summaryrefslogtreecommitdiff
path: root/lib/Coqlib.v
blob: 184fe28f324037df5dda798c0616ad152e02d9d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
(** This file collects a number of definitions and theorems that are
    used throughout the development.  It complements the Coq standard
    library. *)

Require Export ZArith.
Require Export List.
Require Export Bool.
Require Import Wf_nat.

(** * Logical axioms *)

(** We use two logical axioms that are not provable in Coq but consistent
  with the logic: function extensionality and proof irrelevance.
  These are used in the memory model to show that two memory states
  that have identical contents are equal. *)

Axiom extensionality:
  forall (A B: Set) (f g : A -> B),
  (forall x, f x = g x) -> f = g.

Axiom proof_irrelevance:
  forall (P: Prop) (p1 p2: P), p1 = p2.

(** * Useful tactics *)

Ltac predSpec pred predspec x y :=
  generalize (predspec x y); case (pred x y); intro.

Ltac caseEq name :=
  generalize (refl_equal name); pattern name at -1 in |- *; case name.

Ltac destructEq name :=
  generalize (refl_equal name); pattern name at -1 in |- *; destruct name; intro.

Ltac decEq :=
  match goal with
  | [ |- _ = _ ] => f_equal
  | [ |- (?X ?A <> ?X ?B) ] =>
      cut (A <> B); [intro; congruence | try discriminate]
  end.

Ltac byContradiction :=
  cut False; [contradiction|idtac].

Ltac omegaContradiction :=
  cut False; [contradiction|omega].

Lemma modusponens: forall (P Q: Prop), P -> (P -> Q) -> Q.
Proof. auto. Qed.

Ltac exploit x :=
    refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _ _) _)
 || refine (modusponens _ _ (x _ _ _) _)
 || refine (modusponens _ _ (x _ _) _)
 || refine (modusponens _ _ (x _) _).

(** * Definitions and theorems over the type [positive] *)

Definition peq (x y: positive): {x = y} + {x <> y}.
Proof.
  intros. caseEq (Pcompare x y Eq).
  intro. left. apply Pcompare_Eq_eq; auto.
  intro. right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
  intro. right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
Qed.

Lemma peq_true:
  forall (A: Set) (x: positive) (a b: A), (if peq x x then a else b) = a.
Proof.
  intros. case (peq x x); intros.
  auto.
  elim n; auto.
Qed.

Lemma peq_false:
  forall (A: Set) (x y: positive) (a b: A), x <> y -> (if peq x y then a else b) = b.
Proof.
  intros. case (peq x y); intros.
  elim H; auto.
  auto.
Qed.  

Definition Plt (x y: positive): Prop := Zlt (Zpos x) (Zpos y).

Lemma Plt_ne:
  forall (x y: positive), Plt x y -> x <> y.
Proof.
  unfold Plt; intros. red; intro. subst y. omega.
Qed.
Hint Resolve Plt_ne: coqlib.

Lemma Plt_trans:
  forall (x y z: positive), Plt x y -> Plt y z -> Plt x z.
Proof.
  unfold Plt; intros; omega.
Qed.

Remark Psucc_Zsucc:
  forall (x: positive), Zpos (Psucc x) = Zsucc (Zpos x).
Proof.
  intros. rewrite Pplus_one_succ_r. 
  reflexivity.
Qed.

Lemma Plt_succ:
  forall (x: positive), Plt x (Psucc x).
Proof.
  intro. unfold Plt. rewrite Psucc_Zsucc. omega.
Qed.
Hint Resolve Plt_succ: coqlib.

Lemma Plt_trans_succ:
  forall (x y: positive), Plt x y -> Plt x (Psucc y).
Proof.
  intros. apply Plt_trans with y. assumption. apply Plt_succ.
Qed.
Hint Resolve Plt_succ: coqlib.

Lemma Plt_succ_inv:
  forall (x y: positive), Plt x (Psucc y) -> Plt x y \/ x = y.
Proof.
  intros x y. unfold Plt. rewrite Psucc_Zsucc. 
  intro. assert (A: (Zpos x < Zpos y)%Z \/ Zpos x = Zpos y). omega.
  elim A; intro. left; auto. right; injection H0; auto.
Qed.

