in H.
  rewrite half_modulus_modulus. omega. 
  apply eqm_samerepr. unfold z'; red. exists 1. omega.
Qed.

Theorem signed_eq_unsigned:
  forall x, unsigned x <= max_signed -> signed x = unsigned x.
Proof.
  intros. unfold signed. destruct (zlt (unsigned x) half_modulus).
  auto. unfold max_signed in H. omegaContradiction.
Qed.

Theorem signed_positive:
  forall x, signed x >= 0 <-> unsigned x <= max_signed.
Proof.
  intros. unfold signed, max_signed.
  generalize (unsigned_range x) half_modulus_modulus half_modulus_pos; intros.
  destruct (zlt (unsigned x) half_modulus); omega.
Qed.

(** ** Properties of zero, one, minus one *)

Theorem unsigned_zero: unsigned zero = 0.
Proof.
  unfold zero; rewrite unsigned_repr_eq. apply Zmod_0_l.
Qed.

Theorem unsigned_one: unsigned one = 1.
Proof.
  unfold one; rewrite unsigned_repr_eq. apply Zmod_small. split. omega. 
  unfold modulus. replace wordsize with (S(pred wordsize)). 
  rewrite two_power_nat_S. generalize (two_power_nat_pos (pred wordsize)). 
  omega.
  generalize wordsize_pos. omega. 
Qed.

Theorem unsigned_mone: unsigned mone = modulus - 1.
Proof.
  unfold mone; rewrite unsigned_repr_eq. 
  replace (-1) with ((modulus - 1) + (-1) * modulus).
  rewrite Z_mod_plus_full. apply Zmod_small.
  generalize modulus_pos. omega. omega.
Qed.

Theorem signed_zero: signed zero = 0.
Proof.
  unfold signed. rewrite unsigned_zero. apply zlt_true. generalize half_modulus_pos; omega.
Qed.

Theorem signed_mone: signed mone = -1.
Proof.
  unfold signed. rewrite unsigned_mone.
  rewrite zlt_false. omega.
  rewrite half_modulus_modulus. generalize half_modulus_pos. omega.  
Qed.

Theorem one_not_zero: one <> zero.
Proof.
  assert (unsigned one <> unsigned zero). 
  rewrite unsigned_one; rewrite unsigned_zero; congruence.
  congruence.
Qed.

Theorem unsigned_repr_wordsize:
  unsigned iwordsize = Z_of_nat wordsize.
Proof.
  unfold iwordsize; rewrite unsigned_repr_eq. apply Zmod_small. 
  generalize wordsize_pos wordsize_max_unsigned; unfold max_unsigned; omega.
Qed.

(** ** Properties of equality *)

Theorem eq_sym:
  forall x y, eq x y = eq y x.
Proof.
  intros; unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
  rewrite e. rewrite zeq_true. auto.
  rewrite zeq_false. auto. auto.
Qed.

Theorem eq_spec: forall (x y: int), if eq x y then x = y else x <> y.
Proof.
  intros; unfold eq. case (eq_dec x y); intro.
  subst y. rewrite zeq_true. auto.
  rewrite zeq_false. auto. 
  destruct x; destruct y.
  simpl. red; intro. elim n. apply mkint_eq. auto.
Qed.

Theorem eq_true: forall x, eq x x = true.
Proof.
  intros. generalize (eq_spec x x); case (eq x x); intros; congruence.
Qed.

Theorem eq_false: forall x y, x <> y -> eq x y = false.
Proof.
  intros. generalize (eq_spec x y); case (eq x y); intros; congruence.
Qed.

(** ** Properties of addition *)

Theorem add_unsigned: forall x y, add x y = repr (unsigned x + unsigned y).
Proof. intros; reflexivity.
Qed.

Theorem add_signed: forall x y, add x y = repr (signed x + signed y).
Proof. 
  intros. rewrite add_unsigned. apply eqm_samerepr.
  apply eqm_add; apply eqm_sym; apply eqm_signed_unsigned.
Qed.

Theorem add_commut: forall x y, add x y = add y x.
Proof. intros; unfold add. decEq. omega. Qed.

Theorem add_zero: forall x, add x zero = x.
Proof.
  intros. unfold add. rewrite unsigned_zero.
  rewrite Zplus_0_r. apply repr_unsigned.
Qed.

Theorem add_zero_l: forall x, add zero x = x.
Proof.
  intros. rewrite add_commut. apply add_zero.
Qed.

Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z).
Proof.
  intros; unfold add.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_samerepr. 
  apply eqm_trans with ((x' + y') + z').
  auto with ints.
  rewrite <- Zplus_assoc. auto with ints.
Qed.

Theorem add_permut: forall x y z, add x (add y z) = add y (add x z).
Proof.
  intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut. 
Qed.

Theorem add_neg_zero: forall x, add x (neg x) = zero.
Proof.
  intros; unfold add, neg, zero. apply eqm_samerepr.
  replace 0 with (unsigned x + (- (unsigned x))).
  auto with ints. omega.
Qed.

Theorem unsigned_add_carry:
  forall x y,
  unsigned (add x y) = unsigned x + unsigned y - unsigned (add_carry x y zero) * modulus.
Proof.
  intros.
  unfold add, add_carry. rewrite unsigned_zero. rewrite Zplus_0_r.
  rewrite unsigned_repr_eq.
  generalize (unsigned_range x) (unsigned_range y). intros. 
  destruct (zlt (unsigned x + unsigned y) modulus). 
  rewrite unsigned_zero. apply Zmod_unique with 0. omega. omega. 
  rewrite unsigned_one. apply Zmod_unique with 1. omega. omega. 
Qed. 

Corollary unsigned_add_either:
  forall x y,
  unsigned (add x y) = unsigned x + unsigned y
  \/ unsigned (add x y) = unsigned x + unsigned y - modulus.
Proof.
  intros. rewrite unsigned_add_carry. unfold add_carry. 
  rewrite unsigned_zero. rewrite Zplus_0_r. 
  destruct (zlt (unsigned x + unsigned y) modulus).
  rewrite unsigned_zero. left; omega.
  rewrite unsigned_one. right; omega.
Qed.

(** ** Properties of negation *)

Theorem neg_repr: forall z, neg (repr z) = repr (-z).
Proof.
  intros; unfold neg. apply eqm_samerepr. auto with ints.
Qed.

Theorem neg_zero: neg zero = zero.
Proof.
  unfold neg. rewrite unsigned_zero. auto. 
Qed.

Theorem neg_involutive: forall x, neg (neg x) = x.
Proof.
  intros; unfold neg.
  apply eqm_repr_eq. eapply eqm_trans. apply eqm_neg.
  apply eqm_unsigned_repr_l. apply eqm_refl. apply eqm_refl2. omega.
Qed. 

Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y).
Proof.
  intros; unfold neg, add. apply eqm_samerepr.
  apply eqm_trans with (- (unsigned x + unsigned y)).
  auto with ints.
  replace (- (unsigned x + unsigned y))
     with ((- unsigned x) + (- unsigned y)).
  auto with ints. omega.
Qed.

(** ** Properties of subtraction *)

Theorem sub_zero_l: forall x, sub x zero = x.
Proof.
  intros; unfold sub. rewrite unsigned_zero. 
  replace (unsigned x - 0) with (unsigned x) by omega. apply repr_unsigned.
Qed.

Theorem sub_zero_r: forall x, sub zero x = neg x.
Proof.
  intros; unfold sub, neg. rewrite unsigned_zero. auto.
Qed.

Theorem sub_add_opp: forall x y, sub x y = add x (neg y).
Proof.
  intros; unfold sub, add, neg. apply eqm_samerepr.
  apply eqm_add; auto with ints.
Qed.

Theorem sub_idem: forall x, sub x x = zero.
Proof.
  intros; unfold sub. unfold zero. decEq. omega.
Qed.

Theorem sub_add_l: forall x y z, sub (add x y) z = add (sub x z) y.
Proof.
  intros. repeat rewrite sub_add_opp. 
  repeat rewrite add_assoc. decEq. apply add_commut.
Qed.

Theorem sub_add_r: forall x y z, sub x (add y z) = add (sub x z) (neg y).
Proof.
  intros. repeat rewrite sub_add_opp.
  rewrite neg_add_distr. rewrite add_permut. apply add_commut.
Qed.

Theorem sub_shifted:
  forall x y z,
  sub (add x z) (add y z) = sub x y.
Proof.
  intros. rewrite sub_add_opp. rewrite neg_add_distr.
  rewrite add_assoc. 
  rewrite (add_commut (neg y) (neg z)).
  rewrite <- (add_assoc z). rewrite add_neg_zero.
  rewrite (add_commut zero). rewrite add_zero.
  symmetry. apply sub_add_opp.
Qed.

Theorem sub_signed:
  forall x y, sub x y = repr (signed x - signed y).
Proof.
  intros. unfold sub. apply eqm_samerepr.
  apply eqm_sub; apply eqm_sym; apply eqm_signed_unsigned.
Qed.

(** ** Properties of multiplication *)

Theorem mul_commut: forall x y, mul x y = mul y x.
Proof.
  intros; unfold mul. decEq. ring. 
Qed.

Theorem mul_zero: forall x, mul x zero = zero.
Proof.
  intros; unfold mul. rewrite unsigned_zero. 
  unfold zero. decEq. ring.
Qed.

Theorem mul_one: forall x, mul x one = x.
Proof.
  intros; unfold mul. rewrite unsigned_one.
  transitivity (repr (unsigned x)). decEq. ring.
  apply repr_unsigned.
Qed.

Theorem mul_mone: forall x, mul x mone = neg x.
Proof.
  intros; unfold mul, neg. rewrite unsigned_mone. 
  apply eqm_samerepr.
  replace (-unsigned x) with (0 - unsigned x) by omega.
  replace (unsigned x * (modulus - 1)) with (unsigned x * modulus - unsigned x) by ring.
  apply eqm_sub. exists (unsigned x). omega. apply eqm_refl.
Qed.

Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z).
Proof.
  intros; unfold mul.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_samerepr. apply eqm_trans with ((x' * y') * z').
  auto with ints.
  rewrite <- Zmult_assoc. auto with ints.
Qed.

Theorem mul_add_distr_l:
  forall x y z, mul (add x y) z = add (mul x z) (mul y z).
Proof.
  intros; unfold mul, add.
  apply eqm_samerepr.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  apply eqm_trans with ((x' + y') * z').
  auto with ints.
  replace ((x' + y') * z') with (x' * z' + y' * z').
  auto with ints.
  ring.
Qed.

Theorem mul_add_distr_r:
  forall x y z, mul x (add y z) = add (mul x y) (mul x z).
Proof.
  intros. rewrite mul_commut. rewrite mul_add_distr_l. 
  decEq; apply mul_commut.
Qed. 

Theorem neg_mul_distr_l: 
  forall x y, neg(mul x y) = mul (neg x) y.
Proof.
  intros. unfold mul, neg.
  set (x' := unsigned x).  set (y' := unsigned y).
  apply eqm_samerepr. apply eqm_trans with (- (x' * y')).
  auto with ints.
  replace (- (x' * y')) with ((-x') * y') by ring.
  auto with ints.
Qed.

Theorem neg_mul_distr_r:
   forall x y, neg(mul x y) = mul x (neg y).
Proof.
  intros. rewrite (mul_commut x y). rewrite (mul_commut x (neg y)).
  apply neg_mul_distr_l. 
Qed.

Theorem mul_signed:
  forall x y, mul x y = repr (signed x * signed y).
Proof.
  intros; unfold mul. apply eqm_samerepr.
  apply eqm_mult; apply eqm_sym; apply eqm_signed_unsigned.
Qed.

(** ** Properties of division and modulus *)

Lemma modu_divu_Euclid:
  forall x y, y <> zero -> x = add (mul (divu x y) y) (modu x y).
Proof.
  intros. unfold add, mul, divu, modu.
  transitivity (repr (unsigned x)). auto with ints. 
  apply eqm_samerepr. 
  set (x' := unsigned x). set (y' := unsigned y).
  apply eqm_trans with ((x' / y') * y' + x' mod y').
  apply eqm_refl2. rewrite Zmult_comm. apply Z_div_mod_eq.
  generalize (unsigned_range y); intro.
  assert (unsigned y <> 0). red; intro. 
  elim H. rewrite <- (repr_unsigned y). unfold zero. congruence.
  unfold y'. omega.
  auto with ints.
Qed.

Theorem modu_divu:
  forall x y, y <> zero -> modu x y = sub x (mul (divu x y) y).
Proof.
  intros. 
  assert (forall a b c, a = add b c -> c = sub a b).
  intros. subst a. rewrite sub_add_l. rewrite sub_idem.
  rewrite add_commut. rewrite add_zero. auto.
  apply H0. apply modu_divu_Euclid. auto.
Qed.

