1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
(** Tactics to reason about list inclusion. *)
(** This file (contributed by Laurence Rideau) defines a tactic [in_tac]
to reason over list inclusion. It expects goals of the following form:
<<
id : In x l1
============================
In x l2
>>
and succeeds if it can prove that [l1] is included in [l2].
The lists [l1] and [l2] must belong to the following sub-language [L]
<<
L ::= L++L | E | E::L
>>
The tactic uses no extra fact.
A second tactic, [incl_tac], handles goals of the form
<<
=============================
incl l1 l2
>>
*)
Require Import List.
Require Import ArithRing.
Ltac all_app e :=
match e with
| cons ?x nil => constr:(cons x nil)
| cons ?x ?tl =>
let v := all_app tl in constr:(app (cons x nil) v)
| app ?e1 ?e2 =>
let v1 := all_app e1 with v2 := all_app e2 in
constr:(app v1 v2)
| _ => e
end.
(** This data type, [flatten], [insert_bin], [sort_bin] and a few theorem
are taken from the CoqArt book, chapt. 16. *)
Inductive bin : Set := node : bin->bin->bin | leaf : nat->bin.
Fixpoint flatten_aux (t fin:bin){struct t} : bin :=
match t with
| node t1 t2 => flatten_aux t1 (flatten_aux t2 fin)
| x => node x fin
end.
Fixpoint flatten (t:bin) : bin :=
match t with
| node t1 t2 => flatten_aux t1 (flatten t2)
| x => x
end.
Fixpoint nat_le_bool (n m:nat){struct m} : bool :=
match n, m with
| O, _ => true
| S _, O => false
| S n, S m => nat_le_bool n m
end.
Fixpoint insert_bin (n:nat)(t:bin){struct t} : bin :=
match t with
| leaf m =>
if nat_le_bool n m then
node (leaf n)(leaf m)
else
node (leaf m)(leaf n)
| node (leaf m) t' =>
if nat_le_bool n m then node (leaf n) t else node (leaf m)(insert_bin n t')
| t => node (leaf n) t
end.
Fixpoint sort_bin (t:bin) : bin :=
match t with
| node (leaf n) t' => insert_bin n (sort_bin t')
| t => t
end.
Section assoc_eq.
Variables (A : Set)(f : A->A->A).
Hypothesis assoc : forall x y z:A, f x (f y z) = f (f x y) z.
Fixpoint bin_A (l:list A)(def:A)(t:bin){struct t} : A :=
match t with
| node t1 t2 => f (bin_A l def t1)(bin_A l def t2)
| leaf n => nth n l def
end.
Theorem flatten_aux_valid_A :
forall (l:list A)(def:A)(t t':bin),
f (bin_A l def t)(bin_A l def t') = bin_A l def (flatten_aux t t').
Proof.
intros l def t; elim t; simpl; auto.
intros t1 IHt1 t2 IHt2 t'; rewrite <- IHt1; rewrite <- IHt2.
symmetry; apply assoc.
Qed.
Theorem flatten_valid_A :
forall (l:list A)(def:A)(t:bin),
bin_A l def t = bin_A l def (flatten t).
Proof.
intros l def t; elim t; simpl; trivial.
intros t1 IHt1 t2 IHt2; rewrite <- flatten_aux_valid_A; rewrite <- IHt2.
trivial.
Qed.
End assoc_eq.
Ltac compute_rank l n v :=
match l with
| (cons ?X1 ?X2) =>
let tl := constr:X2 in
match constr:(X1 = v) with
| (?X1 = ?X1) => n
| _ => compute_rank tl (S n) v
end
end.
Ltac term_list_app l v :=
match v with
| (app ?X1 ?X2) =>
let l1 := term_list_app l X2 in term_list_app l1 X1
| ?X1 => constr:(cons X1 l)
end.
Ltac model_aux_app l v :=
match v with
| (app ?X1 ?X2) =>
let r1 := model_aux_app l X1 with r2 := model_aux_app l X2 in
constr:(node r1 r2)
| ?X1 => let n := compute_rank l 0 X1 in constr:(leaf n)
| _ => constr:(leaf 0)
end.
Theorem In_permute_app_head :
forall A:Set, forall r:A, forall x y l:list A,
In r (x++y++l) -> In r (y++x++l).
intros A r x y l; generalize r; change (incl (x++y++l)(y++x++l)).
repeat rewrite ass_app; auto with datatypes.
Qed.
