summaryrefslogtreecommitdiff
path: root/lib/Fappli_IEEE_extra.v
blob: 5194a6445e03990e9754fbac3d4e5a9aae128873 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*          Jacques-Henri Jourdan, INRIA Paris-Rocquencourt            *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Additional operations and proofs about IEEE-754 binary
    floating-point numbers, on top of the Flocq library. *)

Require Import Psatz.
Require Import Bool.
Require Import Eqdep_dec.
Require Import Fcore.
Require Import Fcore_digits.
Require Import Fcalc_digits.
Require Import Fcalc_ops.
Require Import Fcalc_round.
Require Import Fcalc_bracket.
Require Import Fprop_Sterbenz.
Require Import Fappli_IEEE.
Require Import Fappli_rnd_odd.

Local Open Scope Z_scope.

Section Extra_ops.

(** [prec] is the number of bits of the mantissa including the implicit one.
    [emax] is the exponent of the infinities.
    Typically p=24 and emax = 128 in single precision. *)

Variable prec emax : Z.
Context (prec_gt_0_ : Prec_gt_0 prec).
Let emin := (3 - emax - prec)%Z.
Let fexp := FLT_exp emin prec.
Hypothesis Hmax : (prec < emax)%Z.
Let binary_float := binary_float prec emax.

(** Remarks on [is_finite] *)

Remark is_finite_not_is_nan:
  forall (f: binary_float), is_finite _ _ f = true -> is_nan _ _ f = false.
Proof.
  destruct f; reflexivity || discriminate.
Qed.

Remark is_finite_strict_finite:
  forall (f: binary_float), is_finite_strict _ _ f = true -> is_finite _ _ f = true.
Proof.
  destruct f; reflexivity || discriminate.
Qed.

(** Digression on FP numbers that cannot be [-0.0]. *)

Definition is_finite_pos0 (f: binary_float) : bool :=
  match f with
  | B754_zero s => negb s
  | B754_infinity _ => false
  | B754_nan _ _ => false
  | B754_finite _ _ _ _ => true
  end.

Lemma Bsign_pos0:
  forall x, is_finite_pos0 x = true -> Bsign _ _ x = Rlt_bool (B2R _ _ x) 0%R.
Proof.
  intros. destruct x as [ [] | | | [] ex mx Bx ]; try discriminate; simpl.
- rewrite Rlt_bool_false; auto. lra.
- rewrite Rlt_bool_true; auto. apply F2R_lt_0_compat. compute; auto.
- rewrite Rlt_bool_false; auto. 
  assert ((F2R (Float radix2 (Z.pos ex) mx) > 0)%R) by 
    ( apply F2R_gt_0_compat; compute; auto ).
  lra.
Qed.

Theorem B2R_inj_pos0:
  forall x y,
  is_finite_pos0 x = true -> is_finite_pos0 y = true ->
  B2R _ _ x = B2R _ _ y ->
  x = y.
Proof.
  intros. apply B2R_Bsign_inj.
  destruct x; reflexivity||discriminate.
  destruct y; reflexivity||discriminate.
  auto.
  rewrite ! Bsign_pos0 by auto. rewrite H1; auto.
Qed.

(** ** Decidable equality *)

Definition Beq_dec: forall (f1 f2: binary_float), {f1 = f2} + {f1 <> f2}.
Proof.
  assert (UIP_bool: forall (b1 b2: bool) (e e': b1 = b2), e = e').
  { intros. apply UIP_dec. decide equality. }
  Ltac try_not_eq := try solve [right; congruence].
  destruct f1 as [| |? []|], f2 as [| |? []|];
  try destruct b; try destruct b0;
  try solve [left; auto]; try_not_eq.
  destruct (positive_eq_dec x x0); try_not_eq;
    subst; left; f_equal; f_equal; apply UIP_bool.
  destruct (positive_eq_dec x x0); try_not_eq;
    subst; left; f_equal; f_equal; apply UIP_bool.
  destruct (positive_eq_dec m m0); try_not_eq;
  destruct (Z_eq_dec e e1); try solve [right; intro H; inversion H; congruence];
  subst; left; f_equal; apply UIP_bool. 
  destruct (positive_eq_dec m m0); try_not_eq;
  destruct (Z_eq_dec e e1); try solve [right; intro H; inversion H; congruence];
  subst; left; f_equal; apply UIP_bool. 
Defined.

(** ** Comparison *)

(** [Some c] means ordered as per [c]; [None] means unordered. *)

Definition Bcompare (f1 f2: binary_float): option comparison :=
  match f1, f2 with
    | B754_nan _ _,_ | _,B754_nan _ _ => None
    | B754_infinity true, B754_infinity true
    | B754_infinity false, B754_infinity false => Some Eq
    | B754_infinity true, _ => Some Lt
    | B754_infinity false, _ => Some Gt
    | _, B754_infinity true => Some Gt
    | _, B754_infinity false => Some Lt
    | B754_finite true _ _ _, B754_zero _ => Some Lt
    | B754_finite false _ _ _, B754_zero _ => Some Gt
    | B754_zero _, B754_finite true _ _ _ => Some Gt
    | B754_zero _, B754_finite false _ _ _ => Some Lt
    | B754_zero _, B754_zero _ => Some Eq
    | B754_finite s1 m1 e1 _, B754_finite s2 m2 e2 _ =>
      match s1, s2 with
        | true, false => Some Lt
        | false, true => Some Gt
        | false, false =>
          match Zcompare e1 e2 with
            | Lt => Some Lt
            | Gt => Some Gt
            | Eq => Some (Pcompare m1 m2 Eq)
          end
        | true, true =>
          match Zcompare e1 e2 with
            | Lt => Some Gt
            | Gt => Some Lt
            | Eq => Some (CompOpp (Pcompare m1 m2 Eq))
          end
      end
  end.

Theorem Bcompare_finite_correct:
  forall f1 f2,
  is_finite _ _ f1 = true -> is_finite _ _ f2 = true ->
  Bcompare f1 f2 = Some (Rcompare (B2R _ _ f1) (B2R _ _ f2)).
Proof.
  Ltac apply_Rcompare :=
    match goal with
      | [ |- Some Lt = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Lt
      | [ |- Some Eq = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Eq
      | [ |- Some Gt = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Gt
    end.
  unfold Bcompare; intros.
  destruct f1, f2; try discriminate; unfold B2R, F2R, Fnum, Fexp, cond_Zopp;
    try (replace 0%R with (Z2R 0 * bpow radix2 e)%R by (simpl Z2R; ring);
         rewrite Rcompare_mult_r by (apply bpow_gt_0); rewrite Rcompare_Z2R).
  apply_Rcompare; reflexivity.
  destruct b0; reflexivity.
  destruct b; reflexivity.
  clear H H0.
  apply andb_prop in e0; destruct e0; apply (canonic_canonic_mantissa _ _ false) in H.
  apply andb_prop in e2; destruct e2; apply (canonic_canonic_mantissa _ _ false) in H1.
  pose proof (Zcompare_spec e e1); unfold canonic, Fexp in H1, H.
  assert (forall m1 m2 e1 e2,
    let x := (Z2R (Zpos m1) * bpow radix2 e1)%R in
    let y := (Z2R (Zpos m2) * bpow radix2 e2)%R in
    (canonic_exp radix2 fexp x < canonic_exp radix2 fexp y)%Z -> (x < y)%R).
  {  
  intros; apply Rnot_le_lt; intro; apply (ln_beta_le radix2) in H5.
  unfold canonic_exp in H4. apply (fexp_monotone prec emax) in H5.
  unfold fexp, emin in H4. omega.
  apply Rmult_gt_0_compat; [apply (Z2R_lt 0); reflexivity|now apply bpow_gt_0].
  }
  assert (forall m1 m2 e1 e2, (Z2R (- Zpos m1) * bpow radix2 e1 < Z2R (Zpos m2) * bpow radix2 e2)%R).
  {
  intros; apply (Rlt_trans _ 0%R).
  replace 0%R with (0*bpow radix2 e0)%R by ring; apply Rmult_lt_compat_r;
    [apply bpow_gt_0; reflexivity|now apply (Z2R_lt _ 0)].
  apply Rmult_gt_0_compat; [apply (Z2R_lt 0); reflexivity|now apply bpow_gt_0].
  }
  destruct b, b0; try (now apply_Rcompare; apply H5); inversion H3;
    try (apply_Rcompare; apply H4; rewrite H, H1 in H7; assumption);
    try (apply_Rcompare; do 2 rewrite Z2R_opp, Ropp_mult_distr_l_reverse;
      apply Ropp_lt_contravar; apply H4; rewrite H, H1 in H7; assumption);
    rewrite H7, Rcompare_mult_r, Rcompare_Z2R by (apply bpow_gt_0); reflexivity.
Qed.

Theorem Bcompare_swap:
  forall x y,
  Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end.
Proof.
  intros. 
  destruct x as [ ? | [] | ? ? | [] mx ex Bx ];
  destruct y as [ ? | [] | ? ? | [] my ey By ]; simpl; auto.
- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; auto.
  simpl. f_equal; f_equal. symmetry. apply Pcompare_antisym. 
- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; auto. 
  simpl. f_equal. symmetry. apply Pcompare_antisym.
Qed.

(** ** Absolute value *)

Definition Babs abs_nan (x: binary_float) : binary_float :=
  match x with
  | B754_nan sx plx =>
      let '(sres, plres) := abs_nan sx plx in B754_nan _ _ sres plres
  | B754_infinity sx => B754_infinity _ _ false
  | B754_finite sx mx ex Hx => B754_finite _ _ false mx ex Hx
  | B754_zero sx => B754_zero _ _ false
  end.

