1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** A heap data structure. *)
(** The implementation uses splay heaps, following C. Okasaki,
"Purely functional data structures", section 5.4.
One difference: we eliminate duplicate elements.
(If an element is already in a heap, inserting it again does nothing.)
*)
Require Import Coqlib.
Require Import FSets.
Require Import Ordered.
Module SplayHeapSet(E: OrderedType).
(** "Raw" implementation. The "is a binary search tree" invariant
is proved separately. *)
Module R.
Inductive heap: Type :=
| Empty
| Node (l: heap) (x: E.t) (r: heap).
Function partition (pivot: E.t) (h: heap) { struct h } : heap * heap :=
match h with
| Empty => (Empty, Empty)
| Node a x b =>
match E.compare x pivot with
| EQ _ => (a, b)
| LT _ =>
match b with
| Empty => (h, Empty)
| Node b1 y b2 =>
match E.compare y pivot with
| EQ _ => (Node a x b1, b2)
| LT _ =>
let (small, big) := partition pivot b2
in (Node (Node a x b1) y small, big)
| GT _ =>
let (small, big) := partition pivot b1
in (Node a x small, Node big y b2)
end
end
| GT _ =>
match a with
| Empty => (Empty, h)
| Node a1 y a2 =>
match E.compare y pivot with
| EQ _ => (a1, Node a2 x b)
| LT _ =>
let (small, big) := partition pivot a2
in (Node a1 y small, Node big x b)
| GT _ =>
let (small, big) := partition pivot a1
in (small, Node big y (Node a2 x b))
end
end
end
end.
Definition insert (x: E.t) (h: heap) : heap :=
let (a, b) := partition x h in Node a x b.
Fixpoint findMin (h: heap) : option E.t :=
match h with
| Empty => None
| Node Empty x b => Some x
| Node a x b => findMin a
end.
Function deleteMin (h: heap) : heap :=
match h with
| Empty => Empty
| Node Empty x b => b
| Node (Node Empty x b) y c => Node b y c
| Node (Node a x b) y c => Node (deleteMin a) x (Node b y c)
end.
Fixpoint findMax (h: heap) : option E.t :=
match h with
| Empty => None
| Node a x Empty => Some x
| Node a x b => findMax b
end.
Function deleteMax (h: heap) : heap :=
match h with
| Empty => Empty
| Node b x Empty => b
| Node b x (Node c y Empty) => Node b x c
| Node a x (Node b y c) => Node (Node a x b) y (deleteMax c)
end.
(** Specification *)
Fixpoint In (x: E.t) (h: heap) : Prop :=
match h with
| Empty => False
| Node a y b => In x a \/ E.eq x y \/ In x b
end.
(** Invariants *)
Fixpoint lt_heap (h: heap) (x: E.t) : Prop :=
match h with
| Empty => True
| Node a y b => lt_heap a x /\ E.lt y x /\ lt_heap b x
end.
Fixpoint gt_heap (h: heap) (x: E.t) : Prop :=
match h with
| Empty => True
| Node a y b => gt_heap a x /\ E.lt x y /\ gt_heap b x
end.
Fixpoint bst (h: heap) : Prop :=
match h with
| Empty => True
| Node a x b => bst a /\ bst b /\ lt_heap a x /\ gt_heap b x
end.
Definition le (x y: E.t) := E.eq x y \/ E.lt x y.
Lemma le_lt_trans:
forall x1 x2 x3, le x1 x2 -> E.lt x2 x3 -> E.lt x1 x3.
Proof.
unfold le; intros; intuition.
destruct (E.compare x1 x3).
auto.
elim (@E.lt_not_eq x2 x3). auto. apply E.eq_trans with x1. apply E.eq_sym; auto. auto.
elim (@E.lt_not_eq x2 x1). eapply E.lt_trans; eauto. apply E.eq_sym; auto.
eapply E.lt_trans; eauto.
Qed.
Lemma lt_le_trans:
forall x1 x2 x3, E.lt x1 x2 -> le x2 x3 -> E.lt x1 x3.
Proof.
unfold le; intros; intuition.
destruct (E.compare x1 x3).
auto.
elim (@E.lt_not_eq x1 x2). auto. apply E.eq_trans with x3. auto. apply E.eq_sym; auto.
elim (@E.lt_not_eq x3 x2). eapply E.lt_trans; eauto. apply E.eq_sym; auto.
eapply E.lt_trans; eauto.
Qed.
Lemma le_trans:
forall x1 x2 x3, le x1 x2 -> le x2 x3 -> le x1 x3.