Definition plt (x y: positive) : {Plt x y} + {~ Plt x y}.
Proof.
 intros. unfold Plt. apply Z_lt_dec.
Qed.

Definition Ple (p q: positive) := Zle (Zpos p) (Zpos q).

Lemma Ple_refl: forall (p: positive), Ple p p.
Proof.
  unfold Ple; intros; omega.
Qed.

Lemma Ple_trans: forall (p q r: positive), Ple p q -> Ple q r -> Ple p r.
Proof.
  unfold Ple; intros; omega.
Qed.

Lemma Plt_Ple: forall (p q: positive), Plt p q -> Ple p q.
Proof.
  unfold Plt, Ple; intros; omega.
Qed.

Lemma Ple_succ: forall (p: positive), Ple p (Psucc p).
Proof.
  intros. apply Plt_Ple. apply Plt_succ.
Qed.

Lemma Plt_Ple_trans:
  forall (p q r: positive), Plt p q -> Ple q r -> Plt p r.
Proof.
  unfold Plt, Ple; intros; omega.
Qed.

Lemma Plt_strict: forall p, ~ Plt p p.
Proof.
  unfold Plt; intros. omega.
Qed.

Hint Resolve Ple_refl Plt_Ple Ple_succ Plt_strict: coqlib.

(** Peano recursion over positive numbers. *)

Section POSITIVE_ITERATION.

Lemma Plt_wf: well_founded Plt.
Proof.
  apply well_founded_lt_compat with nat_of_P.
  intros. apply nat_of_P_lt_Lt_compare_morphism. exact H.
Qed.

Variable A: Set.
Variable v1: A.
Variable f: positive -> A -> A.

Lemma Ppred_Plt:
  forall x, x <> xH -> Plt (Ppred x) x.
Proof.
  intros. elim (Psucc_pred x); intro. contradiction.
  set (y := Ppred x) in *. rewrite <- H0. apply Plt_succ.
Qed.

Let iter (x: positive) (P: forall y, Plt y x -> A) : A :=
  match peq x xH with
  | left EQ => v1
  | right NOTEQ => f (Ppred x) (P (Ppred x) (Ppred_Plt x NOTEQ))
  end.

Definition positive_rec : positive -> A :=
  Fix Plt_wf (fun _ => A) iter.

Lemma unroll_positive_rec:
  forall x,
  positive_rec x = iter x (fun y _ => positive_rec y).
Proof.
  unfold positive_rec. apply (Fix_eq Plt_wf (fun _ => A) iter).
  intros. unfold iter. case (peq x 1); intro. auto. decEq. apply H.
Qed.

Lemma positive_rec_base:
  positive_rec 1%positive = v1.
Proof.
  rewrite unroll_positive_rec. unfold iter. case (peq 1 1); intro.
  auto. elim n; auto.
Qed.

Lemma positive_rec_succ:
  forall x, positive_rec (Psucc x) = f x (positive_rec x).
Proof.
  intro. rewrite unroll_positive_rec. unfold iter.
  case (peq (Psucc x) 1); intro.
  destruct x; simpl in e; discriminate.
  rewrite Ppred_succ. auto.
Qed.

Lemma positive_Peano_ind:
  forall (P: positive -> Prop),
  P xH ->
  (forall x, P x -> P (Psucc x)) ->
  forall x, P x.
Proof.
  intros.
  apply (well_founded_ind Plt_wf P).
  intros. 
  case (peq x0 xH); intro.
  subst x0; auto.
  elim (Psucc_pred x0); intro. contradiction. rewrite <- H2.
  apply H0. apply H1. apply Ppred_Plt. auto. 
Qed.

End POSITIVE_ITERATION.

(** * Definitions and theorems over the type [Z] *)

Definition zeq: forall (x y: Z), {x = y} + {x <> y} := Z_eq_dec.

Lemma zeq_true:
  forall (A: Set) (x: Z) (a b: A), (if zeq x x then a else b) = a.
Proof.
  intros. case (zeq x x); intros.
  auto.
  elim n; auto.
Qed.

Lemma zeq_false:
  forall (A: Set) (x y: Z) (a b: A), x <> y -> (if zeq x y then a else b) = b.
Proof.
  intros. case (zeq x y); intros.
  elim H; auto.
  auto.
Qed.  

Open Scope Z_scope.