Theorem B2R_Babs :
  forall abs_nan x,
  B2R _ _ (Babs abs_nan x) = Rabs (B2R _ _ x).
Proof.
  intros abs_nan [sx|sx|sx plx|sx mx ex Hx]; apply sym_eq ; try apply Rabs_R0.
  simpl. destruct abs_nan. simpl. apply Rabs_R0.
  simpl. rewrite <- F2R_abs. destruct sx; auto. 
Qed.

Theorem is_finite_Babs :
  forall abs_nan x,
  is_finite _ _ (Babs abs_nan x) = is_finite _ _ x.
Proof.
  intros abs_nan [| | |] ; try easy.
  intros s pl.
  simpl.
  now case abs_nan.
Qed.

Theorem sign_Babs:
  forall abs_nan x,
  is_nan _ _ x = false ->
  Bsign _ _ (Babs abs_nan x) = false.
Proof.
  intros abs_nan [| | |]; reflexivity || discriminate.
Qed.

Theorem Babs_idempotent :
  forall abs_nan (x: binary_float),
  is_nan _ _ x = false ->
  Babs abs_nan (Babs abs_nan x) = Babs abs_nan x.
Proof.
  now intros abs_nan [sx|sx|sx plx|sx mx ex Hx] ; auto.
Qed.

Theorem Babs_opp:
  forall abs_nan opp_nan x,
  is_nan _ _ x = false ->
  Babs abs_nan (Bopp _ _ opp_nan x) = Babs abs_nan x.
Proof.
  intros abs_nan opp_nan [| | |]; reflexivity || discriminate.
Qed.

(** ** Conversion from an integer to a FP number *)

(** Integers that can be represented exactly as FP numbers. *)

Definition integer_representable (n: Z): Prop :=
  Z.abs n <= 2^emax - 2^(emax - prec) /\ generic_format radix2 fexp (Z2R n).

Let int_upper_bound_eq: 2^emax - 2^(emax - prec) = (2^prec - 1) * 2^(emax - prec).
Proof.
  red in prec_gt_0_.
  ring_simplify. rewrite <- (Zpower_plus radix2) by omega. f_equal. f_equal. omega.
Qed.

Lemma integer_representable_n2p:
  forall n p,
  -2^prec < n < 2^prec -> 0 <= p -> p <= emax - prec ->
  integer_representable (n * 2^p).
Proof.
  intros; split. 
- red in prec_gt_0_. replace (Z.abs (n * 2^p)) with (Z.abs n * 2^p).
  rewrite int_upper_bound_eq.
  apply Zmult_le_compat. zify; omega. apply (Zpower_le radix2); omega. 
  zify; omega. apply (Zpower_ge_0 radix2). 
  rewrite Z.abs_mul. f_equal. rewrite Z.abs_eq. auto. apply (Zpower_ge_0 radix2). 
- apply generic_format_FLT. exists (Float radix2 n p).
  unfold F2R; simpl.
  split. rewrite <- Z2R_Zpower by auto. apply Z2R_mult. 
  split. zify; omega. 
  unfold emin; red in prec_gt_0_; omega.
Qed.

Lemma integer_representable_2p:
  forall p,
  0 <= p <= emax - 1 ->
  integer_representable (2^p).
Proof.
  intros; split. 
- red in prec_gt_0_. 
  rewrite Z.abs_eq by (apply (Zpower_ge_0 radix2)). 
  apply Zle_trans with (2^(emax-1)). 
  apply (Zpower_le radix2); omega.
  assert (2^emax = 2^(emax-1)*2).
  { change 2 with (2^1) at 3. rewrite <- (Zpower_plus radix2) by omega. 
    f_equal. omega. }
  assert (2^(emax - prec) <= 2^(emax - 1)).
  { apply (Zpower_le radix2). omega. }
  omega.
- red in prec_gt_0_.
  apply generic_format_FLT. exists (Float radix2 1 p).
  unfold F2R; simpl.
  split. rewrite Rmult_1_l. rewrite <- Z2R_Zpower. auto. omega. 
  split. change 1 with (2^0). apply (Zpower_lt radix2). omega. auto.
  unfold emin; omega.
Qed.

Lemma integer_representable_opp:
  forall n, integer_representable n -> integer_representable (-n).
Proof.
  intros n (A & B); split. rewrite Z.abs_opp. auto. 
  rewrite Z2R_opp. apply generic_format_opp; auto.
Qed.

Lemma integer_representable_n2p_wide:
  forall n p,
  -2^prec <= n <= 2^prec -> 0 <= p -> p < emax - prec ->
  integer_representable (n * 2^p).
Proof.
  intros. red in prec_gt_0_.
  destruct (Z.eq_dec n (2^prec)); [idtac | destruct (Z.eq_dec n (-2^prec))].
- rewrite e. rewrite <- (Zpower_plus radix2) by omega.
  apply integer_representable_2p. omega.  
- rewrite e. rewrite <- Zopp_mult_distr_l. apply integer_representable_opp. 
  rewrite <- (Zpower_plus radix2) by omega.
  apply integer_representable_2p. omega.  
- apply integer_representable_n2p; omega.
Qed.

Lemma integer_representable_n:
  forall n, -2^prec <= n <= 2^prec -> integer_representable n.
Proof.
  red in prec_gt_0_. intros.
  replace n with (n * 2^0) by (change (2^0) with 1; ring).
  apply integer_representable_n2p_wide. auto. omega. omega. 
Qed.

Lemma round_int_no_overflow:
  forall n,
  Z.abs n <= 2^emax - 2^(emax-prec) ->
  (Rabs (round radix2 fexp (round_mode mode_NE) (Z2R n)) < bpow radix2 emax)%R.
Proof.
  intros. red in prec_gt_0_.
  rewrite <- round_NE_abs. 
  apply Rle_lt_trans with (Z2R (2^emax - 2^(emax-prec))).
  apply round_le_generic. apply fexp_correct; auto. apply valid_rnd_N.
  apply generic_format_FLT. exists (Float radix2 (2^prec-1) (emax-prec)).
  rewrite int_upper_bound_eq. unfold F2R; simpl.
  split. rewrite <- Z2R_Zpower by omega. rewrite <- Z2R_mult. auto. 
  split. assert (0 < 2^prec) by (apply (Zpower_gt_0 radix2); omega). zify; omega.
  unfold emin; omega.
  rewrite <- Z2R_abs. apply Z2R_le. auto.
  rewrite <- Z2R_Zpower by omega. apply Z2R_lt. simpl. 
  assert (0 < 2^(emax-prec)) by (apply (Zpower_gt_0 radix2); omega).
  omega.
  apply fexp_correct. auto. 
Qed.

(** Conversion from an integer.  Round to nearest. *)

Definition BofZ (n: Z) : binary_float :=
  binary_normalize prec emax prec_gt_0_ Hmax mode_NE n 0 false.

Theorem BofZ_correct:
  forall n,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode_NE) (Z2R n))) (bpow radix2 emax)
  then
    B2R prec emax (BofZ n) = round radix2 fexp (round_mode mode_NE) (Z2R n) /\
    is_finite _ _ (BofZ n) = true /\
    Bsign prec emax (BofZ n) = Zlt_bool n 0
  else
    B2FF prec emax (BofZ n) = binary_overflow prec emax mode_NE (Zlt_bool n 0).
Proof.
  intros. 
  generalize (binary_normalize_correct prec emax prec_gt_0_ Hmax mode_NE n 0 false).
  fold emin; fold fexp; fold (BofZ n). 
  replace (F2R {| Fnum := n; Fexp := 0 |}) with (Z2R n). 
  destruct Rlt_bool. 
- intros (A & B & C). split; [|split].
  + auto.
  + auto.
  + rewrite C. change 0%R with (Z2R 0). rewrite Rcompare_Z2R. 
    unfold Zlt_bool. auto.
- intros A; rewrite A. f_equal. change 0%R with (Z2R 0). 
  generalize (Zlt_bool_spec n 0); intros SPEC; inversion SPEC.
  apply Rlt_bool_true; apply Z2R_lt; auto.
  apply Rlt_bool_false; apply Z2R_le; auto.
- unfold F2R; simpl. ring.
Qed.

Theorem BofZ_finite:
  forall n,
  Z.abs n <= 2^emax - 2^(emax-prec) ->
  B2R _ _ (BofZ n) = round radix2 fexp (round_mode mode_NE) (Z2R n)
  /\ is_finite _ _ (BofZ n) = true
  /\ Bsign _ _ (BofZ n) = Zlt_bool n 0%Z.
Proof.
  intros.
  generalize (BofZ_correct n). rewrite Rlt_bool_true. auto. 
  apply round_int_no_overflow; auto.
Qed.

Theorem BofZ_representable:
  forall n,
  integer_representable n ->
  B2R _ _ (BofZ n) = Z2R n
  /\ is_finite _ _ (BofZ n) = true
  /\ Bsign _ _ (BofZ n) = (n <? 0).
Proof.
  intros. destruct H as (P & Q). destruct (BofZ_finite n) as (A & B & C). auto.
  intuition. rewrite A. apply round_generic. apply valid_rnd_round_mode. auto. 
Qed.

Theorem BofZ_exact:
  forall n,
  -2^prec <= n <= 2^prec ->
  B2R _ _ (BofZ n) = Z2R n
  /\ is_finite _ _ (BofZ n) = true
  /\ Bsign _ _ (BofZ n) = Zlt_bool n 0%Z.
Proof.
  intros. apply BofZ_representable. apply integer_representable_n; auto.
Qed.