Proof.
intros. destruct H. destruct H0. red; left; eapply E.eq_trans; eauto.
red. right. eapply le_lt_trans; eauto. red; auto.
red. right. eapply lt_le_trans; eauto.
Qed.
Lemma lt_heap_trans:
forall x y, le x y ->
forall h, lt_heap h x -> lt_heap h y.
Proof.
induction h; simpl; intros.
auto.
intuition. eapply lt_le_trans; eauto.
Qed.
Lemma gt_heap_trans:
forall x y, le y x ->
forall h, gt_heap h x -> gt_heap h y.
Proof.
induction h; simpl; intros.
auto.
intuition. eapply le_lt_trans; eauto.
Qed.
(** Properties of [partition] *)
Lemma In_partition:
forall x pivot, ~E.eq x pivot ->
forall h, bst h -> (In x h <-> In x (fst (partition pivot h)) \/ In x (snd (partition pivot h))).
Proof.
intros x pivot NEQ h0. functional induction (partition pivot h0); simpl; intros.
tauto.
intuition. elim NEQ. eapply E.eq_trans; eauto.
intuition.
intuition. elim NEQ. eapply E.eq_trans; eauto.
rewrite e3 in IHp; simpl in IHp. intuition.
rewrite e3 in IHp; simpl in IHp. intuition.
intuition.
intuition. elim NEQ. eapply E.eq_trans; eauto.
rewrite e3 in IHp; simpl in IHp. intuition.
rewrite e3 in IHp; simpl in IHp. intuition.
Qed.
Lemma partition_lt:
forall x pivot h,
lt_heap h x -> lt_heap (fst (partition pivot h)) x /\ lt_heap (snd (partition pivot h)) x.
Proof.
intros x pivot h0. functional induction (partition pivot h0); simpl.
tauto.
tauto.
tauto.
tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
tauto.
tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
Qed.
Lemma partition_gt:
forall x pivot h,
gt_heap h x -> gt_heap (fst (partition pivot h)) x /\ gt_heap (snd (partition pivot h)) x.
Proof.
intros x pivot h0. functional induction (partition pivot h0); simpl.
tauto.
tauto.
tauto.
tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
tauto.
tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
rewrite e3 in IHp; simpl in IHp. tauto.
Qed.
Lemma partition_split:
forall pivot h,
bst h -> lt_heap (fst (partition pivot h)) pivot /\ gt_heap (snd (partition pivot h)) pivot.
Proof.
intros pivot h0. functional induction (partition pivot h0); simpl.
tauto.
intuition. eapply lt_heap_trans; eauto. red; auto. eapply gt_heap_trans; eauto. red; left; apply E.eq_sym; auto.
intuition. eapply lt_heap_trans; eauto. red; auto.
intuition. eapply lt_heap_trans; eauto. red; auto.
eapply lt_heap_trans; eauto. red; auto.
apply gt_heap_trans with y; auto. red. left; apply E.eq_sym; auto.
rewrite e3 in IHp; simpl in IHp. intuition.
eapply lt_heap_trans; eauto. red; auto.
eapply lt_heap_trans; eauto. red; auto.
rewrite e3 in IHp; simpl in IHp. intuition.
eapply lt_heap_trans; eauto. red; auto.
apply gt_heap_trans with y; eauto. red; auto.
intuition. eapply gt_heap_trans; eauto. red; auto.
intuition. apply lt_heap_trans with y; eauto. red; auto.
eapply gt_heap_trans; eauto. red; left; apply E.eq_sym; auto.
eapply gt_heap_trans; eauto. red; auto.
rewrite e3 in IHp; simpl in IHp. intuition.
apply lt_heap_trans with y; eauto. red; auto.
eapply gt_heap_trans; eauto. red; auto.
rewrite e3 in IHp; simpl in IHp. intuition.
apply gt_heap_trans with y; eauto. red; auto.
apply gt_heap_trans with x; eauto. red; auto.
Qed.
Lemma partition_bst:
forall pivot h,
bst h ->
bst (fst (partition pivot h)) /\ bst (snd (partition pivot h)).