Theorem insert_bin_included :
forall x:nat, forall t2:bin,
forall (A:Set) (r:A) (l:list (list A))(def:list A),
In r (bin_A (list A) (app (A:=A)) l def (insert_bin x t2)) ->
In r (bin_A (list A) (app (A:=A)) l def (node (leaf x) t2)).
intros x t2; induction t2.
intros A r l def.
destruct t2_1 as [t2_11 t2_12|y].
simpl.
repeat rewrite app_ass.
auto.
simpl; repeat rewrite app_ass.
simpl; case (nat_le_bool x y); simpl.
auto.
intros H; apply In_permute_app_head.
elim in_app_or with (1:= H); clear H; intros H.
apply in_or_app; left; assumption.
apply in_or_app; right;apply (IHt2_2 A r l);assumption.
intros A r l def; simpl.
case (nat_le_bool x n); simpl.
auto.
intros H.
rewrite (app_nil_end (nth x l def)) in H.
rewrite (app_nil_end (nth n l def)).
apply In_permute_app_head; assumption.
Qed.
Theorem in_or_insert_bin :
forall (n:nat) (t2:bin) (A:Set)(r:A)(l:list (list A)) (def:list A),
In r (nth n l def) \/ In r (bin_A (list A)(app (A:=A)) l def t2) ->
In r (bin_A (list A)(app (A:=A)) l def (insert_bin n t2)).
intros n t2 A r l def; induction t2.
destruct t2_1 as [t2_11 t2_12| y].
simpl; apply in_or_app.
simpl; case (nat_le_bool n y); simpl.
intros H.
apply in_or_app.
exact H.
intros [H|H].
apply in_or_app; right; apply IHt2_2; auto.
elim in_app_or with (1:= H);clear H; intros H; apply in_or_app; auto.
simpl; intros [H|H]; case (nat_le_bool n n0); simpl; apply in_or_app; auto.
Qed.
Theorem sort_included :
forall t:bin, forall (A:Set)(r:A)(l:list(list A))(def:list A),
In r (bin_A (list A) (app (A:=A)) l def (sort_bin t)) ->
In r (bin_A (list A) (app (A:=A)) l def t).
induction t.
destruct t1.
simpl;intros; assumption.
intros A r l def H; simpl in H; apply insert_bin_included.
generalize (insert_bin_included _ _ _ _ _ _ H); clear H; intros H.
simpl in H.
elim in_app_or with (1 := H);clear H; intros H;
apply in_or_insert_bin; auto.
simpl;intros;assumption.
Qed.
Theorem sort_included2 :
forall t:bin, forall (A:Set)(r:A)(l:list(list A))(def:list A),
In r (bin_A (list A) (app (A:=A)) l def t) ->
In r (bin_A (list A) (app (A:=A)) l def (sort_bin t)).
induction t.
destruct t1.
simpl; intros; assumption.
intros A r l def H; simpl in H.
simpl; apply in_or_insert_bin.
elim in_app_or with (1:= H); auto.
simpl; auto.
Qed.
Theorem in_remove_head :
forall (A:Set)(x:A)(l1 l2 l3:list A),
In x (l1++l2) -> (In x l2 -> In x l3) -> In x (l1++l3).
intros A x l1 l2 l3 H H1.
elim in_app_or with (1:= H);clear H; intros H; apply in_or_app; auto.
Qed.
Fixpoint check_all_leaves (n:nat)(t:bin) {struct t} : bool :=
match t with
leaf n1 => nateq n n1
| node t1 t2 => andb (check_all_leaves n t1)(check_all_leaves n t2)
end.
Fixpoint remove_all_leaves (n:nat)(t:bin){struct t} : bin :=
match t with
leaf n => leaf n
| node (leaf n1) t2 =>
if nateq n n1 then remove_all_leaves n t2 else t
| _ => t
end.
Fixpoint test_inclusion (t1 t2:bin) {struct t1} : bool :=
match t1 with
leaf n => check_all_leaves n t2
| node (leaf n1) t1' =>
check_all_leaves n1 t2 || test_inclusion t1' (remove_all_leaves n1 t2)
| _ => false
end.
Theorem check_all_leaves_sound :
forall x t2,
check_all_leaves x t2 = true ->
forall (A:Set)(r:A)(l:list(list A))(def:list A),
In r (bin_A (list A) (app (A:=A)) l def t2) ->
In r (nth x l def).
intros x t2; induction t2; simpl.
destruct (check_all_leaves x t2_1);
destruct (check_all_leaves x t2_2); simpl; intros Heq; try discriminate.
intros A r l def H; elim in_app_or with (1:= H); clear H; intros H; auto.
intros Heq A r l def; rewrite (nateq_prop x n); auto.
rewrite Heq; unfold Is_true; auto.