Lemma BofZ_finite_pos0:
  forall n,
  Z.abs n <= 2^emax - 2^(emax-prec) -> is_finite_pos0 (BofZ n) = true.
Proof.
  intros. 
  generalize (binary_normalize_correct prec emax prec_gt_0_ Hmax mode_NE n 0 false).
  fold emin; fold fexp; fold (BofZ n). 
  replace (F2R {| Fnum := n; Fexp := 0 |}) with (Z2R n) by
    (unfold F2R; simpl; ring).
  rewrite Rlt_bool_true by (apply round_int_no_overflow; auto).
  intros (A & B & C).
  destruct (BofZ n); auto; try discriminate. 
  simpl in *. rewrite C. change 0%R with (Z2R 0). rewrite Rcompare_Z2R. 
  generalize (Zcompare_spec n 0); intros SPEC; inversion SPEC; auto.
  assert ((round radix2 fexp ZnearestE (Z2R n) <= -1)%R).
  { change (-1)%R with (Z2R (-1)).
    apply round_le_generic. apply fexp_correct. auto. apply valid_rnd_N.
    apply (integer_representable_opp 1). 
    apply (integer_representable_2p 0). 
    red in prec_gt_0_; omega.
    apply Z2R_le; omega.
  }
  lra.
Qed.

Lemma BofZ_finite_equal:
  forall x y,
  Z.abs x <= 2^emax - 2^(emax-prec) ->
  Z.abs y <= 2^emax - 2^(emax-prec) ->
  B2R _ _ (BofZ x) = B2R _ _ (BofZ y) ->
  BofZ x = BofZ y.
Proof.
  intros. apply B2R_inj_pos0; auto; apply BofZ_finite_pos0; auto.
Qed.

(** Commutation properties with addition, subtraction, multiplication. *)

Theorem BofZ_plus:
  forall nan p q,  
  integer_representable p -> integer_representable q ->
  Bplus _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p + q).
Proof.
  intros. 
  destruct (BofZ_representable p) as (A & B & C); auto. 
  destruct (BofZ_representable q) as (D & E & F); auto.
  generalize (Bplus_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) B E).
  fold emin; fold fexp.
  rewrite A, D. rewrite <- Z2R_plus. 
  generalize (BofZ_correct (p + q)). destruct Rlt_bool.
- intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U; auto.
  rewrite R, W, C, F.
  change 0%R with (Z2R 0). rewrite Rcompare_Z2R. unfold Zlt_bool at 3.
  generalize (Zcompare_spec (p + q) 0); intros SPEC; inversion SPEC; auto.
  assert (EITHER: 0 <= p \/ 0 <= q) by omega. 
  destruct EITHER; [apply andb_false_intro1 | apply andb_false_intro2];
  apply Zlt_bool_false; auto.
- intros P (U & V). 
  apply B2FF_inj. 
  rewrite P, U, C. f_equal. rewrite C, F in V. 
  generalize (Zlt_bool_spec p 0) (Zlt_bool_spec q 0). rewrite <- V. 
  intros SPEC1 SPEC2; inversion SPEC1; inversion SPEC2; try congruence; symmetry.
  apply Zlt_bool_true; omega.
  apply Zlt_bool_false; omega.
Qed.

Theorem BofZ_minus:
  forall nan p q,  
  integer_representable p -> integer_representable q ->
  Bminus _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p - q).
Proof.
  intros. 
  destruct (BofZ_representable p) as (A & B & C); auto. 
  destruct (BofZ_representable q) as (D & E & F); auto.
  generalize (Bminus_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) B E).
  fold emin; fold fexp.
  rewrite A, D. rewrite <- Z2R_minus. 
  generalize (BofZ_correct (p - q)). destruct Rlt_bool.
- intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U; auto.
  rewrite R, W, C, F.
  change 0%R with (Z2R 0). rewrite Rcompare_Z2R. unfold Zlt_bool at 3.
  generalize (Zcompare_spec (p - q) 0); intros SPEC; inversion SPEC; auto.
  assert (EITHER: 0 <= p \/ q < 0) by omega. 
  destruct EITHER; [apply andb_false_intro1 | apply andb_false_intro2].
  rewrite Zlt_bool_false; auto.
  rewrite Zlt_bool_true; auto.
- intros P (U & V). 
  apply B2FF_inj. 
  rewrite P, U, C. f_equal. rewrite C, F in V. 
  generalize (Zlt_bool_spec p 0) (Zlt_bool_spec q 0). rewrite V. 
  intros SPEC1 SPEC2; inversion SPEC1; inversion SPEC2; symmetry.
  rewrite <- H3 in H1; discriminate.
  apply Zlt_bool_true; omega.
  apply Zlt_bool_false; omega.
  rewrite <- H3 in H1; discriminate.
Qed.

Theorem BofZ_mult:
  forall nan p q,  
  integer_representable p -> integer_representable q ->
  0 < q ->
  Bmult _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p * q).
Proof.
  intros. 
  assert (SIGN: xorb (p <? 0) (q <? 0) = (p * q <? 0)).
  {
    rewrite (Zlt_bool_false q) by omega.
    generalize (Zlt_bool_spec p 0); intros SPEC; inversion SPEC; simpl; symmetry.
    apply Zlt_bool_true. rewrite Z.mul_comm. apply Z.mul_pos_neg; omega.
    apply Zlt_bool_false. apply Zsame_sign_imp; omega. 
  }
  destruct (BofZ_representable p) as (A & B & C); auto. 
  destruct (BofZ_representable q) as (D & E & F); auto.
  generalize (Bmult_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q)).
  fold emin; fold fexp.
  rewrite A, B, C, D, E, F. rewrite <- Z2R_mult.
  generalize (BofZ_correct (p * q)). destruct Rlt_bool.
- intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U; auto.
  rewrite R, W; auto.
  apply is_finite_not_is_nan; auto.
- intros P U.
  apply B2FF_inj. rewrite P, U. f_equal. auto.
Qed.

Theorem BofZ_mult_2p:
  forall nan x p,
  Z.abs x <= 2^emax - 2^(emax-prec) ->
  2^prec <= Z.abs x ->
  0 <= p <= emax - 1 ->
  Bmult _ _ _ Hmax nan mode_NE (BofZ x) (BofZ (2^p)) = BofZ (x * 2^p).
Proof.
  intros.
  destruct (Z.eq_dec x 0). 
- subst x. apply BofZ_mult.
    apply integer_representable_n. 
    generalize (Zpower_ge_0 radix2 prec). simpl; omega.
    apply integer_representable_2p. auto. 
    apply (Zpower_gt_0 radix2).
    omega.
- assert (Z2R x <> 0%R) by (apply (Z2R_neq _ _ n)).
  destruct (BofZ_finite x H) as (A & B & C).
  destruct (BofZ_representable (2^p)) as (D & E & F). 
    apply integer_representable_2p. auto.
  assert (canonic_exp radix2 fexp (Z2R (x * 2^p)) =
          canonic_exp radix2 fexp (Z2R x) + p).
  {
    unfold canonic_exp, fexp. rewrite Z2R_mult. 
    change (2^p) with (radix2^p). rewrite Z2R_Zpower by omega. 
    rewrite ln_beta_mult_bpow by auto.
    assert (prec + 1 <= ln_beta radix2 (Z2R x)).
    { rewrite <- (ln_beta_abs radix2 (Z2R x)). 
      rewrite <- (ln_beta_bpow radix2 prec). 
      apply ln_beta_le. 
      apply bpow_gt_0. rewrite <- Z2R_Zpower by (red in prec_gt_0_;omega).
      rewrite <- Z2R_abs. apply Z2R_le; auto. }
    unfold FLT_exp.
    unfold emin; red in prec_gt_0_; zify; omega.
  }
  assert (forall m, round radix2 fexp m (Z2R x) * Z2R (2^p) =
                    round radix2 fexp m (Z2R (x * 2^p)))%R.
  {
    intros. unfold round, scaled_mantissa. rewrite H3. 
    rewrite Z2R_mult. rewrite Z.opp_add_distr. rewrite bpow_plus. 
    set (a := Z2R x); set (b := bpow radix2 (- canonic_exp radix2 fexp a)).
    replace (a * Z2R (2^p) * (b * bpow radix2 (-p)))%R with (a * b)%R.
    unfold F2R; simpl. rewrite Rmult_assoc. f_equal. 
    rewrite bpow_plus.  f_equal. apply (Z2R_Zpower radix2). omega. 
    transitivity ((a * b) * (Z2R (2^p) * bpow radix2 (-p)))%R.
    rewrite (Z2R_Zpower radix2). rewrite <- bpow_plus.  
    replace (p + -p) with 0 by omega. change (bpow radix2 0) with 1%R. ring.
    omega. 
    ring.
  }
  assert (forall m x,
    round radix2 fexp (round_mode m) (round radix2 fexp (round_mode m) x) =
    round radix2 fexp (round_mode m) x).
  {
    intros. apply round_generic. apply valid_rnd_round_mode. 
    apply generic_format_round.  apply fexp_correct; auto. 
    apply valid_rnd_round_mode. 
  }
  assert (xorb (x <? 0) (2^p <? 0) = (x * 2^p <? 0)).
  {
    assert (0 < 2^p) by (apply (Zpower_gt_0 radix2); omega).
    rewrite (Zlt_bool_false (2^p)) by omega. rewrite xorb_false_r.
    symmetry. generalize (Zlt_bool_spec x 0); intros SPEC; inversion SPEC.
    apply Zlt_bool_true. apply Z.mul_neg_pos; auto.
    apply Zlt_bool_false. apply Z.mul_nonneg_nonneg; omega.
  }
  generalize (Bmult_correct _ _ _ Hmax nan mode_NE (BofZ x) (BofZ (2^p)))
             (BofZ_correct (x * 2^p)).
  fold emin; fold fexp. rewrite A, B, C, D, E, F, H4, H5.
  destruct Rlt_bool.
+ intros (P & Q & R) (U & V & W).
  apply B2R_Bsign_inj; auto.
  rewrite P, U. auto.
  rewrite R, W. auto.
  apply is_finite_not_is_nan; auto.
+ intros P U. 
  apply B2FF_inj. rewrite P, U. f_equal; auto.
Qed.