Theorem mods_divs:
  forall x y, mods x y = sub x (mul (divs x y) y).
Proof.
  intros; unfold mods, sub, mul, divs.
  apply eqm_samerepr.
  unfold Zmod_round.
  apply eqm_sub. apply eqm_signed_unsigned. 
  apply eqm_unsigned_repr_r. 
  apply eqm_mult. auto with ints. apply eqm_signed_unsigned.
Qed.

Theorem divu_one:
  forall x, divu x one = x.
Proof.
  unfold divu; intros. rewrite unsigned_one. rewrite Zdiv_1_r. apply repr_unsigned.
Qed.

Theorem modu_one:
  forall x, modu x one = zero.
Proof.
  intros. rewrite modu_divu. rewrite divu_one. rewrite mul_one. apply sub_idem.
  apply one_not_zero.
Qed.

Theorem divs_mone:
  forall x, divs x mone = neg x.
Proof.
  unfold divs, neg; intros. 
  rewrite signed_mone. replace (Zdiv_round (signed x) (-1)) with (- (signed x)). 
  apply eqm_samerepr. apply eqm_neg. apply eqm_signed_unsigned. 
  unfold Zdiv_round. destruct (zlt (signed x) 0).
  simpl. rewrite Zdiv_1_r. auto. simpl. rewrite Zdiv_1_r. auto. 
Qed.

Theorem mods_mone:
  forall x, mods x mone = zero.
Proof.
  intros. rewrite mods_divs. rewrite divs_mone. 
  rewrite <- neg_mul_distr_l. rewrite mul_mone. rewrite neg_involutive. apply sub_idem. 
Qed.

(** ** Properties of binary decompositions *)

Lemma Z_of_bits_exten:
  forall f1 f2 n i1 i2,
  (forall i, 0 <= i < Z_of_nat n -> f1 (i + i1) = f2 (i + i2)) ->
  Z_of_bits n f1 i1 = Z_of_bits n f2 i2.
Proof.
  induction n; intros; simpl.
  auto.
  rewrite inj_S in H. decEq. apply (H 0). omega. 
  apply IHn. intros. 
  replace (i + Zsucc i1) with (Zsucc i + i1) by omega.
  replace (i + Zsucc i2) with (Zsucc i + i2) by omega.
  apply H. omega.
Qed.

Lemma Z_of_bits_of_Z:
  forall x, eqm (Z_of_bits wordsize (bits_of_Z wordsize x) 0) x.
Proof.
  assert (forall n x, exists k,
    Z_of_bits n (bits_of_Z n x) 0 = k * two_power_nat n + x).
  induction n; intros; simpl.
  rewrite two_power_nat_O. exists (-x). omega.
  rewrite two_power_nat_S. destruct (Z_bin_decomp x) as [b y]_eqn.
  rewrite zeq_true. destruct (IHn y) as [k EQ].
  replace (Z_of_bits n (fun i => if zeq i 0 then b else bits_of_Z n y (i - 1)) 1)
     with (Z_of_bits n (bits_of_Z n y) 0).
  rewrite EQ. exists k. 
  rewrite (Z_bin_comp_decomp2 _ _ _ Heqp).
  repeat rewrite Z_bin_comp_eq. ring.
  apply Z_of_bits_exten. intros.
  rewrite zeq_false. decEq. omega. omega. 
  intro. exact (H wordsize x).
Qed.

Lemma bits_of_Z_zero:
  forall n x, bits_of_Z n 0 x = false.
Proof.
  induction n; simpl; intros. auto. destruct (zeq x 0); auto.
Qed.

Remark Z_bin_decomp_2xm1:
  forall x, Z_bin_decomp (2 * x - 1) = (true, x - 1).
Proof.
  intros. caseEq (Z_bin_decomp (2 * x - 1)). intros b y EQ.
  apply Z_bin_comp_inj. 
  rewrite <- (Z_bin_comp_decomp2 _ _ _ EQ).
  rewrite Z_bin_comp_eq. 
  omega.
Qed.

Lemma bits_of_Z_two_p:
  forall n x i,
  x >= 0 -> 0 <= i < Z_of_nat n ->
  bits_of_Z n (two_p x - 1) i = zlt i x.
Proof.
  induction n; intros.
  simpl in H0. omegaContradiction.
  destruct (zeq x 0). subst x. change (two_p 0 - 1) with 0. rewrite bits_of_Z_zero.
  unfold proj_sumbool; rewrite zlt_false. auto. omega.
  simpl. replace (two_p x) with (2 * two_p (x - 1)). rewrite Z_bin_decomp_2xm1. 
  destruct (zeq i 0). subst. unfold proj_sumbool. rewrite zlt_true. auto. omega.
  rewrite inj_S in H0. rewrite IHn. unfold proj_sumbool. destruct (zlt i x).
  apply zlt_true. omega.
  apply zlt_false. omega.
  omega. omega. rewrite <- two_p_S. decEq. omega. omega.
Qed.

Lemma bits_of_Z_mone:
  forall x,
  0 <= x < Z_of_nat wordsize ->
  bits_of_Z wordsize (modulus - 1) x = true.
Proof.
  intros. unfold modulus. rewrite two_power_nat_two_p. 
  rewrite bits_of_Z_two_p. unfold proj_sumbool. apply zlt_true; omega.
  omega. omega.
Qed.

Lemma Z_of_bits_range:
  forall f n i, 0 <= Z_of_bits n f i < two_power_nat n.
Proof.
  induction n; simpl; intros.
  rewrite two_power_nat_O. omega.
  rewrite two_power_nat_S.
  generalize (IHn (Zsucc i)).
  intro. rewrite Z_bin_comp_eq. destruct (f i); omega.
Qed.

Lemma Z_of_bits_range_1:
  forall f i, 0 <= Z_of_bits wordsize f i < modulus.
Proof.
  intros. apply Z_of_bits_range. 
Qed.
Hint Resolve Z_of_bits_range_1: ints.

Lemma Z_of_bits_range_2:
  forall f i, 0 <= Z_of_bits wordsize f i <= max_unsigned.
Proof.
  intros. unfold max_unsigned.
  generalize (Z_of_bits_range_1 f i). omega.
Qed.
Hint Resolve Z_of_bits_range_2: ints.

Lemma bits_of_Z_of_bits_gen:
  forall n f i j,
  0 <= i < Z_of_nat n ->
  bits_of_Z n (Z_of_bits n f j) i = f (i + j).
Proof.
  induction n; intros; simpl.
  simpl in H. omegaContradiction.
  rewrite Z_bin_decomp_comp.
  destruct (zeq i 0).
  f_equal. omega.
  rewrite IHn. f_equal. omega. 
  rewrite inj_S in H. omega.
Qed.  

Lemma bits_of_Z_of_bits:
  forall n f i,
  0 <= i < Z_of_nat n ->
  bits_of_Z n (Z_of_bits n f 0) i = f i.
Proof.
  intros. rewrite bits_of_Z_of_bits_gen; auto. decEq; omega.
Qed.  

Lemma bits_of_Z_below:
  forall n x i, i < 0 -> bits_of_Z n x i = false.
Proof.
  induction n; intros; simpl. auto.
  destruct (Z_bin_decomp x). rewrite zeq_false. apply IHn.
  omega. omega.
Qed.

Lemma bits_of_Z_above:
  forall n x i, i >= Z_of_nat n -> bits_of_Z n x i = false.
Proof.
  induction n; intros; simpl.
  auto.
  caseEq (Z_bin_decomp x); intros b x1 EQ. rewrite zeq_false.
  rewrite IHn. 
  destruct x; simpl in EQ. inv EQ. auto. 
  destruct p; inv EQ; auto.
  destruct p; inv EQ; auto. 
  rewrite inj_S in H. omega. rewrite inj_S in H. omega.
Qed.

Lemma bits_of_Z_greater:
  forall n x i,
  0 <= x < two_p i -> bits_of_Z n x i = false.
Proof.
  induction n; intros.
  auto.
  destruct (zlt i 0). apply bits_of_Z_below. auto.
  simpl. 
  destruct (Z_bin_decomp x) as [b x1]_eqn.
  destruct (zeq i 0).
  subst i. simpl in H. assert (x = 0) by omega. subst x. simpl in Heqp. congruence.
  apply IHn.
  rewrite (Z_bin_comp_decomp2 _ _ _ Heqp) in H.
  replace i with (Zsucc (i-1)) in H by omega. rewrite two_p_S in H. 
  rewrite Z_bin_comp_eq in H. destruct b; omega. 
  omega.
Qed.

Lemma bits_of_Z_of_bits_gen':
  forall n f i j,
  bits_of_Z n (Z_of_bits n f j) i =
  if zlt i 0 then false 
  else if zle (Z_of_nat n) i then false
  else f (i + j).
Proof.
  intros. 
  destruct (zlt i 0). apply bits_of_Z_below; auto.
  destruct (zle (Z_of_nat n) i). apply bits_of_Z_above. omega.
  apply bits_of_Z_of_bits_gen. omega.
Qed. 

Lemma Z_of_bits_excl:
  forall n f g h j,
  (forall i, j <= i < j + Z_of_nat n -> f i && g i = false) ->
  (forall i, j <= i < j + Z_of_nat n -> f i || g i = h i) ->
  Z_of_bits n f j + Z_of_bits n g j = Z_of_bits n h j.
Proof.
  induction n.
  intros; reflexivity.
  intros. simpl. rewrite inj_S in H. rewrite inj_S in H0.
  rewrite <- (IHn f g h (Zsucc j)). 
  assert (j <= j < j + Zsucc(Z_of_nat n)). omega.
  repeat rewrite Z_bin_comp_eq. 
  rewrite <- H0; auto.
  caseEq (f j); intros; caseEq (g j); intros; simpl orb.
  generalize (H j H1). rewrite H2; rewrite H3. simpl andb; congruence.
  omega. omega. omega.
  intros; apply H. omega.
  intros; apply H0. omega.
Qed.

Lemma Z_of_bits_compose:
  forall f m n i,
  Z_of_bits (m + n) f i =
     Z_of_bits n f (i + Z_of_nat m) * two_power_nat m
   + Z_of_bits m f i.
Proof.
  induction m; intros.
  simpl. repeat rewrite Zplus_0_r. rewrite two_power_nat_O. omega.
  rewrite inj_S. rewrite two_power_nat_S. simpl Z_of_bits. 
  rewrite IHm. replace (i + Zsucc (Z_of_nat m)) with (Zsucc i + Z_of_nat m) by omega.
  repeat rewrite Z_bin_comp_eq. ring.
Qed.

Lemma Z_of_bits_truncate:
  forall f n i,
  eqm (Z_of_bits (wordsize + n) f i) (Z_of_bits wordsize f i).
Proof.
  intros. exists (Z_of_bits n f (i + Z_of_nat wordsize)). 
  rewrite Z_of_bits_compose. fold modulus. auto.
Qed.

Lemma Z_of_bits_false:
  forall f n i,
  (forall j, i <= j < i + Z_of_nat n -> f j = false) ->
  Z_of_bits n f i = 0.
Proof.
  induction n; intros; simpl. auto.
  rewrite inj_S in H. rewrite H. rewrite IHn. auto. 
  intros; apply H; omega. omega.
Qed.

Lemma Z_of_bits_complement:
  forall f n i,
  Z_of_bits n (fun j => negb (f j)) i = two_power_nat n - 1 - Z_of_bits n f i.
Proof.
  induction n; intros; simpl Z_of_bits.
  auto.
  rewrite two_power_nat_S. rewrite IHn. repeat rewrite Z_bin_comp_eq.
  destruct (f i); simpl negb; ring.
Qed.

Lemma Z_of_bits_true:
  forall f n i,
  (forall j, i <= j < i + Z_of_nat n -> f j = true) ->
  Z_of_bits n f i = two_power_nat n - 1.
Proof.
  intros. set (z := fun (i: Z) => false). 
  transitivity (Z_of_bits n (fun j => negb (z j)) i). 
  apply Z_of_bits_exten; intros. unfold z. rewrite H. auto. omega. 
  rewrite Z_of_bits_complement. rewrite Z_of_bits_false. omega. 
  unfold z; auto.
Qed.

(** ** Properties of bitwise and, or, xor *)

Lemma bitwise_binop_commut:
  forall f,
  (forall a b, f a b = f b a) ->
  forall x y,
  bitwise_binop f x y = bitwise_binop f y x.
Proof.
  unfold bitwise_binop; intros. decEq; apply Z_of_bits_exten; intros. auto.
Qed.

Lemma bitwise_binop_assoc:
  forall f,
  (forall a b c, f a (f b c) = f (f a b) c) ->
  forall x y z,
  bitwise_binop f (bitwise_binop f x y) z =
  bitwise_binop f x (bitwise_binop f y z).
Proof.
  unfold bitwise_binop; intros. repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.  
  repeat rewrite Zplus_0_r. repeat rewrite bits_of_Z_of_bits; auto.
Qed.