Qed.
Theorem remove_all_leaves_sound :
forall x t2,
forall (A:Set)(r:A)(l:list(list A))(def:list A),
In r (bin_A (list A) (app(A:=A)) l def t2) ->
In r (bin_A (list A) (app(A:=A)) l def (remove_all_leaves x t2)) \/
In r (nth x l def).
intros x t2; induction t2; simpl.
destruct t2_1.
simpl; auto.
intros A r l def.
generalize (refl_equal (nateq x n)); pattern (nateq x n) at -1;
case (nateq x n); simpl; auto.
intros Heq_nateq.
assert (Heq_xn : x=n).
apply nateq_prop; rewrite Heq_nateq;unfold Is_true;auto.
rewrite Heq_xn.
intros H; elim in_app_or with (1:= H); auto.
clear H; intros H.
rewrite Heq_xn in IHt2_2; auto.
auto.
Qed.
Theorem test_inclusion_sound :
forall t1 t2:bin,
test_inclusion t1 t2 = true ->
forall (A:Set)(r:A)(l:list(list A))(def:list A),
In r (bin_A (list A)(app(A:=A)) l def t2) ->
In r (bin_A (list A)(app(A:=A)) l def t1).
intros t1; induction t1.
destruct t1_1 as [t1_11 t1_12|x].
simpl; intros; discriminate.
simpl; intros t2 Heq A r l def H.
assert
(check_all_leaves x t2 = true \/
test_inclusion t1_2 (remove_all_leaves x t2) = true).
destruct (check_all_leaves x t2);
destruct (test_inclusion t1_2 (remove_all_leaves x t2));
simpl in Heq; try discriminate Heq; auto.
elim H0; clear H0; intros H0.
apply in_or_app; left; apply check_all_leaves_sound with (1:= H0); auto.
elim remove_all_leaves_sound with (x:=x)(1:= H); intros H'.
apply in_or_app; right; apply IHt1_2 with (1:= H0); auto.
apply in_or_app; auto.
simpl; apply check_all_leaves_sound.
Qed.
Theorem inclusion_theorem :
forall t1 t2 : bin,
test_inclusion (sort_bin (flatten t1)) (sort_bin (flatten t2)) = true ->
forall (A:Set)(r:A)(l:list(list A))(def:list A),
In r (bin_A (list A) (app(A:=A)) l def t2) ->
In r (bin_A (list A) (app(A:=A)) l def t1).
intros t1 t2 Heq A r l def H.
rewrite flatten_valid_A with (t:= t1)(1:= (ass_app (A:= A))).
apply sort_included.
apply test_inclusion_sound with (t2 := sort_bin (flatten t2)).
assumption.
apply sort_included2.
rewrite <- flatten_valid_A with (1:= (ass_app (A:= A))).
assumption.
Qed.
Ltac in_tac :=
match goal with
| id : In ?x nil |- _ => elim id
| id : In ?x ?l1 |- In ?x ?l2 =>
let t := type of x in
let v1 := all_app l1 in
let v2 := all_app l2 in
(let l := term_list_app (nil (A:=list t)) v2 in
let term1 := model_aux_app l v1 with
term2 := model_aux_app l v2 in
(change (In x (bin_A (list t) (app(A:=t)) l (nil(A:=t)) term2));
apply inclusion_theorem with (t2:= term1);[apply refl_equal|exact id]))
end.
Ltac incl_tac :=
match goal with
|- incl _ _ => intro; intro; in_tac
end.
(* Usage examples.
Theorem ex1 : forall x y z:nat, forall l1 l2 : list nat,
In x (y::l1++l2) -> In x (l2++z::l1++(y::nil)).
intros.
in_tac.
Qed.
Fixpoint mklist (f:nat->nat)(n:nat){struct n} : list nat :=
match n with 0 => nil | S p => mklist f p++(f p::nil) end.
(* At the time of writing these lines, this example takes about 5 seconds
for 40 elements and 22 seconds for 60 elements.
A variant to the example is to replace mklist f p++(f p::nil) with
f p::mklist f p, in this case the time is 6 seconds for 40 elements and
35 seconds for 60 elements. *)
Theorem ex2 :
forall x : nat, In x (mklist (fun y => y) 40) ->
In x (mklist (fun y => (40 - 1) - y) 40).
lazy beta iota zeta delta [mklist minus].
intros.
in_tac.
Qed.
(* The tactic could be made more efficient by using binary trees and
numbers of type positive instead of lists and natural numbers. *)
*)
|