(** Rounding to odd the argument of [BofZ]. *)

Lemma round_odd_flt:
  forall prec' emin' x choice,
  prec > 1 -> prec' > 1 -> prec' >= prec + 2 -> emin' <= emin - 2 ->
  round radix2 fexp (Znearest choice) (round radix2 (FLT_exp emin' prec') Zrnd_odd x) =
  round radix2 fexp (Znearest choice) x.
Proof.
  intros. apply round_odd_prop. auto. apply fexp_correct; auto.
  apply exists_NE_FLT. right; omega. 
  apply FLT_exp_valid. red; omega. 
  apply exists_NE_FLT. right; omega.
  unfold fexp, FLT_exp; intros. zify; omega.
Qed.

Corollary round_odd_fix:
  forall x p choice,
  prec > 1 ->
  0 <= p ->
  (bpow radix2 (prec + p + 1) <= Rabs x)%R ->
  round radix2 fexp (Znearest choice) (round radix2 (FIX_exp p) Zrnd_odd x) =
  round radix2 fexp (Znearest choice) x.
Proof.
  intros. destruct (Req_EM_T x 0%R). 
- subst x. rewrite round_0. auto. apply valid_rnd_odd. 
- set (prec' := ln_beta radix2 x - p).
  set (emin' := emin - 2).
  assert (PREC: ln_beta radix2 (bpow radix2 (prec + p + 1)) <= ln_beta radix2 x).
  { rewrite <- (ln_beta_abs radix2 x).
    apply ln_beta_le; auto. apply bpow_gt_0. }
  rewrite ln_beta_bpow in PREC. 
  assert (CANON: canonic_exp radix2 (FLT_exp emin' prec') x =
                 canonic_exp radix2 (FIX_exp p) x).
  {
    unfold canonic_exp, FLT_exp, FIX_exp.
    replace (ln_beta radix2 x - prec') with p by (unfold prec'; omega).
    apply Z.max_l. unfold emin', emin. red in prec_gt_0_; omega. 
  }
  assert (RND: round radix2 (FIX_exp p) Zrnd_odd x =
               round radix2 (FLT_exp emin' prec') Zrnd_odd x).
  {
    unfold round, scaled_mantissa. rewrite CANON. auto. 
  }
  rewrite RND. 
  apply round_odd_flt. auto. 
  unfold prec'. red in prec_gt_0_; omega. 
  unfold prec'. omega.
  unfold emin'. omega.
Qed.

Definition int_round_odd (x: Z) (p: Z) :=
  (if Z.eqb (x mod 2^p) 0 || Z.odd (x / 2^p) then x / 2^p else x / 2^p + 1) * 2^p.

Lemma Zrnd_odd_int:
  forall n p, 0 <= p ->
  Zrnd_odd (Z2R n * bpow radix2 (-p)) * 2^p =
  int_round_odd n p.
Proof.
  intros. 
  assert (0 < 2^p) by (apply (Zpower_gt_0 radix2); omega).
  assert (n = (n / 2^p) * 2^p + n mod 2^p) by (rewrite Zmult_comm; apply Z.div_mod; omega).
  assert (0 <= n mod 2^p < 2^p) by (apply Z_mod_lt; omega).
  unfold int_round_odd. set (q := n / 2^p) in *; set (r := n mod 2^p) in *.
  f_equal.
  pose proof (bpow_gt_0 radix2 (-p)).
  assert (bpow radix2 p * bpow radix2 (-p) = 1)%R.
  { rewrite <- bpow_plus. replace (p + -p) with 0 by omega. auto. }
  assert (Z2R n * bpow radix2 (-p) = Z2R q + Z2R r * bpow radix2 (-p))%R.
  { rewrite H1. rewrite Z2R_plus, Z2R_mult. 
    change (Z2R (2^p)) with (Z2R (radix2^p)).
    rewrite Z2R_Zpower by omega. ring_simplify.
    rewrite Rmult_assoc. rewrite H4. ring. }
  assert (0 <= Z2R r < bpow radix2 p)%R.
  { split. change 0%R with (Z2R 0). apply Z2R_le; omega. 
    rewrite <- Z2R_Zpower by omega. apply Z2R_lt; tauto. }
  assert (0 <= Z2R r * bpow radix2 (-p) < 1)%R.
  { generalize (bpow_gt_0 radix2 (-p)). intros. 
    split. apply Rmult_le_pos; lra. 
    rewrite <- H4. apply Rmult_lt_compat_r. auto. tauto. }
  assert (Zfloor (Z2R n * bpow radix2 (-p)) = q).
  { apply Zfloor_imp. rewrite H5. rewrite Z2R_plus. change (Z2R 1) with 1%R. lra. }
  unfold Zrnd_odd. destruct Req_EM_T.
- assert (Z2R r * bpow radix2 (-p) = 0)%R.
  { rewrite H8 in e. rewrite e in H5. lra. }
  apply Rmult_integral in H9. destruct H9; [ | lra ].
  apply (eq_Z2R r 0) in H9. apply <- Z.eqb_eq in H9. rewrite H9. assumption.
- assert (Z2R r * bpow radix2 (-p) <> 0)%R.
  { rewrite H8 in n0. lra. }
  destruct (Z.eqb r 0) eqn:RZ.
  apply Z.eqb_eq in RZ. rewrite RZ in H9. change (Z2R 0) with 0%R in H9.
  rewrite Rmult_0_l in H9. congruence.
  rewrite Zceil_floor_neq by lra. rewrite H8. 
  change Zeven with Z.even. rewrite Zodd_even_bool. destruct (Z.even q); auto.
Qed.

Lemma int_round_odd_le:
  forall p x y, 0 <= p ->
  x <= y -> int_round_odd x p <= int_round_odd y p.
Proof.
  intros. 
  assert (Zrnd_odd (Z2R x * bpow radix2 (-p)) <= Zrnd_odd (Z2R y * bpow radix2 (-p))).
  { apply Zrnd_le. apply valid_rnd_odd. apply Rmult_le_compat_r. apply bpow_ge_0. 
    apply Z2R_le; auto. }
  rewrite <- ! Zrnd_odd_int by auto. 
  apply Zmult_le_compat_r. auto. apply (Zpower_ge_0 radix2). 
Qed.

Lemma int_round_odd_exact:
  forall p x, 0 <= p ->
  (2^p | x) -> int_round_odd x p = x.
Proof.
  intros. unfold int_round_odd. apply Znumtheory.Zdivide_mod in H0.
  rewrite H0. simpl. rewrite Zmult_comm. symmetry. apply Z_div_exact_2.
  apply Zlt_gt. apply (Zpower_gt_0 radix2). auto. auto. 
Qed.

Theorem BofZ_round_odd:
  forall x p,
  prec > 1 ->
  Z.abs x <= 2^emax - 2^(emax-prec) ->
  0 <= p <= emax - prec ->
  2^(prec + p + 1) <= Z.abs x ->
  BofZ x = BofZ (int_round_odd x p).
Proof.
  intros x p PREC XRANGE PRANGE XGE.
  assert (DIV: (2^p | 2^emax - 2^(emax - prec))).
  { rewrite int_upper_bound_eq. apply Z.divide_mul_r.
    exists (2^(emax - prec - p)). red in prec_gt_0_. 
    rewrite <- (Zpower_plus radix2) by omega. f_equal; omega. }
  assert (YRANGE: Z.abs (int_round_odd x p) <= 2^emax - 2^(emax-prec)).
  { apply Z.abs_le. split.
    replace (-(2^emax - 2^(emax-prec))) with (int_round_odd (-(2^emax - 2^(emax-prec))) p).
    apply int_round_odd_le; zify; omega.
    apply int_round_odd_exact. omega. apply Z.divide_opp_r. auto. 
    replace (2^emax - 2^(emax-prec)) with (int_round_odd (2^emax - 2^(emax-prec)) p).
    apply int_round_odd_le; zify; omega.
    apply int_round_odd_exact. omega. auto. } 
  destruct (BofZ_finite x XRANGE) as (X1 & X2 & X3).
  destruct (BofZ_finite (int_round_odd x p) YRANGE) as (Y1 & Y2 & Y3).
  apply BofZ_finite_equal; auto.
  rewrite X1, Y1.
  assert (Z2R (int_round_odd x p) = round radix2 (FIX_exp p) Zrnd_odd (Z2R x)).
  {
     unfold round, scaled_mantissa, canonic_exp, FIX_exp.
     rewrite <- Zrnd_odd_int by omega.
     unfold F2R; simpl. rewrite Z2R_mult. f_equal. apply (Z2R_Zpower radix2). omega.
  }
  rewrite H. symmetry. apply round_odd_fix. auto. omega. 
  rewrite <- Z2R_Zpower. rewrite <- Z2R_abs. apply Z2R_le; auto. 
  red in prec_gt_0_; omega.
Qed.

Lemma int_round_odd_shifts:
  forall x p, 0 <= p ->
  int_round_odd x p =
  Z.shiftl (if Z.eqb (x mod 2^p) 0 then Z.shiftr x p else Z.lor (Z.shiftr x p) 1) p.
Proof.
  intros.
  unfold int_round_odd. rewrite Z.shiftl_mul_pow2 by auto. f_equal.
  rewrite Z.shiftr_div_pow2 by auto. 
  destruct (x mod 2^p =? 0) eqn:E. auto. 
  assert (forall n, (if Z.odd n then n else n + 1) = Z.lor n 1).
  { destruct n; simpl; auto.
    destruct p0; auto. 
    destruct p0; auto. induction p0; auto. }
  simpl. apply H0. 
Qed.