Lemma bitwise_binop_idem:
  forall f,
  (forall a, f a a = a) ->
  forall x,
  bitwise_binop f x x = x.
Proof.
  unfold bitwise_binop; intros.
  apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. 
  apply eqm_refl2. apply Z_of_bits_exten. auto. 
Qed.

Theorem and_commut: forall x y, and x y = and y x.
Proof (bitwise_binop_commut andb andb_comm).

Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z).
Proof (bitwise_binop_assoc andb andb_assoc).

Theorem and_zero: forall x, and x zero = zero.
Proof.
  intros. unfold and, bitwise_binop.
  apply eqm_samerepr. eapply eqm_trans. 2: apply Z_of_bits_of_Z. 
  apply eqm_refl2. apply Z_of_bits_exten. intros. 
  rewrite unsigned_zero. rewrite bits_of_Z_zero. apply andb_b_false.
Qed.

Theorem and_mone: forall x, and x mone = x.
Proof.
  intros. unfold and, bitwise_binop.
  apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z. 
  apply eqm_refl2. apply Z_of_bits_exten; intros.
  rewrite unsigned_mone. rewrite bits_of_Z_mone. apply andb_b_true.
  omega.
Qed.

Theorem and_idem: forall x, and x x = x.
Proof.
  intros. apply (bitwise_binop_idem andb). destruct a; auto.
Qed.

Theorem or_commut: forall x y, or x y = or y x.
Proof (bitwise_binop_commut orb orb_comm).

Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z).
Proof (bitwise_binop_assoc orb orb_assoc).

Theorem or_zero: forall x, or x zero = x.
Proof.
  intros. unfold or, bitwise_binop. 
  apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
  apply eqm_refl2. apply Z_of_bits_exten. intros. 
  rewrite unsigned_zero. rewrite bits_of_Z_zero. apply orb_b_false. 
Qed.

Theorem or_mone: forall x, or x mone = mone.
Proof.
  intros. unfold or, bitwise_binop.
  apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
  apply eqm_refl2. apply Z_of_bits_exten. intros. 
  rewrite unsigned_mone. rewrite bits_of_Z_mone. apply orb_b_true. 
  omega.
Qed.

Theorem or_idem: forall x, or x x = x.
Proof.
  intros. apply (bitwise_binop_idem orb). destruct a; auto.
Qed.

Theorem and_or_distrib:
  forall x y z,
  and x (or y z) = or (and x y) (and x z).
Proof.
  intros; unfold and, or, bitwise_binop.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
  apply demorgan1.
Qed.  

Theorem xor_commut: forall x y, xor x y = xor y x.
Proof (bitwise_binop_commut xorb xorb_comm).

Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z).
Proof.
  intros. apply (bitwise_binop_assoc xorb).
  intros. symmetry. apply xorb_assoc.
Qed.

Theorem xor_zero: forall x, xor x zero = x.
Proof.
  intros. unfold xor, bitwise_binop.
  apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
  apply eqm_refl2. apply Z_of_bits_exten. intros. 
  rewrite unsigned_zero. rewrite bits_of_Z_zero. apply xorb_false. 
Qed.

Theorem xor_idem: forall x, xor x x = zero.
Proof.
  intros. unfold xor, bitwise_binop.
  apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
  apply eqm_refl2. apply Z_of_bits_exten. intros. 
  rewrite unsigned_zero. rewrite bits_of_Z_zero. apply xorb_nilpotent. 
Qed.

Theorem xor_zero_one: xor zero one = one.
Proof. rewrite xor_commut. apply xor_zero. Qed.

Theorem xor_one_one: xor one one = zero.
Proof. apply xor_idem. Qed.

Theorem and_xor_distrib:
  forall x y z,
  and x (xor y z) = xor (and x y) (and x z).
Proof.
  intros; unfold and, xor, bitwise_binop.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
  assert (forall a b c, a && (xorb b c) = xorb (a && b) (a && c)).
    destruct a; destruct b; destruct c; reflexivity.
  auto.
Qed.  

(** Properties of bitwise complement.*)

Theorem not_involutive:
  forall (x: int), not (not x) = x.
Proof.
  intros. unfold not. rewrite xor_assoc. rewrite xor_idem. apply xor_zero. 
Qed.

Theorem not_zero:
  not zero = mone.
Proof.
  unfold not. rewrite xor_commut. apply xor_zero.
Qed.

Theorem not_mone:
  not mone = zero.
Proof.
  rewrite <- (not_involutive zero). symmetry. decEq. apply not_zero.
Qed.

Theorem not_or_and_not:
  forall x y, not (or x y) = and (not x) (not y).
Proof.
  intros; unfold not, xor, and, or, bitwise_binop.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
  rewrite unsigned_mone. rewrite bits_of_Z_mone; auto.
  assert (forall a b, xorb (a || b) true = xorb a true && xorb b true).
    destruct a; destruct b; reflexivity.
  auto.
Qed.

Theorem not_and_or_not:
  forall x y, not (and x y) = or (not x) (not y).
Proof.
  intros. rewrite <- (not_involutive x) at 1. rewrite <- (not_involutive y) at 1.
  rewrite <- not_or_and_not. apply not_involutive.
Qed.

Theorem and_not_self:
  forall x, and x (not x) = zero.
Proof.
  intros. unfold not. rewrite and_xor_distrib. 
  rewrite and_idem. rewrite and_mone. apply xor_idem.
Qed.

Theorem or_not_self:
  forall x, or x (not x) = mone.
Proof.
  intros. rewrite <- (not_involutive x) at 1. rewrite or_commut.
  rewrite <- not_and_or_not. rewrite and_not_self. apply not_zero. 
Qed.

Theorem xor_not_self:
  forall x, xor x (not x) = mone.
Proof.
  intros. unfold not. rewrite <- xor_assoc. rewrite xor_idem. apply not_zero. 
Qed.

Theorem not_neg:
  forall x, not x = add (neg x) mone.
Proof.
  intros.
  unfold not, xor, bitwise_binop. rewrite unsigned_mone.
  set (ux := unsigned x).
  set (bx := bits_of_Z wordsize ux).
  transitivity (repr (Z_of_bits wordsize (fun i => negb (bx i)) 0)).
  decEq. apply Z_of_bits_exten. intros. rewrite bits_of_Z_mone; auto. omega.
  rewrite Z_of_bits_complement. apply eqm_samerepr. rewrite unsigned_mone. fold modulus. 
  replace (modulus - 1 - Z_of_bits wordsize bx 0)
     with ((- Z_of_bits wordsize bx 0) + (modulus - 1)) by omega.
  apply eqm_add. unfold neg. apply eqm_unsigned_repr_r. apply eqm_neg. 
  apply Z_of_bits_of_Z. apply eqm_refl. 
Qed.

Theorem neg_not:
  forall x, neg x = add (not x) one.
Proof.
  intros. rewrite not_neg. rewrite add_assoc. 
  replace (add mone one) with zero. rewrite add_zero. auto. 
  apply eqm_samerepr. rewrite unsigned_mone. rewrite unsigned_one. 
  exists (-1). ring. 
Qed.

(** Connections between [add] and bitwise logical operations. *)

Theorem add_is_or:
  forall x y,
  and x y = zero ->
  add x y = or x y.
Proof.
  intros. unfold add, or, bitwise_binop.
  apply eqm_samerepr. eapply eqm_trans. apply eqm_add.
  apply eqm_sym. apply Z_of_bits_of_Z.
  apply eqm_sym. apply Z_of_bits_of_Z.
  apply eqm_refl2. 
  apply Z_of_bits_excl. 
  intros. 
  replace (bits_of_Z wordsize (unsigned x) i &&
           bits_of_Z wordsize (unsigned y) i)
     with (bits_of_Z wordsize (unsigned (and x y)) i).
  rewrite H. rewrite unsigned_zero. rewrite bits_of_Z_zero. auto.
  unfold and, bitwise_binop. rewrite unsigned_repr; auto with ints. 
  rewrite bits_of_Z_of_bits. reflexivity. auto. 
  auto.
Qed.

Theorem xor_is_or:
  forall x y, and x y = zero -> xor x y = or x y.
Proof.
  intros. unfold xor, or, bitwise_binop. 
  decEq. apply Z_of_bits_exten; intros.
  set (bitx := bits_of_Z wordsize (unsigned x) (i + 0)).
  set (bity := bits_of_Z wordsize (unsigned y) (i + 0)).
  assert (bitx && bity = false).
  replace (bitx && bity)
     with (bits_of_Z wordsize (unsigned (and x y)) (i + 0)).
  rewrite H. rewrite unsigned_zero. apply bits_of_Z_zero.
  unfold and, bitwise_binop. rewrite unsigned_repr; auto with ints.
  unfold bitx, bity. rewrite bits_of_Z_of_bits. reflexivity.
  omega.
  destruct bitx; destruct bity; auto; simpl in H1; congruence.
Qed.

Theorem add_is_xor:
  forall x y,
  and x y = zero ->
  add x y = xor x y.
Proof.
  intros. rewrite xor_is_or; auto. apply add_is_or; auto.
Qed.

Theorem add_and:
  forall x y z,
  and y z = zero ->
  add (and x y) (and x z) = and x (or y z).
Proof.
  intros. rewrite add_is_or.
  rewrite and_or_distrib; auto.
  rewrite (and_commut x y).
  rewrite and_assoc. 
  repeat rewrite <- (and_assoc x). 
  rewrite (and_commut (and x x)).
  rewrite <- and_assoc.
  rewrite H. rewrite and_commut. apply and_zero.
Qed.

(** ** Properties of shifts *)

Theorem shl_zero: forall x, shl x zero = x.
Proof.
  intros. unfold shl. rewrite unsigned_zero. simpl (-0).
  transitivity (repr (unsigned x)). apply eqm_samerepr. apply Z_of_bits_of_Z. 
  auto with ints.
Qed.

Lemma bitwise_binop_shl:
  forall f x y n,
  f false false = false ->
  bitwise_binop f (shl x n) (shl y n) = shl (bitwise_binop f x y) n.
Proof.
  intros. unfold bitwise_binop, shl.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite Zplus_0_r.
  destruct (zlt (i + -unsigned n) 0).
  rewrite bits_of_Z_of_bits_gen; auto.
  rewrite bits_of_Z_of_bits_gen; auto.
  repeat rewrite bits_of_Z_below; auto.
  repeat rewrite bits_of_Z_of_bits_gen; auto. repeat rewrite Zplus_0_r. auto. 
  generalize (unsigned_range n). omega.
Qed.

Theorem and_shl:
  forall x y n,
  and (shl x n) (shl y n) = shl (and x y) n.
Proof.
  unfold and; intros. apply bitwise_binop_shl. reflexivity.
Qed.

Theorem or_shl:
  forall x y n,
  or (shl x n) (shl y n) = shl (or x y) n.
Proof.
  unfold or; intros. apply bitwise_binop_shl. reflexivity.
Qed.

Theorem xor_shl:
  forall x y n,
  xor (shl x n) (shl y n) = shl (xor x y) n.
Proof.
  unfold xor; intros. apply bitwise_binop_shl. reflexivity.
Qed.

Lemma ltu_inv:
  forall x y, ltu x y = true -> 0 <= unsigned x < unsigned y.
Proof.
  unfold ltu; intros. destruct (zlt (unsigned x) (unsigned y)).
  split; auto. generalize (unsigned_range x); omega.
  discriminate.
Qed.

Theorem shl_shl:
  forall x y z,
  ltu y iwordsize = true -> 
  ltu z iwordsize = true ->
  ltu (add y z) iwordsize = true ->
  shl (shl x y) z = shl x (add y z).
Proof.
  intros. unfold shl, add.
  generalize (ltu_inv _ _ H). 
  generalize (ltu_inv _ _ H0).
  rewrite unsigned_repr_wordsize.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  intros.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros n R.
  rewrite bits_of_Z_of_bits_gen'. 
  destruct (zlt (n + - z') 0).
  symmetry. apply bits_of_Z_below. omega.
  destruct (zle (Z_of_nat wordsize) (n + - z')).
  symmetry. apply bits_of_Z_below. omega.
  decEq. omega.
  generalize two_wordsize_max_unsigned; omega.
Qed.

Theorem shru_zero: forall x, shru x zero = x.
Proof.
  intros. unfold shru. rewrite unsigned_zero.
  transitivity (repr (unsigned x)). apply eqm_samerepr. apply Z_of_bits_of_Z. 
  auto with ints.
Qed.