Proof.
intros pivot h0. functional induction (partition pivot h0); simpl.
tauto.
tauto.
tauto.
tauto.
rewrite e3 in IHp; simpl in IHp. intuition.
apply lt_heap_trans with x; auto. red; auto.
generalize (partition_gt y pivot b2 H7). rewrite e3; simpl. tauto.
rewrite e3 in IHp; simpl in IHp. intuition.
generalize (partition_gt x pivot b1 H3). rewrite e3; simpl. tauto.
generalize (partition_lt y pivot b1 H4). rewrite e3; simpl. tauto.
tauto.
tauto.
rewrite e3 in IHp; simpl in IHp. intuition.
generalize (partition_gt y pivot a2 H6). rewrite e3; simpl. tauto.
generalize (partition_lt x pivot a2 H8). rewrite e3; simpl. tauto.
rewrite e3 in IHp; simpl in IHp. intuition.
generalize (partition_lt y pivot a1 H3). rewrite e3; simpl. tauto.
apply gt_heap_trans with x; auto. red. auto.
Qed.
(** Properties of [insert] *)
Lemma insert_bst:
forall x h, bst h -> bst (insert x h).
Proof.
intros.
unfold insert. case_eq (partition x h). intros a b EQ; simpl.
generalize (partition_bst x h H).
generalize (partition_split x h H).
rewrite EQ; simpl. tauto.
Qed.
Lemma In_insert:
forall x h y, bst h -> (In y (insert x h) <-> E.eq y x \/ In y h).
Proof.
intros. unfold insert.
case_eq (partition x h). intros a b EQ; simpl.
assert (E.eq y x \/ ~E.eq y x).
destruct (E.compare y x); auto.
right; red; intros. elim (E.lt_not_eq l). apply E.eq_sym; auto.
destruct H0.
tauto.
generalize (In_partition y x H0 h H). rewrite EQ; simpl. tauto.
Qed.
(** Properties of [findMin] and [deleteMin] *)
Lemma deleteMin_lt:
forall x h, lt_heap h x -> lt_heap (deleteMin h) x.
Proof.
intros x h0. functional induction (deleteMin h0); simpl; intros.
auto.
tauto.
tauto.
intuition.
Qed.
Lemma deleteMin_bst:
forall h, bst h -> bst (deleteMin h).
Proof.
intros h0. functional induction (deleteMin h0); simpl; intros.
auto.
tauto.
tauto.
intuition.
apply deleteMin_lt; auto.
apply gt_heap_trans with y; auto. red; auto.
Qed.
Lemma In_deleteMin:
forall y x h,
findMin h = Some x ->
(In y h <-> E.eq y x \/ In y (deleteMin h)).
Proof.
intros y x h0. functional induction (deleteMin h0); simpl; intros.
congruence.
inv H. tauto.
inv H. tauto.
destruct a. contradiction. tauto.
Qed.
Lemma gt_heap_In:
forall x y h, gt_heap h x -> In y h -> E.lt x y.
Proof.
induction h; simpl; intros.
contradiction.
intuition. apply lt_le_trans with x0; auto. red. left. apply E.eq_sym; auto.
Qed.
Lemma findMin_min:
forall x h, findMin h = Some x -> bst h -> forall y, In y h -> le x y.
Proof.
induction h; simpl; intros.
contradiction.
destruct h1.
inv H. simpl in *. intuition.
red; left; apply E.eq_sym; auto.
red; right. eapply gt_heap_In; eauto.
assert (le x x1).
apply IHh1; auto. tauto. simpl. right; left; apply E.eq_refl.
intuition.
apply le_trans with x1. auto. apply le_trans with x0. simpl in H4. red; tauto.
red; left; apply E.eq_sym; auto.
apply le_trans with x1. auto. apply le_trans with x0. simpl in H4. red; tauto.
red; right. eapply gt_heap_In; eauto.
Qed.
Lemma findMin_empty:
forall h, h <> Empty -> findMin h <> None.
Proof.
induction h; simpl; intros.
congruence.
destruct h1. congruence. apply IHh1. congruence.
Qed.
(** Properties of [findMax] and [deleteMax]. *)
Lemma deleteMax_gt:
forall x h, gt_heap h x -> gt_heap (deleteMax h) x.
Proof.
intros x h0. functional induction (deleteMax h0); simpl; intros.
auto.
tauto.
tauto.
intuition.
Qed.
Lemma deleteMax_bst:
forall h, bst h -> bst (deleteMax h).
Proof.
intros h0. functional induction (deleteMax h0); simpl; intros.
auto.
tauto.
tauto.
intuition.
apply lt_heap_trans with x; auto. red; auto.
apply deleteMax_gt; auto.
Qed.
Lemma In_deleteMax:
forall y x h,
findMax h = Some x ->
(In y h <-> E.eq y x \/ In y (deleteMax h)).