Lemma int_round_odd_bits:
  forall x y p, 0 <= p ->
  (forall i, 0 <= i < p -> Z.testbit y i = false) ->
  Z.testbit y p = (if Z.eqb (x mod 2^p) 0 then Z.testbit x p else true) ->
  (forall i, p < i -> Z.testbit y i = Z.testbit x i) ->
  int_round_odd x p = y.
Proof.
  intros until p; intros PPOS BELOW AT ABOVE. 
  rewrite int_round_odd_shifts by auto. 
  apply Z.bits_inj'. intros. 
  generalize (Zcompare_spec n p); intros SPEC; inversion SPEC.
- rewrite BELOW by auto. apply Z.shiftl_spec_low; auto. 
- subst n. rewrite AT. rewrite Z.shiftl_spec_high by omega.
  replace (p - p) with 0 by omega.
  destruct (x mod 2^p =? 0).
  + rewrite Z.shiftr_spec by omega. f_equal; omega. 
  + rewrite Z.lor_spec. apply orb_true_r. 
- rewrite ABOVE by auto.  rewrite Z.shiftl_spec_high by omega.
  destruct (x mod 2^p =? 0).
  rewrite Z.shiftr_spec by omega. f_equal; omega.
  rewrite Z.lor_spec, Z.shiftr_spec by omega. 
  change 1 with (Z.ones 1). rewrite Z.ones_spec_high by omega. rewrite orb_false_r.
  f_equal; omega.
Qed.

(** ** Conversion from a FP number to an integer *)

(** Always rounds toward zero. *)

Definition ZofB (f: binary_float): option Z :=
  match f with
    | B754_finite s m (Zpos e) _ => Some (cond_Zopp s (Zpos m) * Zpower_pos radix2 e)%Z
    | B754_finite s m 0 _ => Some (cond_Zopp s (Zpos m))
    | B754_finite s m (Zneg e) _ => Some (cond_Zopp s (Zpos m / Zpower_pos radix2 e))%Z
    | B754_zero _ => Some 0%Z
    | _ => None
  end.

Theorem ZofB_correct:
  forall f,
  ZofB f = if is_finite _ _ f then Some (Ztrunc (B2R _ _ f)) else None.
Proof.
  destruct f; simpl; auto.
- f_equal. symmetry. apply (Ztrunc_Z2R 0). 
- destruct e; f_equal. 
  + unfold F2R; simpl. rewrite Rmult_1_r. rewrite Ztrunc_Z2R. auto.
  + unfold F2R; simpl. rewrite <- Z2R_mult. rewrite Ztrunc_Z2R. auto.
  + unfold F2R; simpl. rewrite Z2R_cond_Zopp. rewrite <- cond_Ropp_mult_l. 
    assert (EQ: forall x, Ztrunc (cond_Ropp b x) = cond_Zopp b (Ztrunc x)).
    {
      intros. destruct b; simpl; auto. apply Ztrunc_opp.
    }
    rewrite EQ. f_equal. 
    generalize (Zpower_pos_gt_0 2 p (refl_equal _)); intros.
    rewrite Ztrunc_floor. symmetry. apply Zfloor_div. omega. 
    apply Rmult_le_pos. apply (Z2R_le 0). compute; congruence.
    apply Rlt_le. apply Rinv_0_lt_compat. apply (Z2R_lt 0). auto.
Qed.

(** Interval properties. *)

Remark Ztrunc_range_pos:
  forall x, 0 < Ztrunc x -> (Z2R (Ztrunc x) <= x < Z2R (Ztrunc x + 1)%Z)%R.
Proof.
  intros.  
  rewrite Ztrunc_floor. split. apply Zfloor_lb. rewrite Z2R_plus. apply Zfloor_ub.
  generalize (Rle_bool_spec 0%R x). intros RLE; inversion RLE; subst; clear RLE.
  auto.
  rewrite Ztrunc_ceil in H by lra. unfold Zceil in H.
  assert (-x < 0)%R.
  { apply Rlt_le_trans with (Z2R (Zfloor (-x)) + 1)%R. apply Zfloor_ub.  
    change 0%R with (Z2R 0). change 1%R with (Z2R 1). rewrite <- Z2R_plus.
    apply Z2R_le. omega. }
  lra.
Qed.

Remark Ztrunc_range_zero:
  forall x, Ztrunc x = 0 -> (-1 < x < 1)%R.
Proof.
  intros; generalize (Rle_bool_spec 0%R x). intros RLE; inversion RLE; subst; clear RLE.
- rewrite Ztrunc_floor in H by auto. split. 
  + apply Rlt_le_trans with 0%R; auto. rewrite <- Ropp_0. apply Ropp_lt_contravar. apply Rlt_0_1. 
  + replace 1%R with (Z2R (Zfloor x) + 1)%R. apply Zfloor_ub. rewrite H. simpl. apply Rplus_0_l. 
- rewrite Ztrunc_ceil in H by (apply Rlt_le; auto). split. 
  + apply Ropp_lt_cancel. rewrite Ropp_involutive. 
    replace 1%R with (Z2R (Zfloor (-x)) + 1)%R. apply Zfloor_ub. 
    unfold Zceil in H. replace (Zfloor (-x)) with 0 by omega. simpl. apply Rplus_0_l. 
  + apply Rlt_le_trans with 0%R; auto. apply Rle_0_1. 
Qed.

Theorem ZofB_range_pos:
  forall f n, ZofB f = Some n -> 0 < n -> (Z2R n <= B2R _ _ f < Z2R (n + 1)%Z)%R.
Proof.
  intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
  apply Ztrunc_range_pos. congruence.
Qed.

Theorem ZofB_range_neg:
  forall f n, ZofB f = Some n -> n < 0 -> (Z2R (n - 1)%Z < B2R _ _ f <= Z2R n)%R.
Proof.
  intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
  set (x := B2R prec emax f) in *. set (y := (-x)%R). 
  assert (A: (Z2R (Ztrunc y) <= y < Z2R (Ztrunc y + 1)%Z)%R).
  { apply Ztrunc_range_pos. unfold y. rewrite Ztrunc_opp. omega. }
  destruct A as [B C]. 
  unfold y in B, C. rewrite Ztrunc_opp in B, C. 
  replace (- Ztrunc x + 1) with (- (Ztrunc x - 1)) in C by omega.
  rewrite Z2R_opp in B, C. lra. 
Qed.

Theorem ZofB_range_zero:
  forall f, ZofB f = Some 0 -> (-1 < B2R _ _ f < 1)%R.
Proof.
  intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
  apply Ztrunc_range_zero. auto.
Qed.

Theorem ZofB_range_nonneg:
  forall f n, ZofB f = Some n -> 0 <= n -> (-1 < B2R _ _ f < Z2R (n + 1)%Z)%R.
Proof.
  intros. destruct (Z.eq_dec n 0). 
- subst n. apply ZofB_range_zero. auto. 
- destruct (ZofB_range_pos f n) as (A & B). auto. omega. 
  split; auto. apply Rlt_le_trans with (Z2R 0). simpl; lra. 
  apply Rle_trans with (Z2R n); auto. apply Z2R_le; auto. 
Qed.

(** For representable integers, [ZofB] is left inverse of [BofZ]. *)

Theorem ZofBofZ_exact:
  forall n, integer_representable n -> ZofB (BofZ n) = Some n.
Proof.
  intros. destruct (BofZ_representable n H) as (A & B & C).
  rewrite ZofB_correct. rewrite A, B. f_equal. apply Ztrunc_Z2R. 
Qed.

(** Compatibility with subtraction *)

Remark Zfloor_minus:
  forall x n, Zfloor (x - Z2R n) = Zfloor x - n.
Proof.
  intros. apply Zfloor_imp. replace (Zfloor x - n + 1) with ((Zfloor x + 1) - n) by omega. 
  rewrite ! Z2R_minus. unfold Rminus. split. 
  apply Rplus_le_compat_r. apply Zfloor_lb. 
  apply Rplus_lt_compat_r. rewrite Z2R_plus. apply Zfloor_ub.
Qed.

Theorem ZofB_minus:
  forall minus_nan m f p q,
  ZofB f = Some p -> 0 <= p < 2*q -> q <= 2^prec -> (Z2R q <= B2R _ _ f)%R ->
  ZofB (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) = Some (p - q).
Proof.
  intros.
  assert (Q: -2^prec <= q <= 2^prec). 
  { split; auto.  generalize (Zpower_ge_0 radix2 prec); simpl; omega. }
  assert (RANGE: (-1 < B2R _ _ f < Z2R (p + 1)%Z)%R) by (apply ZofB_range_nonneg; auto; omega). 
  rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; try discriminate.
  assert (PQ2: (Z2R (p + 1) <= Z2R q * 2)%R). 
  { change 2%R with (Z2R 2). rewrite <- Z2R_mult. apply Z2R_le. omega. }
  assert (EXACT: round radix2 fexp (round_mode m) (B2R _ _ f - Z2R q)%R = (B2R _ _ f - Z2R q)%R).
  { apply round_generic. apply valid_rnd_round_mode. 
    apply sterbenz_aux. apply FLT_exp_monotone. apply generic_format_B2R. 
    apply integer_representable_n. auto. lra. }
  destruct (BofZ_exact q Q) as (A & B & C). 
  generalize (Bminus_correct _ _ _ Hmax minus_nan m f (BofZ q) FIN B).
  rewrite Rlt_bool_true.
- fold emin; fold fexp. intros (D & E & F).
  rewrite ZofB_correct. rewrite E. rewrite D. rewrite A. rewrite EXACT. 
  inversion H. f_equal. rewrite ! Ztrunc_floor. apply Zfloor_minus.
  lra. lra. 
- rewrite A. fold emin; fold fexp. rewrite EXACT.
  apply Rle_lt_trans with (bpow radix2 prec). 
  apply Rle_trans with (Z2R q). apply Rabs_le. lra.
  rewrite <- Z2R_Zpower. apply Z2R_le; auto. red in prec_gt_0_; omega.
  apply bpow_lt. auto.
Qed.