Lemma bitwise_binop_shru:
  forall f x y n,
  f false false = false ->
  bitwise_binop f (shru x n) (shru y n) = shru (bitwise_binop f x y) n.
Proof.
  intros. unfold bitwise_binop, shru.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite Zplus_0_r.
  rewrite bits_of_Z_of_bits_gen; auto.
  rewrite bits_of_Z_of_bits_gen; auto.
  destruct (zlt (i + unsigned n) (Z_of_nat wordsize)).
  rewrite bits_of_Z_of_bits. auto. generalize (unsigned_range n); omega.
  repeat rewrite bits_of_Z_above; auto.
Qed.

Theorem and_shru:
  forall x y n,
  and (shru x n) (shru y n) = shru (and x y) n.
Proof.
  unfold and; intros. apply bitwise_binop_shru. reflexivity.
Qed.

Theorem or_shru:
  forall x y n,
  or (shru x n) (shru y n) = shru (or x y) n.
Proof.
  unfold or; intros. apply bitwise_binop_shru. reflexivity.
Qed.

Theorem xor_shru:
  forall x y n,
  xor (shru x n) (shru y n) = shru (xor x y) n.
Proof.
  unfold xor; intros. apply bitwise_binop_shru. reflexivity.
Qed.

Theorem shru_shru:
  forall x y z,
  ltu y iwordsize = true -> 
  ltu z iwordsize = true ->
  ltu (add y z) iwordsize = true ->
  shru (shru x y) z = shru x (add y z).
Proof.
  intros. unfold shru, add.
  generalize (ltu_inv _ _ H). 
  generalize (ltu_inv _ _ H0).
  rewrite unsigned_repr_wordsize.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  intros. repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten. intros n R.
  rewrite bits_of_Z_of_bits_gen'. 
  destruct (zlt (n + z') 0). omegaContradiction.
  destruct (zle (Z_of_nat wordsize) (n + z')).
  symmetry. apply bits_of_Z_above. omega.
  decEq. omega.
  generalize two_wordsize_max_unsigned; omega.
Qed.

Theorem shr_zero: forall x, shr x zero = x.
Proof.
  intros. unfold shr. rewrite unsigned_zero.
  transitivity (repr (unsigned x)). apply eqm_samerepr.
  eapply eqm_trans. 2: apply Z_of_bits_of_Z.
  apply eqm_refl2. apply Z_of_bits_exten; intros. 
  rewrite zlt_true. auto. omega. 
  auto with ints.
Qed.

Lemma bitwise_binop_shr:
  forall f x y n,
  bitwise_binop f (shr x n) (shr y n) = shr (bitwise_binop f x y) n.
Proof.
  intros. unfold bitwise_binop, shr.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits_gen; repeat rewrite Zplus_0_r; auto.
  generalize (unsigned_range n); intro.
  destruct (zlt (i + unsigned n) (Z_of_nat wordsize)); omega. 
Qed.

Theorem and_shr:
  forall x y n,
  and (shr x n) (shr y n) = shr (and x y) n.
Proof.
  unfold and; intros. apply bitwise_binop_shr.
Qed.

Theorem or_shr:
  forall x y n,
  or (shr x n) (shr y n) = shr (or x y) n.
Proof.
  unfold or; intros. apply bitwise_binop_shr.
Qed.

Theorem xor_shr:
  forall x y n,
  xor (shr x n) (shr y n) = shr (xor x y) n.
Proof.
  unfold xor; intros. apply bitwise_binop_shr. 
Qed.

Theorem shr_shr:
  forall x y z,
  ltu y iwordsize = true -> 
  ltu z iwordsize = true ->
  ltu (add y z) iwordsize = true ->
  shr (shr x y) z = shr x (add y z).
Proof.
  intros. unfold shr, add.
  generalize (ltu_inv _ _ H). 
  generalize (ltu_inv _ _ H0).
  rewrite unsigned_repr_wordsize.
  set (x' := unsigned x).
  set (y' := unsigned y).
  set (z' := unsigned z).
  intros. repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros n R.
  destruct (zlt (n + z') (Z_of_nat wordsize)).
  rewrite bits_of_Z_of_bits_gen.
  rewrite (Zplus_comm y' z'). rewrite Zplus_assoc. auto.
  omega.
  rewrite bits_of_Z_of_bits_gen. 
  decEq. symmetry. rewrite zlt_false. 
  destruct (zeq y' 0). rewrite zlt_true; omega. rewrite zlt_false; omega. 
  omega. omega. 
  generalize two_wordsize_max_unsigned; omega.
Qed.

Remark two_p_m1_range:
  forall n,
  0 <= n <= Z_of_nat wordsize ->
  0 <= two_p n - 1 <= max_unsigned.
Proof.
  intros. split. 
  assert (two_p n > 0). apply two_p_gt_ZERO. omega. omega.
  assert (two_p n <= two_p (Z_of_nat wordsize)). apply two_p_monotone. auto. 
  unfold max_unsigned. unfold modulus. rewrite two_power_nat_two_p. omega.
Qed.

Theorem shru_shl_and:
  forall x y,
  ltu y iwordsize = true ->
  shru (shl x y) y = and x (repr (two_p (Z_of_nat wordsize - unsigned y) - 1)).
Proof.
  intros. exploit ltu_inv; eauto. rewrite unsigned_repr_wordsize. intros.
  unfold and, bitwise_binop, shl, shru.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r. 
  rewrite bits_of_Z_two_p.
  destruct (zlt (i + unsigned y) (Z_of_nat wordsize)).
  rewrite bits_of_Z_of_bits_gen. unfold proj_sumbool. rewrite zlt_true. 
  rewrite andb_true_r. f_equal. omega. 
  omega. omega. 
  rewrite bits_of_Z_above. unfold proj_sumbool. rewrite zlt_false. rewrite andb_false_r; auto. 
  omega. omega. omega. auto. 
  apply two_p_m1_range. omega. 
Qed.

Theorem and_shr_shru:
  forall x y z,
  and (shr x z) (shru y z) = shru (and x y) z.
Proof.
  intros. unfold and, shr, shru, bitwise_binop. 
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite Zplus_0_r. 
  rewrite bits_of_Z_of_bits_gen; auto.
  rewrite bits_of_Z_of_bits_gen; auto.
  generalize (unsigned_range z); intros.
  destruct (zlt (i + unsigned z) (Z_of_nat wordsize)).
  rewrite bits_of_Z_of_bits_gen.
  repeat rewrite Zplus_0_r. auto. omega.
  set (b := bits_of_Z wordsize (unsigned x) (Z_of_nat wordsize - 1)).
  repeat rewrite bits_of_Z_above; auto. apply andb_false_r. 
Qed.  

Theorem shr_and_shru_and:
  forall x y z,
  shru (shl z y) y = z ->
  and (shr x y) z = and (shru x y) z.
Proof.
  intros. 
  rewrite <- H. 
  rewrite and_shru. rewrite and_shr_shru. auto.
Qed.

(** ** Properties of rotations *)

Theorem shl_rolm:
  forall x n,
  ltu n iwordsize = true ->
  shl x n = rolm x n (shl mone n).
Proof.
  intros. exploit ltu_inv; eauto. rewrite unsigned_repr_wordsize; intros.
  unfold shl, rolm, rol, and, bitwise_binop.
  repeat rewrite unsigned_repr; auto with ints. 
  decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r. 
  repeat rewrite bits_of_Z_of_bits_gen; auto.
  destruct (zlt i (unsigned n)).
  assert (i + - unsigned n < 0). omega.
  rewrite (bits_of_Z_below wordsize (unsigned x) _ H2).
  rewrite (bits_of_Z_below wordsize (unsigned mone) _ H2).
  symmetry. apply andb_b_false. 
  assert (0 <= i + - unsigned n < Z_of_nat wordsize).
    generalize (unsigned_range n). omega.
  rewrite unsigned_mone. 
  rewrite bits_of_Z_mone; auto. rewrite andb_b_true. decEq.
  rewrite Zmod_small. omega. omega.
Qed.

Theorem shru_rolm:
  forall x n,
  ltu n iwordsize = true ->
  shru x n = rolm x (sub iwordsize n) (shru mone n).
Proof.
  intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize. intro. 
  unfold shru, rolm, rol, and, bitwise_binop.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
  repeat rewrite bits_of_Z_of_bits_gen; auto. 
  unfold sub. rewrite unsigned_repr_wordsize. 
  rewrite unsigned_repr. 
  case (zlt (i + unsigned n) (Z_of_nat wordsize)); intro LT2.
  rewrite unsigned_mone. rewrite bits_of_Z_mone. rewrite andb_b_true.
  decEq. 
  replace (i + - (Z_of_nat wordsize - unsigned n))
     with ((i + unsigned n) + (-1) * Z_of_nat wordsize) by omega.
  rewrite Z_mod_plus. symmetry. apply Zmod_small.
  generalize (unsigned_range n). omega. omega. omega.
  rewrite (bits_of_Z_above wordsize (unsigned x) _ LT2).
  rewrite (bits_of_Z_above wordsize (unsigned mone) _ LT2).
  symmetry. apply andb_b_false.
  split. omega. apply Zle_trans with (Z_of_nat wordsize).
  generalize (unsigned_range n); omega. apply wordsize_max_unsigned.
Qed.

Theorem rol_zero:
  forall x,
  rol x zero = x.
Proof.
  intros. transitivity (repr (unsigned x)). 
  unfold rol. apply eqm_samerepr. eapply eqm_trans. 2: apply Z_of_bits_of_Z. 
  apply eqm_refl2. apply Z_of_bits_exten; intros. decEq. rewrite unsigned_zero. 
  replace (i + - 0) with (i + 0) by omega. apply Zmod_small. omega.
  apply repr_unsigned.
Qed.

Lemma bitwise_binop_rol:
  forall f x y n,
  bitwise_binop f (rol x n) (rol y n) = rol (bitwise_binop f x y) n.
Proof.
  intros. unfold bitwise_binop, rol.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits_gen.
  repeat rewrite Zplus_0_r. auto.
  apply Z_mod_lt. generalize wordsize_pos; omega.
  omega. omega.
Qed.

Theorem rol_and:
  forall x y n,
  rol (and x y) n = and (rol x n) (rol y n).
Proof.
  intros. symmetry. unfold and. apply bitwise_binop_rol.
Qed.

Theorem rol_or:
  forall x y n,
  rol (or x y) n = or (rol x n) (rol y n).
Proof.
  intros. symmetry. unfold or. apply bitwise_binop_rol.
Qed.

Theorem rol_xor:
  forall x y n,
  rol (xor x y) n = xor (rol x n) (rol y n).
Proof.
  intros. symmetry. unfold xor. apply bitwise_binop_rol.
Qed.

Theorem rol_rol:
  forall x n m,
  Zdivide (Z_of_nat wordsize) modulus ->
  rol (rol x n) m = rol x (modu (add n m) iwordsize).
Proof.
  intros. unfold rol. 
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros.
  repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
  rewrite bits_of_Z_of_bits_gen. decEq. 
  unfold modu, add. 
  set (W := Z_of_nat wordsize).
  set (M := unsigned m); set (N := unsigned n).
  assert (W > 0). unfold W; generalize wordsize_pos; omega.
  assert (forall a, eqmod W a (unsigned (repr a))).
    intros. eapply eqmod_divides. apply eqm_unsigned_repr. assumption.
  apply eqmod_mod_eq. auto.
  replace (unsigned iwordsize) with W.
  apply eqmod_trans with (i - (N + M) mod W).
  apply eqmod_trans with ((i - M) - N).
  apply eqmod_sub. apply eqmod_sym. apply eqmod_mod. auto.
  apply eqmod_refl. 
  replace (i - M - N) with (i - (N + M)).
  apply eqmod_sub. apply eqmod_refl. apply eqmod_mod. auto.
  omega.
  apply eqmod_sub. apply eqmod_refl. 
  eapply eqmod_trans; [idtac|apply H2].
  eapply eqmod_trans; [idtac|apply eqmod_mod].
  apply eqmod_sym. eapply eqmod_trans; [idtac|apply eqmod_mod].
  apply eqmod_sym. apply H2. auto. auto.
  symmetry. unfold W. apply unsigned_repr_wordsize.
  apply Z_mod_lt. generalize wordsize_pos; omega. 
Qed.

Theorem rolm_zero:
  forall x m,
  rolm x zero m = and x m.
Proof.
  intros. unfold rolm. rewrite rol_zero. auto.
Qed.

Theorem rolm_rolm:
  forall x n1 m1 n2 m2,
  Zdivide (Z_of_nat wordsize) modulus ->
  rolm (rolm x n1 m1) n2 m2 =
    rolm x (modu (add n1 n2) iwordsize)
           (and (rol m1 n2) m2).
Proof.
  intros.
  unfold rolm. rewrite rol_and. rewrite and_assoc. 
  rewrite rol_rol. reflexivity. auto.
Qed.

Theorem or_rolm:
  forall x n m1 m2,
  or (rolm x n m1) (rolm x n m2) = rolm x n (or m1 m2).
Proof.
  intros; unfold rolm. symmetry. apply and_or_distrib. 
Qed.