Proof.
intros y x h0. functional induction (deleteMax h0); simpl; intros.
congruence.
inv H. tauto.
inv H. tauto.
destruct c. contradiction. tauto.
Qed.
Lemma lt_heap_In:
forall x y h, lt_heap h x -> In y h -> E.lt y x.
Proof.
induction h; simpl; intros.
contradiction.
intuition. apply le_lt_trans with x0; auto. red. left. apply E.eq_sym; auto.
Qed.
Lemma findMax_max:
forall x h, findMax h = Some x -> bst h -> forall y, In y h -> le y x.
Proof.
induction h; simpl; intros.
contradiction.
destruct h2.
inv H. simpl in *. intuition.
red; right. eapply lt_heap_In; eauto.
red; left. auto.
assert (le x1 x).
apply IHh2; auto. tauto. simpl. right; left; apply E.eq_refl.
intuition.
apply le_trans with x1; auto. apply le_trans with x0.
red; right. eapply lt_heap_In; eauto.
simpl in H6. red; tauto.
apply le_trans with x1; auto. apply le_trans with x0.
red; auto.
simpl in H6. red; tauto.
Qed.
Lemma findMax_empty:
forall h, h <> Empty -> findMax h <> None.
Proof.
induction h; simpl; intros.
congruence.
destruct h2. congruence. apply IHh2. congruence.
Qed.
End R.
(** Wrapping in a dependent type *)
Definition t := { h: R.heap | R.bst h }.
(** Operations *)
Program Definition empty : t := R.Empty.
Program Definition insert (x: E.t) (h: t) : t := R.insert x h.
Next Obligation. apply R.insert_bst. apply proj2_sig. Qed.
Program Definition findMin (h: t) : option E.t := R.findMin h.
Program Definition deleteMin (h: t) : t := R.deleteMin h.
Next Obligation. apply R.deleteMin_bst. apply proj2_sig. Qed.
Program Definition findMax (h: t) : option E.t := R.findMax h.
Program Definition deleteMax (h: t) : t := R.deleteMax h.
Next Obligation. apply R.deleteMax_bst. apply proj2_sig. Qed.
(** Membership (for specification) *)
Program Definition In (x: E.t) (h: t) : Prop := R.In x h.
(** Properties of [empty] *)
Lemma In_empty: forall x, ~In x empty.
Proof.
intros; red; intros.
red in H. simpl in H. tauto.
Qed.
(** Properties of [insert] *)
Lemma In_insert:
forall x h y,
In y (insert x h) <-> E.eq y x \/ In y h.
Proof.
intros. unfold In, insert; simpl. apply R.In_insert. apply proj2_sig.
Qed.
(** Properties of [findMin] *)
Lemma findMin_empty:
forall h y, findMin h = None -> ~In y h.
Proof.
unfold findMin, In; intros; simpl.
destruct (proj1_sig h).
simpl. tauto.
exploit R.findMin_empty; eauto. congruence.
Qed.
Lemma findMin_min:
forall h x y, findMin h = Some x -> In y h -> E.eq x y \/ E.lt x y.
Proof.
unfold findMin, In; simpl. intros.
change (R.le x y). eapply R.findMin_min; eauto. apply proj2_sig.
Qed.
(** Properties of [deleteMin]. *)
Lemma In_deleteMin:
forall h x y,
findMin h = Some x ->
(In y h <-> E.eq y x \/ In y (deleteMin h)).
Proof.
unfold findMin, In; simpl; intros.
apply R.In_deleteMin. auto.
Qed.
(** Properties of [findMax] *)
Lemma findMax_empty:
forall h y, findMax h = None -> ~In y h.
Proof.
unfold findMax, In; intros; simpl.
destruct (proj1_sig h).
simpl. tauto.
exploit R.findMax_empty; eauto. congruence.
Qed.
Lemma findMax_max:
forall h x y, findMax h = Some x -> In y h -> E.eq y x \/ E.lt y x.
Proof.
unfold findMax, In; simpl. intros.
change (R.le y x). eapply R.findMax_max; eauto. apply proj2_sig.
Qed.
(** Properties of [deleteMax]. *)
Lemma In_deleteMax:
forall h x y,
findMax h = Some x ->
(In y h <-> E.eq y x \/ In y (deleteMax h)).
Proof.
unfold findMax, In; simpl; intros.
apply R.In_deleteMax. auto.
Qed.
End SplayHeapSet.
(** Instantiation over type [positive] *)
Module PHeap := SplayHeapSet(OrderedPositive).
|