(** A variant of [ZofB] that bounds the range of representable integers. *)

Definition ZofB_range (f: binary_float) (zmin zmax: Z): option Z :=
  match ZofB f with
  | None => None
  | Some z => if Zle_bool zmin z && Zle_bool z zmax then Some z else None
  end.

Theorem ZofB_range_correct:
  forall f min max,
  let n := Ztrunc (B2R _ _ f) in
  ZofB_range f min max =
  if is_finite _ _ f && Zle_bool min n && Zle_bool n max then Some n else None.
Proof.
  intros. unfold ZofB_range. rewrite ZofB_correct. fold n. 
  destruct (is_finite prec emax f); auto. 
Qed.

Lemma ZofB_range_inversion:
  forall f min max n,
  ZofB_range f min max = Some n ->
  min <= n /\ n <= max /\ ZofB f = Some n.
Proof.
  intros. rewrite ZofB_range_correct in H. rewrite ZofB_correct.  
  destruct (is_finite prec emax f); try discriminate. 
  set (n1 := Ztrunc (B2R _ _ f)) in *.
  destruct (min <=? n1) eqn:MIN; try discriminate.
  destruct (n1 <=? max) eqn:MAX; try discriminate.
  simpl in H. inversion H. subst n. 
  split. apply Zle_bool_imp_le; auto. 
  split. apply Zle_bool_imp_le; auto.
  auto.
Qed.

Theorem ZofB_range_minus:
  forall minus_nan m f p q,
  ZofB_range f 0 (2 * q - 1) = Some p -> q <= 2^prec -> (Z2R q <= B2R _ _ f)%R ->
  ZofB_range (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) (-q) (q - 1) = Some (p - q).
Proof.
  intros. destruct (ZofB_range_inversion _ _ _ _ H) as (A & B & C).
  set (f' := Bminus prec emax prec_gt_0_ Hmax minus_nan m f (BofZ q)).
  assert (D: ZofB f' = Some (p - q)).
  { apply ZofB_minus. auto. omega. auto. auto. }
  unfold ZofB_range. rewrite D. rewrite Zle_bool_true by omega. rewrite Zle_bool_true by omega. auto.
Qed.

(** ** Algebraic identities *)

(** Commutativity of addition and multiplication *)

Theorem Bplus_commut:
  forall plus_nan mode (x y: binary_float),
  plus_nan x y = plus_nan y x ->
  Bplus _ _ _ Hmax plus_nan mode x y = Bplus _ _ _ Hmax plus_nan mode y x.
Proof.
  intros until y; intros NAN. 
  pose proof (Bplus_correct _ _ _ Hmax plus_nan mode x y). 
  pose proof (Bplus_correct _ _ _ Hmax plus_nan mode y x).
  unfold Bplus in *; destruct x; destruct y; auto.
- rewrite (eqb_sym b0 b). destruct (eqb b b0) eqn:EQB; auto. 
  f_equal; apply eqb_prop; auto.
- rewrite NAN; auto.
- rewrite (eqb_sym b0 b). destruct (eqb b b0) eqn:EQB. 
  f_equal; apply eqb_prop; auto.
  rewrite NAN; auto. 
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- generalize (H (refl_equal _) (refl_equal _)); clear H.
  generalize (H0 (refl_equal _) (refl_equal _)); clear H0.
  fold emin. fold fexp. 
  set (x := B754_finite prec emax b0 m0 e1 e2). set (rx := B2R _ _ x). 
  set (y := B754_finite prec emax b m e e0). set (ry := B2R _ _ y).
  rewrite (Rplus_comm ry rx). destruct Rlt_bool.
  + intros (A1 & A2 & A3) (B1 & B2 & B3).
    apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto. 
    rewrite Z.add_comm. rewrite Z.min_comm. auto.
  + intros (A1 & A2) (B1 & B2). apply B2FF_inj. rewrite B2 in B1. rewrite <- B1 in A1. auto. 
Qed.

Theorem Bmult_commut:
  forall mult_nan mode (x y: binary_float),
  mult_nan x y = mult_nan y x ->
  Bmult _ _ _ Hmax mult_nan mode x y = Bmult _ _ _ Hmax mult_nan mode y x.
Proof.
  intros until y; intros NAN. 
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode x y). 
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode y x).
  unfold Bmult in *; destruct x; destruct y; auto.
- rewrite (xorb_comm b0 b); auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite (xorb_comm b0 b); auto.
- rewrite NAN; auto.
- rewrite (xorb_comm b0 b); auto.
- rewrite NAN; auto.
- rewrite (xorb_comm b0 b); auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite NAN; auto.
- rewrite (xorb_comm b0 b); auto.
- rewrite (xorb_comm b0 b); auto.
- rewrite NAN; auto.
- revert H H0. fold emin. fold fexp. 
  set (x := B754_finite prec emax b0 m0 e1 e2). set (rx := B2R _ _ x). 
  set (y := B754_finite prec emax b m e e0). set (ry := B2R _ _ y).
  rewrite (Rmult_comm ry rx). destruct Rlt_bool.
  + intros (A1 & A2 & A3) (B1 & B2 & B3).
    apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto. 
    rewrite ! Bsign_FF2B. f_equal. f_equal. apply xorb_comm. apply Pos.mul_comm. apply Z.add_comm.
  + intros A B. apply B2FF_inj. etransitivity. eapply A. rewrite xorb_comm. auto. 
Qed.

(** Multiplication by 2 is diagonal addition. *)

Theorem Bmult2_Bplus:
  forall plus_nan mult_nan mode (f: binary_float),
  (forall (x y: binary_float),
   is_nan _ _ x = true -> is_finite _ _ y = true -> plus_nan x x = mult_nan x y) ->
  Bplus _ _ _ Hmax plus_nan mode f f = Bmult _ _ _ Hmax mult_nan mode f (BofZ 2%Z).
Proof.
  intros until f; intros NAN.
  destruct (BofZ_representable 2) as (A & B & C).
  apply (integer_representable_2p 1). red in prec_gt_0_; omega. 
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode f (BofZ 2%Z)). fold emin in H.
  rewrite A, B, C in H. rewrite xorb_false_r in H.  
  destruct (is_finite _ _ f) eqn:FIN.
- pose proof (Bplus_correct _ _ _ Hmax plus_nan mode f f FIN FIN). fold emin in H0. 
  assert (EQ: (B2R prec emax f * Z2R 2%Z = B2R prec emax f + B2R prec emax f)%R).
  { change (Z2R 2%Z) with 2%R. ring. }
  rewrite <- EQ in H0. destruct Rlt_bool. 
  + destruct H0 as (P & Q & R). destruct H as (S & T & U). 
    apply B2R_Bsign_inj; auto.
    rewrite P, S. auto.
    rewrite R, U.  
    replace 0%R with (0 * Z2R 2%Z)%R by ring. rewrite Rcompare_mult_r. 
    rewrite andb_diag, orb_diag. destruct f; try discriminate; simpl. 
    rewrite Rcompare_Eq by auto. destruct mode; auto. 
    replace 0%R with (@F2R radix2 {| Fnum := 0%Z; Fexp := e |}).
    rewrite Rcompare_F2R. destruct b; auto. 
    unfold F2R. simpl. ring. 
    change 0%R with (Z2R 0%Z). apply Z2R_lt. omega. 
    destruct (Bmult prec emax prec_gt_0_ Hmax mult_nan mode f (BofZ 2)); reflexivity || discriminate.
  + destruct H0 as (P & Q). apply B2FF_inj. rewrite P, H. auto.
- destruct f; try discriminate.
  + simpl Bplus. rewrite eqb_true. destruct (BofZ 2) eqn:B2; try discriminate; simpl in *.
    assert ((0 = 2)%Z) by (apply eq_Z2R; auto). discriminate.
    subst b0. rewrite xorb_false_r. auto. 
    auto.
  + unfold Bplus, Bmult. rewrite <- NAN by auto. auto.
Qed.

(** Divisions that can be turned into multiplications by an inverse *)

Definition Bexact_inverse_mantissa := Z.iter (prec - 1) xO xH.

Remark Bexact_inverse_mantissa_value:
  Zpos Bexact_inverse_mantissa = 2 ^ (prec - 1).
Proof.
  assert (REC: forall n, Z.pos (nat_iter n xO xH) = 2 ^ (Z.of_nat n)).
  { induction n. reflexivity. 
    simpl nat_iter. transitivity (2 * Z.pos (nat_iter n xO xH)). reflexivity. 
    rewrite inj_S. rewrite IHn. unfold Z.succ. rewrite Zpower_plus by omega. 
    change (2 ^ 1) with 2. ring. }
  red in prec_gt_0_.
  unfold Bexact_inverse_mantissa. rewrite iter_nat_of_Z by omega. rewrite REC.
  rewrite Zabs2Nat.id_abs. rewrite Z.abs_eq by omega. auto.
Qed.