Theorem ror_rol:
  forall x y,
  ltu y iwordsize = true ->
  ror x y = rol x (sub iwordsize y).
Proof.
  intros. unfold ror, rol, sub.
  generalize (ltu_inv _ _ H).
  rewrite unsigned_repr_wordsize. 
  intro. repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros. decEq.
  apply eqmod_mod_eq. omega. 
  exists 1. omega.
  generalize wordsize_pos; generalize wordsize_max_unsigned; omega. 
Qed.

Theorem or_ror:
  forall x y z,
  ltu y iwordsize = true ->
  ltu z iwordsize = true ->
  add y z = iwordsize ->
  ror x z = or (shl x y) (shru x z).
Proof.
  intros.
  generalize (ltu_inv _ _ H).
  generalize (ltu_inv _ _ H0).
  rewrite unsigned_repr_wordsize.
  intros.
  unfold or, bitwise_binop, shl, shru, ror.
  set (ux := unsigned x).
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten. intros i iRANGE. rewrite Zplus_0_r.
  repeat rewrite bits_of_Z_of_bits_gen; auto.
  assert (y = sub iwordsize z).
    rewrite <- H1. rewrite add_commut. rewrite sub_add_l. rewrite sub_idem. 
    rewrite add_commut. rewrite add_zero. auto.
  assert (unsigned y = Z_of_nat wordsize - unsigned z).
    rewrite H4. unfold sub. rewrite unsigned_repr_wordsize. apply unsigned_repr. 
    generalize wordsize_max_unsigned; omega. 
  destruct (zlt (i + unsigned z) (Z_of_nat wordsize)). 
  rewrite Zmod_small. 
  replace (bits_of_Z wordsize ux (i + - unsigned y)) with false. auto.
  symmetry. apply bits_of_Z_below. omega. omega. 
  replace (bits_of_Z wordsize ux (i + unsigned z)) with false. rewrite orb_false_r.
  decEq. 
  replace (i + unsigned z) with (i - unsigned y + 1 * Z_of_nat wordsize) by omega.
  rewrite Z_mod_plus. apply Zmod_small. omega. generalize wordsize_pos; omega. 
  symmetry. apply bits_of_Z_above. auto. 
Qed.

(** ** Properties of [Z_one_bits] and [is_power2]. *)

Fixpoint powerserie (l: list Z): Z :=
  match l with
  | nil => 0
  | x :: xs => two_p x + powerserie xs
  end.

Lemma Z_bin_decomp_range:
  forall x n,
  0 <= x < 2 * n -> 0 <= snd (Z_bin_decomp x) < n.
Proof.
  intros. rewrite <- (Z_bin_comp_decomp x) in H. rewrite Z_bin_comp_eq in H.
  destruct (fst (Z_bin_decomp x)); omega.
Qed.

Lemma Z_one_bits_powerserie:
  forall x, 0 <= x < modulus -> x = powerserie (Z_one_bits wordsize x 0).
Proof.
  assert (forall n x i, 
    0 <= i ->
    0 <= x < two_power_nat n ->
    x * two_p i = powerserie (Z_one_bits n x i)).
  induction n; intros.
  simpl. rewrite two_power_nat_O in H0. 
  assert (x = 0). omega. subst x. omega.
  rewrite two_power_nat_S in H0. simpl Z_one_bits.
  destruct (Z_bin_decomp x) as [b y]_eqn.
  rewrite (Z_bin_comp_decomp2 _ _ _ Heqp).
  assert (EQ: y * two_p (i + 1) = powerserie (Z_one_bits n y (i + 1))).
    apply IHn. omega. 
    replace y with (snd (Z_bin_decomp x)). apply Z_bin_decomp_range; auto.
    rewrite Heqp; auto.
  rewrite two_p_is_exp in EQ. change (two_p 1) with 2 in EQ.
  rewrite Z_bin_comp_eq. 
  destruct b; simpl powerserie; rewrite <- EQ; ring.
  omega. omega. 
  intros. rewrite <- H. change (two_p 0) with 1. omega.
  omega. exact H0.
Qed.

Lemma Z_one_bits_range:
  forall x i, In i (Z_one_bits wordsize x 0) -> 0 <= i < Z_of_nat wordsize.
Proof.
  assert (forall n x i j,
    In j (Z_one_bits n x i) -> i <= j < i + Z_of_nat n).
  induction n; simpl In.
  intros; elim H.
  intros x i j. destruct (Z_bin_decomp x). case b.
  rewrite inj_S. simpl. intros [A|B]. subst j. omega.
  generalize (IHn _ _ _ B). omega.
  intros B. rewrite inj_S. generalize (IHn _ _ _ B). omega.
  intros. generalize (H wordsize x 0 i H0). omega.
Qed.

Lemma is_power2_rng:
  forall n logn,
  is_power2 n = Some logn ->
  0 <= unsigned logn < Z_of_nat wordsize.
Proof.
  intros n logn. unfold is_power2.
  generalize (Z_one_bits_range (unsigned n)).
  destruct (Z_one_bits wordsize (unsigned n) 0).
  intros; discriminate.
  destruct l.
  intros. injection H0; intro; subst logn; clear H0.
  assert (0 <= z < Z_of_nat wordsize).
  apply H. auto with coqlib.
  rewrite unsigned_repr. auto. generalize wordsize_max_unsigned; omega.
  intros; discriminate.
Qed.

Theorem is_power2_range:
  forall n logn,
  is_power2 n = Some logn -> ltu logn iwordsize = true.
Proof.
  intros. unfold ltu. rewrite unsigned_repr_wordsize.
  generalize (is_power2_rng _ _ H). 
  case (zlt (unsigned logn) (Z_of_nat wordsize)); intros.
  auto. omegaContradiction. 
Qed. 

Lemma is_power2_correct:
  forall n logn,
  is_power2 n = Some logn ->
  unsigned n = two_p (unsigned logn).
Proof.
  intros n logn. unfold is_power2.
  generalize (Z_one_bits_powerserie (unsigned n) (unsigned_range n)).
  generalize (Z_one_bits_range (unsigned n)).
  destruct (Z_one_bits wordsize (unsigned n) 0).
  intros; discriminate.
  destruct l.
  intros. simpl in H0. injection H1; intros; subst logn; clear H1.
  rewrite unsigned_repr. replace (two_p z) with (two_p z + 0).
  auto. omega. elim (H z); intros.
  generalize wordsize_max_unsigned; omega.
  auto with coqlib. 
  intros; discriminate.
Qed.

Remark two_p_range:
  forall n,
  0 <= n < Z_of_nat wordsize ->
  0 <= two_p n <= max_unsigned.
Proof.
  intros. split.
  assert (two_p n > 0). apply two_p_gt_ZERO. omega. omega.
  generalize (two_p_monotone_strict _ _ H). rewrite <- two_power_nat_two_p. 
  unfold max_unsigned, modulus. omega. 
Qed.

Remark Z_one_bits_zero:
  forall n i, Z_one_bits n 0 i = nil.
Proof.
  induction n; intros; simpl; auto.
Qed.

Remark Z_one_bits_two_p:
  forall n x i,
  0 <= x < Z_of_nat n ->
  Z_one_bits n (two_p x) i = (i + x) :: nil.
Proof.
  induction n; intros; simpl. simpl in H. omegaContradiction.
  rewrite inj_S in H. 
  assert (x = 0 \/ 0 < x) by omega. destruct H0.
  subst x; simpl. decEq. omega. apply Z_one_bits_zero.
  replace (two_p x) with (Z_bin_comp false (two_p (x-1))).
  rewrite Z_bin_decomp_comp. 
  replace (i + x) with ((i + 1) + (x - 1)) by omega. 
  apply IHn. omega.
  rewrite Z_bin_comp_eq. rewrite <- two_p_S. 
  rewrite Zplus_0_r. decEq; omega. omega.
Qed.

Lemma is_power2_two_p:
  forall n, 0 <= n < Z_of_nat wordsize ->
  is_power2 (repr (two_p n)) = Some (repr n).
Proof.
  intros. unfold is_power2. rewrite unsigned_repr. 
  rewrite Z_one_bits_two_p. auto. auto.
  apply two_p_range. auto.
Qed.

(** ** Relation between bitwise operations and multiplications / divisions by powers of 2 *)

(** Left shifts and multiplications by powers of 2. *)

Lemma Z_of_bits_shift_left:
  forall f m,
  m >= 0 ->
  (forall i, i < 0 -> f i = false) ->
  eqm (Z_of_bits wordsize f (-m)) (two_p m * Z_of_bits wordsize f 0).
Proof.
  intros. 
  set (m' := nat_of_Z m). 
  assert (Z_of_nat m' = m). apply nat_of_Z_eq. auto.
  generalize (Z_of_bits_compose f m' wordsize (-m)). rewrite H1. 
  replace (-m+m) with 0 by omega. rewrite two_power_nat_two_p. rewrite H1. 
  replace (Z_of_bits m' f (-m)) with 0. intro EQ.
  eapply eqm_trans. apply eqm_sym. eapply Z_of_bits_truncate with (n := m').
  rewrite plus_comm. rewrite EQ. apply eqm_refl2. ring. 
  symmetry. apply Z_of_bits_false. rewrite H1. intros. apply H0. omega. 
Qed.

Lemma shl_mul_two_p:
  forall x y,
  shl x y = mul x (repr (two_p (unsigned y))).
Proof.
  intros. unfold shl, mul. apply eqm_samerepr. 
  eapply eqm_trans.
  apply Z_of_bits_shift_left.
  generalize (unsigned_range y). omega.
  intros; apply bits_of_Z_below; auto.
  rewrite Zmult_comm. apply eqm_mult.
  apply Z_of_bits_of_Z. apply eqm_unsigned_repr.
Qed.

Theorem shl_mul:
  forall x y,
  shl x y = mul x (shl one y).
Proof.
  intros. 
  assert (shl one y = repr (two_p (unsigned y))).
  rewrite shl_mul_two_p. rewrite mul_commut. rewrite mul_one. auto.
  rewrite H. apply shl_mul_two_p.
Qed.

Theorem mul_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  mul x n = shl x logn.
Proof.
  intros. generalize (is_power2_correct n logn H); intro.
  rewrite shl_mul_two_p. rewrite <- H0. rewrite repr_unsigned.
  auto.
Qed.

Theorem shifted_or_is_add:
  forall x y n,
  0 <= n < Z_of_nat wordsize ->
  unsigned y < two_p n ->
  or (shl x (repr n)) y = repr(unsigned x * two_p n + unsigned y).
Proof.
  intros. rewrite <- add_is_or. 
  rewrite shl_mul_two_p. rewrite unsigned_repr.
  unfold add. apply eqm_samerepr. unfold mul. auto with ints. 
  generalize wordsize_max_unsigned; omega.
  unfold and, shl, bitwise_binop. unfold zero. decEq. apply Z_of_bits_false. intros.
  rewrite unsigned_repr; auto with ints. rewrite bits_of_Z_of_bits_gen.
  rewrite unsigned_repr. apply andb_false_iff.  
  destruct (zlt j n).
  left. apply bits_of_Z_below. omega. 
  right. apply bits_of_Z_greater. 
  split. generalize (unsigned_range y); omega.
  assert (two_p n <= two_p j). apply two_p_monotone. omega. omega.
  generalize wordsize_max_unsigned; omega.
  omega.
Qed.

(** Unsigned right shifts and unsigned divisions by powers of 2. *)

Lemma Z_of_bits_shift_right:
  forall m f,
  m >= 0 ->
  (forall i, i >= Z_of_nat wordsize -> f i = false) ->
  exists k,
  Z_of_bits wordsize f 0 = k + two_p m * Z_of_bits wordsize f m /\ 0 <= k < two_p m.
Proof.
  intros. 
  set (m' := nat_of_Z m). 
  assert (Z_of_nat m' = m). apply nat_of_Z_eq. auto.
  generalize (Z_of_bits_compose f m' wordsize 0).
  rewrite two_power_nat_two_p. rewrite H1.
  rewrite plus_comm. rewrite Z_of_bits_compose.
  replace (Z_of_bits m' f (0 + Z_of_nat wordsize)) with 0.
  repeat rewrite Zplus_0_l. intros EQ. 
  exists (Z_of_bits m' f 0); split. rewrite EQ. ring. 
  rewrite <- H1. rewrite <- two_power_nat_two_p. apply Z_of_bits_range. 
  symmetry. apply Z_of_bits_false. intros. apply H0. omega. 
Qed.

Lemma shru_div_two_p:
  forall x y,
  shru x y = repr (unsigned x / two_p (unsigned y)).
Proof.
  intros. unfold shru. 
  set (x' := unsigned x). set (y' := unsigned y).
  destruct (Z_of_bits_shift_right y' (bits_of_Z wordsize x')) as [k [EQ RANGE]].
  generalize (unsigned_range y). unfold y'; omega.
  intros. rewrite bits_of_Z_above; auto. 
  decEq. symmetry. apply Zdiv_unique with k; auto. 
  transitivity (Z_of_bits wordsize (bits_of_Z wordsize x') 0).
  apply eqm_small_eq. apply eqm_sym. apply Z_of_bits_of_Z.
  unfold x'; auto with ints. auto with ints.
  rewrite EQ. ring. 
Qed.

Theorem divu_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  divu x n = shru x logn.
Proof.
  intros. generalize (is_power2_correct n logn H). intro.
  symmetry. unfold divu. rewrite H0. apply shru_div_two_p.
Qed.

(** Signed right shifts and signed divisions by powers of 2. *)

Lemma Z_of_bits_shift_right_neg:
  forall m f,
  m >= 0 ->
  (forall i, i >= Z_of_nat wordsize -> f i = true) ->
  exists k,
  Z_of_bits wordsize f 0 - modulus =
           k + two_p m * (Z_of_bits wordsize f m - modulus) 
  /\ 0 <= k < two_p m.
Proof.
  intros. 
  set (m' := nat_of_Z m). 
  assert (Z_of_nat m' = m). apply nat_of_Z_eq. auto.
  generalize (Z_of_bits_compose f m' wordsize 0).
  rewrite two_power_nat_two_p. rewrite H1.
  rewrite plus_comm. rewrite Z_of_bits_compose.
  repeat rewrite Zplus_0_l. fold modulus. 
  replace (Z_of_bits m' f (Z_of_nat wordsize)) with (two_p m - 1).
  intros EQ.
  exists (Z_of_bits m' f 0); split.
  replace (Z_of_bits wordsize f 0)
     with (Z_of_bits wordsize f m * two_p m + Z_of_bits m' f 0 - (two_p m - 1) * modulus)
  by omega.
  ring. 
  rewrite <- H1. rewrite <- two_power_nat_two_p. apply Z_of_bits_range.
  rewrite <- H1. rewrite <- two_power_nat_two_p. 
  symmetry. apply Z_of_bits_true. intros. apply H0. omega. 
Qed.

Lemma sign_bit_of_Z_rec:
  forall n x,
  0 <= x < two_power_nat (S n) ->
  bits_of_Z (S n) x (Z_of_nat n) = if zlt x (two_power_nat n) then false else true.
Proof.
  induction n; intros.
  rewrite two_power_nat_S in H. rewrite two_power_nat_O in *. simpl. 
  generalize (Z_bin_comp_decomp x). destruct (Z_bin_decomp x) as [b y]; simpl.
  intros; subst x. rewrite Z_bin_comp_eq in *.
  destruct b. rewrite zlt_false. auto. omega. rewrite zlt_true. auto. omega.
  rewrite inj_S. remember (S n) as sn. simpl. rewrite two_power_nat_S in H.
  generalize (Z_bin_comp_decomp x). destruct (Z_bin_decomp x) as [b y]; simpl.
  intros; subst x. rewrite Z_bin_comp_eq in *.
  rewrite zeq_false. 
  replace (Zsucc (Z_of_nat n) - 1) with (Z_of_nat n). rewrite IHn.
  subst sn. rewrite two_power_nat_S. 
  destruct (zlt y (two_power_nat n)).
  rewrite zlt_true. auto. destruct b; omega.
  rewrite zlt_false. auto. destruct b; omega.
  destruct b; omega.
  omega. omega.
Qed.

Lemma sign_bit_of_Z:
  forall x,
  bits_of_Z wordsize (unsigned x) (Z_of_nat wordsize - 1) =
  if zlt (unsigned x) half_modulus then false else true.
Proof.
  intros. 
  rewrite half_modulus_power. 
  set (w1 := nat_of_Z (Z_of_nat wordsize - 1)).
  assert (Z_of_nat wordsize - 1 = Z_of_nat w1).
      unfold w1. rewrite nat_of_Z_eq; auto. generalize wordsize_pos; omega.
  assert (wordsize = 1 + w1)%nat.
      apply inj_eq_rev. rewrite inj_plus. simpl (Z_of_nat 1). omega.
  rewrite H. rewrite <- two_power_nat_two_p. rewrite H0.
  apply sign_bit_of_Z_rec. simpl in H0; rewrite <- H0. auto with ints.
Qed.

Lemma shr_div_two_p:
  forall x y,
  shr x y = repr (signed x / two_p (unsigned y)).
Proof.
  intros. unfold shr.
  generalize (sign_bit_of_Z x); intro SIGN.
  unfold signed. destruct (zlt (unsigned x) half_modulus).
(* positive case *)
  rewrite <- shru_div_two_p. unfold shru. decEq; apply Z_of_bits_exten; intros.
  destruct (zlt (i + unsigned y) (Z_of_nat wordsize)). auto.
  rewrite SIGN. symmetry. apply bits_of_Z_above. auto. 
(* negative case *)
  set (x' := unsigned x) in *. set (y' := unsigned y) in *.
  set (f := fun i => bits_of_Z wordsize x'
                      (if zlt i (Z_of_nat wordsize) then i else Z_of_nat wordsize - 1)).
  destruct (Z_of_bits_shift_right_neg y' f) as [k [EQ RANGE]].
  generalize (unsigned_range y). unfold y'; omega.
  intros. unfold f. rewrite zlt_false; auto. 
  set (A := Z_of_bits wordsize f y') in *.
  set (B := Z_of_bits wordsize f 0) in *.
  assert (B = Z_of_bits wordsize (bits_of_Z wordsize x') 0).
    unfold B. apply Z_of_bits_exten; intros. 
    unfold f. rewrite zlt_true. auto. omega. 
  assert (B = x').
    apply eqm_small_eq. rewrite H. apply Z_of_bits_of_Z. 
    unfold B; apply Z_of_bits_range. 
    unfold x'; apply unsigned_range.
  assert (Q: (x' - modulus) / two_p y' = A - modulus).
    apply Zdiv_unique with k; auto. rewrite <- H0. rewrite EQ. ring.
  rewrite Q. apply eqm_samerepr. exists 1; ring. 
Qed.

Theorem divs_pow2:
  forall x n logn,
  is_power2 n = Some logn ->
  divs x n = shrx x logn.
Proof.
  intros. generalize (is_power2_correct _ _ H); intro.
  unfold shrx. rewrite shl_mul_two_p.
  rewrite mul_commut. rewrite mul_one.
  rewrite <- H0. rewrite repr_unsigned. auto.
Qed.

(** Unsigned modulus over [2^n] is masking with [2^n-1]. *)

Lemma Z_of_bits_mod_mask:
  forall f n,
  0 <= n <= Z_of_nat wordsize ->
  Z_of_bits wordsize (fun i => if zlt i n then f i else false) 0 =
  (Z_of_bits wordsize f 0) mod (two_p n).
Proof.
  intros. set (f' := fun i => if zlt i n then f i else false).
  set (n1 := nat_of_Z n). set (m1 := nat_of_Z (Z_of_nat wordsize - n)).
  assert (Z_of_nat n1 = n). apply nat_of_Z_eq; omega.
  assert (Z_of_nat m1 = Z_of_nat wordsize - n). apply nat_of_Z_eq; omega.
  assert (n1 + m1 = wordsize)%nat. apply inj_eq_rev. rewrite inj_plus. omega.
  generalize (Z_of_bits_compose f n1 m1 0).
  rewrite H2. rewrite Zplus_0_l. rewrite two_power_nat_two_p. rewrite H0. intros.
  generalize (Z_of_bits_compose f' n1 m1 0).
  rewrite H2. rewrite Zplus_0_l. rewrite two_power_nat_two_p. rewrite H0. intros.
  assert (Z_of_bits n1 f' 0 = Z_of_bits n1 f 0).
    apply Z_of_bits_exten; intros. unfold f'. apply zlt_true. omega. 
  assert (Z_of_bits m1 f' n = 0).
    apply Z_of_bits_false; intros. unfold f'. apply zlt_false. omega. 
  assert (Z_of_bits wordsize f' 0 = Z_of_bits n1 f 0).
    rewrite H4. rewrite H5. rewrite H6. ring.
  symmetry. apply Zmod_unique with (Z_of_bits m1 f n). omega. 
  rewrite H7. rewrite <- H0. rewrite <- two_power_nat_two_p. apply Z_of_bits_range.
Qed.

Theorem modu_and:
  forall x n logn,
  is_power2 n = Some logn ->
  modu x n = and x (sub n one).
Proof.
  intros. generalize (is_power2_correct _ _ H); intro.
  generalize (is_power2_rng _ _ H); intro.
  unfold modu, and, bitwise_binop. decEq.
  set (ux := unsigned x).
  replace ux with (Z_of_bits wordsize (bits_of_Z wordsize ux) 0).
  rewrite H0. rewrite <- Z_of_bits_mod_mask. 
  apply Z_of_bits_exten; intros. rewrite Zplus_0_r. 
  rewrite bits_of_Z_of_bits; auto. 
  replace (unsigned (sub n one)) with (two_p (unsigned logn) - 1).
  rewrite bits_of_Z_two_p. unfold proj_sumbool.
  destruct (zlt i (unsigned logn)). rewrite andb_true_r; auto. rewrite andb_false_r; auto. 
  omega. auto. 
  rewrite <- H0. unfold sub. symmetry. rewrite unsigned_one. apply unsigned_repr.
  rewrite H0. 
  assert (two_p (unsigned logn) > 0). apply two_p_gt_ZERO. omega.
  generalize (two_p_range _ H1). omega. 
  omega.
  apply eqm_small_eq. apply Z_of_bits_of_Z. apply Z_of_bits_range. 
  unfold ux. apply unsigned_range.
Qed.

(** ** Properties of [shrx] (signed division by a power of 2) *)

Lemma Zdiv_round_Zdiv:
  forall x y,
  y > 0 ->
  Zdiv_round x y = if zlt x 0 then (x + y - 1) / y else x / y.
Proof.
  intros. unfold Zdiv_round.
  destruct (zlt x 0). 
  rewrite zlt_false; try omega.
  generalize (Z_div_mod_eq (-x) y H).
  generalize (Z_mod_lt (-x) y H).
  set (q := (-x) / y). set (r := (-x) mod y). intros.
  symmetry.
  apply Zdiv_unique with (y - r - 1).
  replace x with (- (y * q) - r) by omega.
  replace (-(y * q)) with ((-q) * y) by ring.
  omega.
  omega.
  apply zlt_false. omega.
Qed.

Theorem shrx_shr:
  forall x y,
  ltu y (repr (Z_of_nat wordsize - 1)) = true ->
  shrx x y = shr (if lt x zero then add x (sub (shl one y) one) else x) y.
Proof.
  intros. rewrite shr_div_two_p. unfold shrx. unfold divs.  
  exploit ltu_inv; eauto. rewrite unsigned_repr. 
  set (uy := unsigned y). intro RANGE.
  assert (shl one y = repr (two_p uy)).
    transitivity (mul one (repr (two_p uy))).
    symmetry. apply mul_pow2. replace y with (repr uy). 
    apply is_power2_two_p. omega. apply repr_unsigned.
    rewrite mul_commut. apply mul_one.
  assert (two_p uy > 0). apply two_p_gt_ZERO. omega.
  assert (two_p uy < half_modulus). 
    rewrite half_modulus_power. 
    apply two_p_monotone_strict. auto.
  assert (two_p uy < modulus).
    rewrite modulus_power. apply two_p_monotone_strict. omega. 
  assert (unsigned (shl one y) = two_p uy).
    rewrite H0. apply unsigned_repr. unfold max_unsigned. omega.
  assert (signed (shl one y) = two_p uy).
    rewrite H0. apply signed_repr.
    unfold max_signed. generalize min_signed_neg. omega.
  rewrite H5. 
  rewrite Zdiv_round_Zdiv; auto.
  unfold lt. rewrite signed_zero.  
  destruct (zlt (signed x) 0); auto.
  rewrite add_signed.
  assert (signed (sub (shl one y) one) = two_p uy - 1).
    unfold sub. rewrite H4. rewrite unsigned_one.  
    apply signed_repr.
    generalize min_signed_neg. unfold max_signed. omega. 
  rewrite H6. rewrite signed_repr. decEq. decEq. omega.
  generalize (signed_range x). intros.  
  assert (two_p uy - 1 <= max_signed). unfold max_signed. omega.
  omega.
  generalize wordsize_pos wordsize_max_unsigned; omega.
Qed.

Lemma Zdiv_shift:
  forall x y, y > 0 ->
  (x + (y - 1)) / y = x / y + if zeq (Zmod x y) 0 then 0 else 1.
Proof.
  intros. generalize (Z_div_mod_eq x y H). generalize (Z_mod_lt x y H).  
  set (q := x / y). set (r := x mod y). intros.
  destruct (zeq r 0). 
  apply Zdiv_unique with (y - 1). rewrite H1. rewrite e. ring. omega.
  apply Zdiv_unique with (r - 1). rewrite H1. ring. omega.
Qed.