Remark Bexact_inverse_mantissa_digits2_Pnat:
  digits2_Pnat Bexact_inverse_mantissa = Z.to_nat (prec - 1).
Proof.
  assert (DIGITS: forall n, digits2_Pnat (nat_iter n xO xH) = n).
  { induction n; simpl. auto. congruence. }
  red in prec_gt_0_.
  unfold Bexact_inverse_mantissa. rewrite iter_nat_of_Z by omega. rewrite DIGITS.
  apply Zabs2Nat.abs_nat_nonneg. omega.
Qed.

Remark bounded_Bexact_inverse:
  forall e,
  emin <= e <= emax - prec <-> bounded prec emax Bexact_inverse_mantissa e = true.
Proof.
  intros. unfold bounded, canonic_mantissa. rewrite andb_true_iff. 
  rewrite <- Zeq_is_eq_bool. rewrite <- Zle_is_le_bool. 
  rewrite Bexact_inverse_mantissa_digits2_Pnat. 
  rewrite inj_S. red in prec_gt_0_. rewrite Z2Nat.id by omega. 
  split. 
- intros; split. unfold FLT_exp. unfold emin in H. zify; omega. omega.
- intros [A B]. unfold FLT_exp in A. unfold emin. zify; omega.
Qed.

Program Definition Bexact_inverse (f: binary_float) : option binary_float :=
  match f with
  | B754_finite s m e B =>
      if positive_eq_dec m Bexact_inverse_mantissa then
      let e' := -e - (prec - 1) * 2 in
      if Z_le_dec emin e' then
      if Z_le_dec e' emax then
        Some(B754_finite _ _ s m e' _)
      else None else None else None
  | _ => None
  end.
Next Obligation.
  rewrite <- bounded_Bexact_inverse in B. rewrite <- bounded_Bexact_inverse. 
  unfold emin in *. omega.
Qed.

Lemma Bexact_inverse_correct:
  forall f f', Bexact_inverse f = Some f' ->
  is_finite_strict _ _ f = true
  /\ is_finite_strict _ _ f' = true
  /\ B2R _ _ f' = (/ B2R _ _ f)%R
  /\ B2R _ _ f <> 0%R
  /\ Bsign _ _ f' = Bsign _ _ f.
Proof with (try discriminate).
  intros f f' EI. unfold Bexact_inverse in EI. destruct f...
  destruct (Pos.eq_dec m Bexact_inverse_mantissa)...
  set (e' := -e - (prec - 1) * 2) in *.
  destruct (Z_le_dec emin e')...
  destruct (Z_le_dec e' emax)...
  inversion EI; clear EI; subst f' m.
  split. auto. split. auto. split. unfold B2R. rewrite Bexact_inverse_mantissa_value.
  unfold F2R; simpl. rewrite Z2R_cond_Zopp.
  rewrite <- ! cond_Ropp_mult_l.
  red in prec_gt_0_. 
  replace (Z2R (2 ^ (prec - 1))) with (bpow radix2 (prec - 1))
  by (symmetry; apply (Z2R_Zpower radix2); omega).
  rewrite <- ! bpow_plus.
  replace (prec - 1 + e') with (- (prec - 1 + e)) by (unfold e'; omega). 
  rewrite bpow_opp. unfold cond_Ropp; destruct b; auto. 
  rewrite Ropp_inv_permute. auto. apply Rgt_not_eq. apply bpow_gt_0.
  split. simpl. red; intros. apply F2R_eq_0_reg in H. destruct b; simpl in H; discriminate.
  auto.
Qed.

Theorem Bdiv_mult_inverse:
  forall div_nan mult_nan mode x y z,
  (forall (x y z: binary_float),
   is_nan _ _ x = true -> is_finite _ _ y = true -> is_finite _ _ z = true ->
   div_nan x y = mult_nan x z) ->
  Bexact_inverse y = Some z ->
  Bdiv _ _ _ Hmax div_nan mode x y = Bmult _ _ _ Hmax mult_nan mode x z.
Proof.
  intros until z; intros NAN; intros. destruct (Bexact_inverse_correct _ _ H) as (A & B & C & D & E).
  pose proof (Bmult_correct _ _ _ Hmax mult_nan mode x z).
  fold emin in H0. fold fexp in H0. 
  pose proof (Bdiv_correct _ _ _ Hmax div_nan mode x y D).
  fold emin in H1. fold fexp in H1.
  unfold Rdiv in H1. rewrite <- C in H1. 
  destruct (is_finite _ _ x) eqn:FINX.
- destruct Rlt_bool. 
  + destruct H0 as (P & Q & R). destruct H1 as (S & T & U). 
    apply B2R_Bsign_inj; auto.
    rewrite Q. simpl. apply is_finite_strict_finite; auto. 
    rewrite P, S. auto. 
    rewrite R, U, E. auto. 
    apply is_finite_not_is_nan; auto. 
    apply is_finite_not_is_nan. rewrite Q. simpl. apply is_finite_strict_finite; auto.  + apply B2FF_inj. rewrite H0, H1. rewrite E. auto. 
- destruct y; try discriminate. destruct z; try discriminate.
  destruct x; try discriminate; simpl.
  + simpl in E; congruence.
  + erewrite NAN; eauto. 
Qed.

End Extra_ops.

(** ** Conversions between two FP formats *)

Section Conversions.

Variable prec1 emax1 prec2 emax2 : Z.
Context (prec1_gt_0_ : Prec_gt_0 prec1) (prec2_gt_0_ : Prec_gt_0 prec2).
Let emin1 := (3 - emax1 - prec1)%Z.
Let fexp1 := FLT_exp emin1 prec1.
Let emin2 := (3 - emax2 - prec2)%Z.
Let fexp2 := FLT_exp emin2 prec2.
Hypothesis Hmax1 : (prec1 < emax1)%Z.
Hypothesis Hmax2 : (prec2 < emax2)%Z.
Let binary_float1 := binary_float prec1 emax1.
Let binary_float2 := binary_float prec2 emax2.

Definition Bconv (conv_nan: bool -> nan_pl prec1 -> bool * nan_pl prec2) (md: mode) (f: binary_float1) : binary_float2 :=
  match f with
    | B754_nan s pl => let '(s, pl) := conv_nan s pl in B754_nan _ _ s pl
    | B754_infinity s => B754_infinity _ _ s
    | B754_zero s => B754_zero _ _ s
    | B754_finite s m e _ => binary_normalize _ _ _ Hmax2 md (cond_Zopp s (Zpos m)) e s
  end.

Theorem Bconv_correct:
  forall conv_nan m f,
  is_finite _ _ f = true ->
  if Rlt_bool (Rabs (round radix2 fexp2 (round_mode m) (B2R _ _ f))) (bpow radix2 emax2)
  then
     B2R _ _ (Bconv conv_nan m f) = round radix2 fexp2 (round_mode m) (B2R _ _ f)
  /\ is_finite _ _ (Bconv conv_nan m f) = true
  /\ Bsign _ _ (Bconv conv_nan m f) = Bsign _ _ f
  else
     B2FF _ _ (Bconv conv_nan m f) = binary_overflow prec2 emax2 m (Bsign _ _ f).
Proof.
  intros. destruct f; try discriminate.
- simpl. rewrite round_0. rewrite Rabs_R0. rewrite Rlt_bool_true. auto. 
  apply bpow_gt_0. apply valid_rnd_round_mode. 
- generalize (binary_normalize_correct _ _ _ Hmax2 m (cond_Zopp b (Zpos m0)) e b).
  fold emin2; fold fexp2. simpl. destruct Rlt_bool. 
  + intros (A & B & C). split. auto. split. auto. rewrite C. 
    destruct b; simpl. 
    rewrite Rcompare_Lt. auto. apply F2R_lt_0_compat. simpl. compute; auto. 
    rewrite Rcompare_Gt. auto. apply F2R_gt_0_compat. simpl. compute; auto.
  + intros A. rewrite A. f_equal. destruct b.
    apply Rlt_bool_true. apply F2R_lt_0_compat. simpl. compute; auto. 
    apply Rlt_bool_false. apply Rlt_le. apply Rgt_lt. apply F2R_gt_0_compat. simpl. compute; auto.
Qed.

(** Converting a finite FP number to higher or equal precision preserves its value. *)

Theorem Bconv_widen_exact:
  (prec2 >= prec1)%Z -> (emax2 >= emax1)%Z ->
  forall conv_nan m f,
  is_finite _ _ f = true ->
     B2R _ _ (Bconv conv_nan m f) = B2R _ _ f
  /\ is_finite _ _ (Bconv conv_nan m f) = true
  /\ Bsign _ _ (Bconv conv_nan m f) = Bsign _ _ f.
Proof.
  intros PREC EMAX; intros. generalize (Bconv_correct conv_nan m f H).
  assert (LT: (Rabs (B2R _ _ f) < bpow radix2 emax2)%R).
  {
    destruct f; try discriminate; simpl. 
    rewrite Rabs_R0. apply bpow_gt_0. 
    apply Rlt_le_trans with (bpow radix2 emax1).
    rewrite F2R_cond_Zopp. rewrite abs_cond_Ropp. rewrite <- F2R_Zabs. simpl Z.abs.
    eapply bounded_lt_emax; eauto.
    apply bpow_le. omega.
  }
  assert (EQ: round radix2 fexp2 (round_mode m) (B2R prec1 emax1 f) = B2R prec1 emax1 f).
  {
    apply round_generic. apply valid_rnd_round_mode. eapply generic_inclusion_le.
    5: apply generic_format_B2R. apply fexp_correct; auto. apply fexp_correct; auto. 
    instantiate (1 := emax2). intros. unfold fexp2, FLT_exp. unfold emin2. zify; omega.
    apply Rlt_le; auto.
  }
  rewrite EQ. rewrite Rlt_bool_true by auto. auto. 
Qed.