Theorem shrx_carry:
  forall x y,
  ltu y (repr (Z_of_nat wordsize - 1)) = true ->
  shrx x y = add (shr x y) (shr_carry x y).
Proof.
  intros. rewrite shrx_shr; auto. unfold shr_carry.
  unfold lt. set (sx := signed x). rewrite signed_zero. 
  destruct (zlt sx 0); simpl. 
  2: rewrite add_zero; auto.
  set (uy := unsigned y).
  assert (0 <= uy < Z_of_nat wordsize - 1).
    exploit ltu_inv; eauto. rewrite unsigned_repr. auto.
    generalize wordsize_pos wordsize_max_unsigned; omega.
  assert (shl one y = repr (two_p uy)).
    rewrite shl_mul_two_p. rewrite mul_commut. apply mul_one.
  assert (and x (sub (shl one y) one) = modu x (repr (two_p uy))).
    symmetry. rewrite H1. apply modu_and with (logn := y).
    rewrite is_power2_two_p. unfold uy. rewrite repr_unsigned. auto.
    omega.
  rewrite H2. rewrite H1. 
  repeat rewrite shr_div_two_p. fold sx. fold uy.
  assert (two_p uy > 0). apply two_p_gt_ZERO. omega.
  assert (two_p uy < modulus).
    rewrite modulus_power. apply two_p_monotone_strict. omega.
  assert (two_p uy < half_modulus). 
    rewrite half_modulus_power. 
    apply two_p_monotone_strict. auto.
  assert (two_p uy < modulus).
    rewrite modulus_power. apply two_p_monotone_strict. omega.
  assert (sub (repr (two_p uy)) one = repr (two_p uy - 1)).
    unfold sub. apply eqm_samerepr. apply eqm_sub. apply eqm_sym; apply eqm_unsigned_repr. 
    rewrite unsigned_one. apply eqm_refl.
  rewrite H7. rewrite add_signed. fold sx.
  rewrite (signed_repr (two_p uy - 1)). rewrite signed_repr. 
  unfold modu. rewrite unsigned_repr. 
  unfold eq. rewrite unsigned_zero. rewrite unsigned_repr. 
  assert (unsigned x mod two_p uy = sx mod two_p uy).
    apply eqmod_mod_eq; auto. apply eqmod_divides with modulus. 
    fold eqm. unfold sx. apply eqm_sym. apply eqm_signed_unsigned.
    unfold modulus. rewrite two_power_nat_two_p. 
    exists (two_p (Z_of_nat wordsize - uy)). rewrite <- two_p_is_exp. 
    decEq. omega. omega. omega.
  rewrite H8. rewrite Zdiv_shift; auto.
  unfold add. apply eqm_samerepr. apply eqm_add. 
  apply eqm_unsigned_repr. 
  destruct (zeq (sx mod two_p uy) 0); simpl.
  rewrite unsigned_zero. apply eqm_refl.
  rewrite unsigned_one. apply eqm_refl.
  generalize (Z_mod_lt (unsigned x) (two_p uy) H3). unfold max_unsigned. omega.
  unfold max_unsigned; omega.
  generalize (signed_range x). fold sx. intros. split. omega. unfold max_signed. omega. 
  generalize min_signed_neg. unfold max_signed. omega. 
Qed.

(** Connections between [shr] and [shru]. *)

Lemma shr_shru_positive:
  forall x y,
  signed x >= 0 -> 
  shr x y = shru x y.
Proof.
  intros.
  rewrite shr_div_two_p. rewrite shru_div_two_p.
  rewrite signed_eq_unsigned. auto. apply signed_positive. auto.
Qed.

Lemma and_positive:
  forall x y, signed y >= 0 -> signed (and x y) >= 0.
Proof.
  intros.
  assert (unsigned y < half_modulus). rewrite signed_positive in H. unfold max_signed in H; omega. 
  generalize (sign_bit_of_Z y). rewrite zlt_true; auto. intros A.
  generalize (sign_bit_of_Z (and x y)).
  unfold and at 1. unfold bitwise_binop at 1.
  set (fx := bits_of_Z wordsize (unsigned x)).
  set (fy := bits_of_Z wordsize (unsigned y)).
  rewrite unsigned_repr; auto with ints. 
  rewrite bits_of_Z_of_bits. unfold fy. rewrite A. rewrite andb_false_r. 
  destruct (zlt (unsigned (and x y)) half_modulus); intros.
  rewrite signed_positive. unfold max_signed; omega.
  congruence.
  generalize wordsize_pos; omega.
Qed.

Theorem shr_and_is_shru_and:
  forall x y z,
  lt y zero = false -> shr (and x y) z = shru (and x y) z.
Proof.
  intros. apply shr_shru_positive. apply and_positive. 
  unfold lt in H. rewrite signed_zero in H. destruct (zlt (signed y) 0). congruence. auto.
Qed.

(** ** Properties of integer zero extension and sign extension. *)

Section EXTENSIONS.

Variable n: Z.
Hypothesis RANGE: 0 < n < Z_of_nat wordsize.

Remark two_p_n_pos:
  two_p n > 0.
Proof. apply two_p_gt_ZERO. omega. Qed.

Remark two_p_n_range:
  0 <= two_p n <= max_unsigned.
Proof. apply two_p_range. omega. Qed.

Remark two_p_n_range':
  two_p n <= max_signed + 1.
Proof.
  unfold max_signed. rewrite half_modulus_power. 
  assert (two_p n <= two_p (Z_of_nat wordsize - 1)).
  apply two_p_monotone. omega.
  omega.
Qed.

Remark unsigned_repr_two_p:
  unsigned (repr (two_p n)) = two_p n.
Proof.
  apply unsigned_repr. apply two_p_n_range. 
Qed.

Remark eqm_eqmod_two_p:
  forall a b, eqm a b -> eqmod (two_p n) a b.
Proof.
  intros a b [k EQ].
  exists (k * two_p (Z_of_nat wordsize - n)).
  rewrite EQ. decEq. rewrite <- Zmult_assoc. decEq.
  rewrite <- two_p_is_exp. unfold modulus. rewrite two_power_nat_two_p.
  decEq. omega. omega. omega.
Qed.

Theorem zero_ext_and:
  forall x, zero_ext n x = and x (repr (two_p n - 1)).
Proof.
  intros; unfold zero_ext, and, bitwise_binop.
  decEq; apply Z_of_bits_exten; intros.
  rewrite unsigned_repr. rewrite bits_of_Z_two_p. 
  unfold proj_sumbool. destruct (zlt (i+0) n). 
  rewrite andb_true_r; auto. rewrite andb_false_r; auto. 
  omega. omega. 
  generalize two_p_n_range two_p_n_pos; omega.
Qed.

Theorem zero_ext_mod:
  forall x, unsigned (zero_ext n x) = Zmod (unsigned x) (two_p n).
Proof.
  intros.
  replace (unsigned x) with (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)) 0).
  unfold zero_ext. rewrite unsigned_repr; auto with ints. 
  apply Z_of_bits_mod_mask. omega.
  apply eqm_small_eq; auto with ints. apply Z_of_bits_of_Z.
Qed.

Theorem zero_ext_idem:
  forall x, zero_ext n (zero_ext n x) = zero_ext n x.
Proof.
  intros. repeat rewrite zero_ext_and. 
  rewrite and_assoc. rewrite and_idem. auto.
Qed.

Theorem sign_ext_idem:
  forall x, sign_ext n (sign_ext n x) = sign_ext n x.
Proof.
  intros. unfold sign_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
  repeat rewrite bits_of_Z_of_bits; auto. 
  destruct (zlt i n). auto. destruct (zlt (n - 1) n); auto.
  omega.
Qed.

Theorem sign_ext_zero_ext:
  forall x, sign_ext n (zero_ext n x) = sign_ext n x.
Proof.
  intros. unfold sign_ext, zero_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
  destruct (zlt i n); rewrite bits_of_Z_of_bits; auto.
  rewrite zlt_true; auto. rewrite zlt_true; auto. omega. omega.
Qed.

Theorem zero_ext_sign_ext:
  forall x, zero_ext n (sign_ext n x) = zero_ext n x.
Proof.
  intros. unfold sign_ext, zero_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
  destruct (zlt i n); auto.
  rewrite bits_of_Z_of_bits; auto.
  rewrite zlt_true; auto.
Qed.

Theorem sign_ext_equal_if_zero_equal:
  forall x y,
  zero_ext n x = zero_ext n y ->
  sign_ext n x = sign_ext n y.
Proof.
  intros. rewrite <- (sign_ext_zero_ext x).
  rewrite <- (sign_ext_zero_ext y). congruence.
Qed.

Theorem zero_ext_shru_shl:
  forall x, 
  let y := repr (Z_of_nat wordsize - n) in
  zero_ext n x = shru (shl x y) y.
Proof.
  intros.
  assert (unsigned y = Z_of_nat wordsize - n).
    unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega.
  rewrite zero_ext_and. symmetry. 
  replace n with (Z_of_nat wordsize - unsigned y).
  apply shru_shl_and. unfold ltu. apply zlt_true.
  rewrite H. rewrite unsigned_repr_wordsize. omega. omega.
Qed.

Theorem sign_ext_shr_shl:
  forall x, 
  let y := repr (Z_of_nat wordsize - n) in
  sign_ext n x = shr (shl x y) y.
Proof.
  intros.
  assert (unsigned y = Z_of_nat wordsize - n).
    unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega.
  unfold sign_ext, shr, shl.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
  destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits_gen.
  decEq. omega.  omega. omega. 
  rewrite zlt_false. rewrite bits_of_Z_of_bits_gen. 
  decEq. omega. omega. omega.
Qed.

(** [zero_ext n x] is the unique integer congruent to [x] modulo [2^n]
    in the range [0...2^n-1]. *)

Lemma zero_ext_range:
  forall x, 0 <= unsigned (zero_ext n x) < two_p n.
Proof.
  intros. rewrite zero_ext_mod. apply Z_mod_lt. apply two_p_gt_ZERO. omega. 
Qed.

Lemma eqmod_zero_ext:
  forall x, eqmod (two_p n) (unsigned (zero_ext n x)) (unsigned x).
Proof.
  intros. rewrite zero_ext_mod. apply eqmod_sym. apply eqmod_mod. 
  apply two_p_gt_ZERO. omega.
Qed.

(** [sign_ext n x] is the unique integer congruent to [x] modulo [2^n]
    in the range [-2^(n-1)...2^(n-1) - 1]. *)

Lemma sign_ext_div:
  forall x,
  signed (sign_ext n x) =
  signed (repr (unsigned x * two_p (Z_of_nat wordsize - n))) / two_p (Z_of_nat wordsize - n).
Proof.
  intros. 
  assert (two_p (Z_of_nat wordsize - n) > 0). apply two_p_gt_ZERO. omega.
  rewrite sign_ext_shr_shl. rewrite shr_div_two_p. rewrite shl_mul_two_p.
  unfold mul. repeat rewrite unsigned_repr. rewrite signed_repr. auto. 
  apply Zdiv_interval_2. apply signed_range. 
  generalize min_signed_neg; omega. apply max_signed_pos.
  auto.
  generalize wordsize_max_unsigned; omega.
  assert (two_p (Z_of_nat wordsize - n) < modulus). 
    rewrite modulus_power. apply two_p_monotone_strict. omega. 
  unfold max_unsigned. omega.
  generalize wordsize_max_unsigned; omega.
Qed.

Lemma sign_ext_range:
  forall x, -two_p (n-1) <= signed (sign_ext n x) < two_p (n-1).
Proof.
  intros.
  assert (two_p (n - 1) > 0). apply two_p_gt_ZERO. omega.
  rewrite sign_ext_div. apply Zdiv_interval_1. omega. auto. apply two_p_gt_ZERO; omega.
  rewrite <- Zopp_mult_distr_l. rewrite <- two_p_is_exp.
  replace (n - 1 + (Z_of_nat wordsize - n)) with (Z_of_nat wordsize - 1) by omega.
  rewrite <- half_modulus_power. 
  generalize (signed_range (repr (unsigned x * two_p (Z_of_nat wordsize - n)))).
  unfold min_signed, max_signed. omega. 
  omega. omega.
Qed.

Lemma eqmod_sign_ext:
  forall x, eqmod (two_p n) (signed (sign_ext n x)) (unsigned x).
Proof.
  intros. rewrite sign_ext_div. 
  assert (eqm (signed (repr (unsigned x * two_p (Z_of_nat wordsize - n))))
              (unsigned x * two_p (Z_of_nat wordsize - n))).
  eapply eqm_trans. apply eqm_signed_unsigned. apply eqm_sym. apply eqm_unsigned_repr.
  destruct H as [k EQ]. exists k.
  rewrite EQ. rewrite Z_div_plus. decEq. 
  replace modulus with (two_p (n + (Z_of_nat wordsize - n))).
  rewrite two_p_is_exp. rewrite Zmult_assoc. apply Z_div_mult.
  apply two_p_gt_ZERO; omega.
  omega. omega.
  rewrite modulus_power. decEq. omega.
  apply two_p_gt_ZERO; omega.
Qed.

Lemma eqmod_sign_ext':
  forall x, eqmod (two_p n) (unsigned (sign_ext n x)) (unsigned x).
Proof.
  intros. eapply eqmod_trans. 
  apply eqm_eqmod_two_p. auto. apply eqm_sym. apply eqm_signed_unsigned. 
  apply eqmod_sign_ext. 
Qed.

End EXTENSIONS.

Theorem zero_ext_widen:
  forall x n n',
  0 < n < Z_of_nat wordsize -> n <= n' < Z_of_nat wordsize ->
  zero_ext n' (zero_ext n x) = zero_ext n x.
Proof.
  intros. unfold zero_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
  destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits. apply zlt_true. 
  auto. omega. omega. 
  destruct (zlt i n'); auto. rewrite bits_of_Z_of_bits. apply zlt_false.
  auto. omega.
Qed.

Theorem sign_ext_widen:
  forall x n n',
  0 < n < Z_of_nat wordsize -> n <= n' < Z_of_nat wordsize ->
  sign_ext n' (sign_ext n x) = sign_ext n x.
Proof.
  intros. unfold sign_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
  destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits. apply zlt_true. 
  auto. omega. omega. 
  destruct (zlt i n'). rewrite bits_of_Z_of_bits. apply zlt_false.
  auto. omega.
  rewrite bits_of_Z_of_bits.
  destruct (zlt (n' - 1) n). assert (n' = n) by omega. congruence. auto.
  omega. 
Qed.

Theorem sign_zero_ext_widen:
  forall x n n',
  0 < n < Z_of_nat wordsize -> n < n' < Z_of_nat wordsize ->
  sign_ext n' (zero_ext n x) = zero_ext n x.
Proof.
  intros. unfold sign_ext, zero_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
  destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits. apply zlt_true. 
  auto. omega. omega. 
  destruct (zlt i n'). rewrite bits_of_Z_of_bits. apply zlt_false.
  auto. omega.
  rewrite bits_of_Z_of_bits. apply zlt_false. omega. omega.
Qed.

Theorem zero_ext_narrow:
  forall x n n',
  0 < n < Z_of_nat wordsize -> n <= n' < Z_of_nat wordsize ->
  zero_ext n (zero_ext n' x) = zero_ext n x.
Proof.
  intros. unfold zero_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
  destruct (zlt i n); auto.
  rewrite bits_of_Z_of_bits; auto. apply zlt_true. omega. 
Qed.

Theorem zero_sign_ext_narrow:
  forall x n n',
  0 < n < Z_of_nat wordsize -> n <= n' < Z_of_nat wordsize ->
  zero_ext n (sign_ext n' x) = zero_ext n x.
Proof.
  intros. unfold sign_ext, zero_ext.
  repeat rewrite unsigned_repr; auto with ints.
  decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
  destruct (zlt i n); auto.
  rewrite bits_of_Z_of_bits; auto. apply zlt_true. omega. 
Qed.

(** ** Properties of [one_bits] (decomposition in sum of powers of two) *)

Theorem one_bits_range:
  forall x i, In i (one_bits x) -> ltu i iwordsize = true.
Proof.
  assert (A: forall p, 0 <= p < Z_of_nat wordsize -> ltu (repr p) iwordsize = true).
    intros. unfold ltu, iwordsize. apply zlt_true. 
    repeat rewrite unsigned_repr. tauto. 
    generalize wordsize_max_unsigned. omega.
    generalize wordsize_max_unsigned. omega.
  intros. unfold one_bits in H.
  destruct (list_in_map_inv _ _ _ H) as [i0 [EQ IN]].
  subst i. apply A. apply Z_one_bits_range with (unsigned x); auto.
Qed.

Fixpoint int_of_one_bits (l: list int) : int :=
  match l with
  | nil => zero
  | a :: b => add (shl one a) (int_of_one_bits b)
  end.

Theorem one_bits_decomp:
  forall x, x = int_of_one_bits (one_bits x).
Proof.
  intros. 
  transitivity (repr (powerserie (Z_one_bits wordsize (unsigned x) 0))).
  transitivity (repr (unsigned x)).
  auto with ints. decEq. apply Z_one_bits_powerserie.
  auto with ints.
  unfold one_bits. 
  generalize (Z_one_bits_range (unsigned x)).
  generalize (Z_one_bits wordsize (unsigned x) 0).
  induction l.
  intros; reflexivity.
  intros; simpl. rewrite <- IHl. unfold add. apply eqm_samerepr.
  apply eqm_add. rewrite shl_mul_two_p. rewrite mul_commut. 
  rewrite mul_one. apply eqm_unsigned_repr_r. 
  rewrite unsigned_repr. auto with ints.
  generalize (H a (in_eq _ _)). generalize wordsize_max_unsigned. omega.  
  auto with ints.
  intros; apply H; auto with coqlib.
Qed.

(** ** Properties of comparisons *)

Theorem negate_cmp:
  forall c x y, cmp (negate_comparison c) x y = negb (cmp c x y).
Proof.
  intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.

Theorem negate_cmpu:
  forall c x y, cmpu (negate_comparison c) x y = negb (cmpu c x y).
Proof.
  intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.

Theorem swap_cmp:
  forall c x y, cmp (swap_comparison c) x y = cmp c y x.
Proof.
  intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.

Theorem swap_cmpu:
  forall c x y, cmpu (swap_comparison c) x y = cmpu c y x.
Proof.
  intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.

Lemma translate_eq:
  forall x y d,
  eq (add x d) (add y d) = eq x y.
Proof.
  intros. unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
  unfold add. rewrite e. apply zeq_true.
  apply zeq_false. unfold add. red; intro. apply n. 
  apply eqm_small_eq; auto with ints.
  replace (unsigned x) with ((unsigned x + unsigned d) - unsigned d).
  replace (unsigned y) with ((unsigned y + unsigned d) - unsigned d).
  apply eqm_sub. apply eqm_trans with (unsigned (repr (unsigned x + unsigned d))).
  eauto with ints. apply eqm_trans with (unsigned (repr (unsigned y + unsigned d))).
  eauto with ints. eauto with ints. eauto with ints.
  omega. omega.
Qed.

Lemma translate_ltu:
  forall x y d,
  0 <= unsigned x + unsigned d <= max_unsigned ->
  0 <= unsigned y + unsigned d <= max_unsigned ->
  ltu (add x d) (add y d) = ltu x y.
Proof.
  intros. unfold add. unfold ltu.
  repeat rewrite unsigned_repr; auto. case (zlt (unsigned x) (unsigned y)); intro.
  apply zlt_true. omega.
  apply zlt_false. omega.
Qed.

Theorem translate_cmpu:
  forall c x y d,
  0 <= unsigned x + unsigned d <= max_unsigned ->
  0 <= unsigned y + unsigned d <= max_unsigned ->
  cmpu c (add x d) (add y d) = cmpu c x y.
Proof.
  intros. unfold cmpu.
  rewrite translate_eq. repeat rewrite translate_ltu; auto.
Qed.  

Lemma translate_lt:
  forall x y d,
  min_signed <= signed x + signed d <= max_signed ->
  min_signed <= signed y + signed d <= max_signed ->
  lt (add x d) (add y d) = lt x y.
Proof.
  intros. repeat rewrite add_signed. unfold lt.
  repeat rewrite signed_repr; auto. case (zlt (signed x) (signed y)); intro.
  apply zlt_true. omega.
  apply zlt_false. omega.
Qed.

Theorem translate_cmp:
  forall c x y d,
  min_signed <= signed x + signed d <= max_signed ->
  min_signed <= signed y + signed d <= max_signed ->
  cmp c (add x d) (add y d) = cmp c x y.
Proof.
  intros. unfold cmp.
  rewrite translate_eq. repeat rewrite translate_lt; auto.
Qed.  

Theorem notbool_isfalse_istrue:
  forall x, is_false x -> is_true (notbool x).
Proof.
  unfold is_false, is_true, notbool; intros; subst x. 
  rewrite eq_true. apply one_not_zero. 
Qed.

Theorem notbool_istrue_isfalse:
  forall x, is_true x -> is_false (notbool x).
Proof.
  unfold is_false, is_true, notbool; intros.
  generalize (eq_spec x zero). case (eq x zero); intro.
  contradiction. auto.
Qed.

Theorem shru_lt_zero:
  forall x,
  shru x (repr (Z_of_nat wordsize - 1)) = if lt x zero then one else zero.
Proof.
  intros. rewrite shru_div_two_p. 
  replace (two_p (unsigned (repr (Z_of_nat wordsize - 1))))
    with half_modulus.
  generalize (unsigned_range x); intro. 
  unfold lt. rewrite signed_zero. unfold signed. 
  destruct (zlt (unsigned x) half_modulus).
  rewrite zlt_false.
  replace (unsigned x / half_modulus) with 0. reflexivity. 
  symmetry. apply Zdiv_unique with (unsigned x). ring. omega. omega.
  rewrite zlt_true. 
  replace (unsigned x / half_modulus) with 1. reflexivity.
  symmetry. apply Zdiv_unique with (unsigned x - half_modulus). ring.
  rewrite half_modulus_modulus in H. omega. omega.
  rewrite unsigned_repr. apply half_modulus_power. 
  generalize wordsize_pos wordsize_max_unsigned; omega.
Qed.

Theorem ltu_range_test:
  forall x y,
  ltu x y = true -> unsigned y <= max_signed ->
  0 <= signed x < unsigned y.
Proof.
  intros.
  unfold ltu in H. destruct (zlt (unsigned x) (unsigned y)); try discriminate.
  rewrite signed_eq_unsigned.
  generalize (unsigned_range x). omega. omega.
Qed.

(** Non-overlapping test *)

Definition no_overlap (ofs1: int) (sz1: Z) (ofs2: int) (sz2: Z) : bool :=
  let x1 := unsigned ofs1 in let x2 := unsigned ofs2 in
     zlt (x1 + sz1) modulus && zlt (x2 + sz2) modulus
  && (zle (x1 + sz1) x2 || zle (x2 + sz2) x1).

Lemma no_overlap_sound:
  forall ofs1 sz1 ofs2 sz2 base,
  sz1 > 0 -> sz2 > 0 -> no_overlap ofs1 sz1 ofs2 sz2 = true ->
  unsigned (add base ofs1) + sz1 <= unsigned (add base ofs2)
  \/ unsigned (add base ofs2) + sz2 <= unsigned (add base ofs1).
Proof.
  intros. 
  destruct (andb_prop _ _ H1). clear H1. 
  destruct (andb_prop _ _ H2). clear H2.
  exploit proj_sumbool_true. eexact H1. intro A; clear H1.
  exploit proj_sumbool_true. eexact H4. intro B; clear H4.
  assert (unsigned ofs1 + sz1 <= unsigned ofs2 \/ unsigned ofs2 + sz2 <= unsigned ofs1).
  destruct (orb_prop _ _ H3). left. eapply proj_sumbool_true; eauto. right. eapply proj_sumbool_true; eauto.
  clear H3.
  generalize (unsigned_range ofs1) (unsigned_range ofs2). intros P Q.
  generalize (unsigned_add_either base ofs1) (unsigned_add_either base ofs2).
  intros [C|C] [D|D]; omega.
Qed.

End Make.

(** * Specialization to integers of size 8, 32, and 64 bits *)

Module Wordsize_32.
  Definition wordsize := 32%nat.
  Remark wordsize_not_zero: wordsize <> 0%nat.
  Proof. unfold wordsize; congruence. Qed.
End Wordsize_32.

Module Int := Make(Wordsize_32).

Notation int := Int.int.

Remark int_wordsize_divides_modulus:
  Zdivide (Z_of_nat Int.wordsize) Int.modulus.
Proof.
  exists (two_p (32-5)); reflexivity. 
Qed.

Module Wordsize_8.
  Definition wordsize := 8%nat.
  Remark wordsize_not_zero: wordsize <> 0%nat.
  Proof. unfold wordsize; congruence. Qed.
End Wordsize_8.

Module Byte := Make(Wordsize_8).

Notation byte := Byte.int.

Module Wordsize_64.
  Definition wordsize := 64%nat.
  Remark wordsize_not_zero: wordsize <> 0%nat.
  Proof. unfold wordsize; congruence. Qed.
End Wordsize_64.

Module Int64 := Make(Wordsize_64).

Notation int64 := Int64.int.