(** Conversion from integers and change of format *)

Theorem Bconv_BofZ:
  forall conv_nan n,
  integer_representable prec1 emax1 n ->
  Bconv conv_nan mode_NE (BofZ prec1 emax1 _ Hmax1 n) = BofZ prec2 emax2 _ Hmax2 n.
Proof.
  intros. 
  destruct (BofZ_representable _ _ _ Hmax1 n H) as (A & B & C). 
  set (f := BofZ prec1 emax1 prec1_gt_0_ Hmax1 n) in *.
  generalize (Bconv_correct conv_nan mode_NE f B).
  unfold BofZ. 
  generalize (binary_normalize_correct _ _ _ Hmax2 mode_NE n 0 false). 
  fold emin2; fold fexp2. rewrite A. 
  replace (F2R {| Fnum := n; Fexp := 0 |}) with (Z2R n).
  destruct Rlt_bool. 
- intros (P & Q & R) (D & E & F). apply B2R_Bsign_inj; auto. 
  congruence. rewrite F, C, R. change 0%R with (Z2R 0). rewrite Rcompare_Z2R. 
  unfold Zlt_bool. auto. 
- intros P Q. apply B2FF_inj. rewrite P, Q. rewrite C. f_equal. change 0%R with (Z2R 0).
  generalize (Zlt_bool_spec n 0); intros LT; inversion LT.
  rewrite Rlt_bool_true; auto. apply Z2R_lt; auto.
  rewrite Rlt_bool_false; auto. apply Z2R_le; auto.
- unfold F2R; simpl. rewrite Rmult_1_r. auto.
Qed.

(** Change of format (to higher precision) and conversion to integer. *)

Theorem ZofB_Bconv:
  prec2 >= prec1 -> emax2 >= emax1 ->
  forall conv_nan m f n,
  ZofB _ _ f = Some n -> ZofB _ _ (Bconv conv_nan m f) = Some n.
Proof.
  intros. rewrite ZofB_correct in H1. destruct (is_finite _ _ f) eqn:FIN; inversion H1.
  destruct (Bconv_widen_exact H H0 conv_nan m f) as (A & B & C). auto. 
  rewrite ZofB_correct. rewrite B. rewrite A. auto.
Qed.

Theorem ZofB_range_Bconv:
  forall min1 max1 min2 max2,
  prec2 >= prec1 -> emax2 >= emax1 -> min2 <= min1 -> max1 <= max2 ->
  forall conv_nan m f n,
  ZofB_range _ _ f min1 max1 = Some n ->
  ZofB_range _ _ (Bconv conv_nan m f) min2 max2 = Some n.
Proof.
  intros. 
  destruct (ZofB_range_inversion _ _ _ _ _ _ H3) as (A & B & C).
  unfold ZofB_range. erewrite ZofB_Bconv by eauto. 
  rewrite ! Zle_bool_true by omega. auto.
Qed.

(** Change of format (to higher precision) and comparison. *)

Theorem Bcompare_Bconv_widen:
  prec2 >= prec1 -> emax2 >= emax1 ->
  forall conv_nan m x y,
  Bcompare _ _ (Bconv conv_nan m x) (Bconv conv_nan m y) = Bcompare _ _ x y.
Proof.
  intros. destruct (is_finite _ _ x && is_finite _ _ y) eqn:FIN.
- apply andb_true_iff in FIN. destruct FIN. 
  destruct (Bconv_widen_exact H H0 conv_nan m x H1) as (A & B & C).
  destruct (Bconv_widen_exact H H0 conv_nan m y H2) as (D & E & F).
  rewrite ! Bcompare_finite_correct by auto. rewrite A, D. auto.
- generalize (Bconv_widen_exact H H0 conv_nan m x)
             (Bconv_widen_exact H H0 conv_nan m y); intros P Q.
  destruct x, y; try discriminate; simpl in P, Q; simpl;
  repeat (match goal with |- context [conv_nan ?b ?pl] => destruct (conv_nan b pl) end);
  auto.
  destruct Q as (D & E & F); auto. 
  destruct (binary_normalize prec2 emax2 prec2_gt_0_ Hmax2 m (cond_Zopp b0 (Z.pos m0)) e b0);
  discriminate || reflexivity.
  destruct P as (A & B & C); auto. 
  destruct (binary_normalize prec2 emax2 prec2_gt_0_ Hmax2 m (cond_Zopp b (Z.pos m0)) e b);
  try discriminate; simpl. destruct b; auto. destruct b, b1; auto. 
  destruct P as (A & B & C); auto. 
  destruct (binary_normalize prec2 emax2 prec2_gt_0_ Hmax2 m (cond_Zopp b (Z.pos m0)) e b);
  try discriminate; simpl. destruct b; auto.
  destruct b, b2; auto.
Qed.

End Conversions.

Section Compose_Conversions.

Variable prec1 emax1 prec2 emax2 : Z.
Context (prec1_gt_0_ : Prec_gt_0 prec1) (prec2_gt_0_ : Prec_gt_0 prec2).
Let emin1 := (3 - emax1 - prec1)%Z.
Let fexp1 := FLT_exp emin1 prec1.
Let emin2 := (3 - emax2 - prec2)%Z.
Let fexp2 := FLT_exp emin2 prec2.
Hypothesis Hmax1 : (prec1 < emax1)%Z.
Hypothesis Hmax2 : (prec2 < emax2)%Z.
Let binary_float1 := binary_float prec1 emax1.
Let binary_float2 := binary_float prec2 emax2.

(** Converting to a higher precision then down to the original format 
    is the identity. *)
Theorem Bconv_narrow_widen:
  prec2 >= prec1 -> emax2 >= emax1 ->
  forall narrow_nan widen_nan m f, 
  is_nan _ _ f = false ->
  Bconv prec2 emax2 prec1 emax1 _ Hmax1 narrow_nan m (Bconv prec1 emax1 prec2 emax2 _ Hmax2 widen_nan m f) = f.
Proof.
  intros. destruct (is_finite _ _ f) eqn:FIN. 
- assert (EQ: round radix2 fexp1 (round_mode m) (B2R prec1 emax1 f) = B2R prec1 emax1 f).
  { apply round_generic. apply valid_rnd_round_mode. apply generic_format_B2R. }
  generalize (Bconv_widen_exact _ _ _ _ _ _ Hmax2 H H0 widen_nan m f FIN).
  set (f' := Bconv prec1 emax1 prec2 emax2 _ Hmax2 widen_nan m f). 
  intros (A & B & C).
  generalize (Bconv_correct _ _ _ _ _ Hmax1 narrow_nan m f' B).
  fold emin1. fold fexp1. rewrite A, C, EQ. rewrite Rlt_bool_true. 
  intros (D & E & F). 
  apply B2R_Bsign_inj; auto.
  destruct f; try discriminate; simpl.
  rewrite Rabs_R0. apply bpow_gt_0. 
  rewrite F2R_cond_Zopp. rewrite abs_cond_Ropp. rewrite <- F2R_Zabs. simpl Z.abs.
  eapply bounded_lt_emax; eauto.
- destruct f; try discriminate. simpl. auto.
Qed.

End Compose_Conversions.

(** Specialization to binary32 and binary64 formats. *)

Require Import Fappli_IEEE_bits.

Section B3264.

Let prec32 : (0 < 24)%Z.
apply refl_equal.
Qed.

Let emax32 : (24 < 128)%Z.
apply refl_equal.
Qed.

Let prec64 : (0 < 53)%Z.
apply refl_equal.
Qed.

Let emax64 : (53 < 1024)%Z.
apply refl_equal.
Qed.

Definition b32_abs : (bool -> nan_pl 24 -> bool * nan_pl 24) -> binary32 -> binary32 := Babs 24 128.
Definition b32_eq_dec : forall (f1 f2: binary32), {f1=f2} + {f1<>f2} := Beq_dec 24 128.
Definition b32_compare : binary32 -> binary32 -> option comparison := Bcompare 24 128.
Definition b32_of_Z : Z -> binary32 := BofZ 24 128 prec32 emax32.
Definition b32_to_Z : binary32 -> option Z := ZofB 24 128.
Definition b32_to_Z_range : binary32 -> Z -> Z -> option Z := ZofB_range 24 128.
Definition b32_exact_inverse : binary32 -> option binary32 := Bexact_inverse 24 128 prec32.

Definition b64_abs : (bool -> nan_pl 53 -> bool * nan_pl 53) -> binary64 -> binary64 := Babs 53 1024.
Definition b64_eq_dec : forall (f1 f2: binary64), {f1=f2} + {f1<>f2} := Beq_dec 53 1024.
Definition b64_compare : binary64 -> binary64 -> option comparison := Bcompare 53 1024.
Definition b64_of_Z : Z -> binary64 := BofZ 53 1024 prec64 emax64.
Definition b64_to_Z : binary64 -> option Z := ZofB 53 1024.
Definition b64_to_Z_range : binary64 -> Z -> Z -> option Z := ZofB_range 53 1024.
Definition b64_exact_inverse : binary64 -> option binary64 := Bexact_inverse 53 1024 prec64.

Definition b64_of_b32 : (bool -> nan_pl 24 -> bool * nan_pl 53) -> mode -> binary32 -> binary64 :=
  Bconv 24 128 53 1024 prec32 prec64.
Definition b32_of_b64 : (bool -> nan_pl 53 -> bool * nan_pl 24) -> mode -> binary64 -> binary32 :=
  Bconv 53 1024 24 128 prec64 prec32.

End B3264.