Definition zlt: forall (x y: Z), {x < y} + {x >= y} := Z_lt_ge_dec.

Lemma zlt_true:
  forall (A: Set) (x y: Z) (a b: A), 
  x < y -> (if zlt x y then a else b) = a.
Proof.
  intros. case (zlt x y); intros.
  auto.
  omegaContradiction.
Qed.

Lemma zlt_false:
  forall (A: Set) (x y: Z) (a b: A), 
  x >= y -> (if zlt x y then a else b) = b.
Proof.
  intros. case (zlt x y); intros.
  omegaContradiction.
  auto.
Qed.

Definition zle: forall (x y: Z), {x <= y} + {x > y} := Z_le_gt_dec.

Lemma zle_true:
  forall (A: Set) (x y: Z) (a b: A), 
  x <= y -> (if zle x y then a else b) = a.
Proof.
  intros. case (zle x y); intros.
  auto.
  omegaContradiction.
Qed.

Lemma zle_false:
  forall (A: Set) (x y: Z) (a b: A), 
  x > y -> (if zle x y then a else b) = b.
Proof.
  intros. case (zle x y); intros.
  omegaContradiction.
  auto.
Qed.

(** Properties of powers of two. *)

Lemma two_power_nat_O : two_power_nat O = 1.
Proof. reflexivity. Qed.

Lemma two_power_nat_pos : forall n : nat, two_power_nat n > 0.
Proof.
  induction n. rewrite two_power_nat_O. omega.
  rewrite two_power_nat_S. omega.
Qed.

(** Properties of [Zmin] and [Zmax] *)

Lemma Zmin_spec:
  forall x y, Zmin x y = if zlt x y then x else y.
Proof.
  intros. case (zlt x y); unfold Zlt, Zge; intros.
  unfold Zmin. rewrite z. auto.
  unfold Zmin. caseEq (x ?= y); intro. 
  apply Zcompare_Eq_eq. auto.
  contradiction.
  reflexivity.
Qed.

Lemma Zmax_spec:
  forall x y, Zmax x y = if zlt y x then x else y.
Proof.
  intros. case (zlt y x); unfold Zlt, Zge; intros.
  unfold Zmax. rewrite <- (Zcompare_antisym y x).
  rewrite z. simpl. auto.
  unfold Zmax. rewrite <- (Zcompare_antisym y x).
  caseEq (y ?= x); intro; simpl.
  symmetry. apply Zcompare_Eq_eq. auto.
  contradiction. reflexivity.
Qed.

Lemma Zmax_bound_l:
  forall x y z, x <= y -> x <= Zmax y z.
Proof.
  intros. generalize (Zmax1 y z). omega.
Qed.
Lemma Zmax_bound_r:
  forall x y z, x <= z -> x <= Zmax y z.
Proof.
  intros. generalize (Zmax2 y z). omega.
Qed.

(** Properties of Euclidean division and modulus. *)

Lemma Zdiv_small:
  forall x y, 0 <= x < y -> x / y = 0.
Proof.
  intros. assert (y > 0). omega. 
  assert (forall a b,
    0 <= a < y ->
    0 <= y * b + a < y ->
    b = 0).
  intros. 
  assert (b = 0 \/ b > 0 \/ (-b) > 0). omega.
  elim H3; intro.
  auto.
  elim H4; intro.
  assert (y * b >= y * 1). apply Zmult_ge_compat_l. omega. omega. 
  omegaContradiction. 
  assert (y * (-b) >= y * 1). apply Zmult_ge_compat_l. omega. omega.
  rewrite <- Zopp_mult_distr_r in H6. omegaContradiction.
  apply H1 with (x mod y). 
  apply Z_mod_lt. auto.
  rewrite <- Z_div_mod_eq. auto. auto.
Qed.

Lemma Zmod_small:
  forall x y, 0 <= x < y -> x mod y = x.
Proof.
  intros. assert (y > 0). omega.
  generalize (Z_div_mod_eq x y H0). 
  rewrite (Zdiv_small x y H). omega.
Qed.

Lemma Zmod_unique:
  forall x y a b,
  x = a * y + b -> 0 <= b < y -> x mod y = b.
Proof.
  intros. subst x. rewrite Zplus_comm. 
  rewrite Z_mod_plus. apply Zmod_small. auto. omega.
Qed.

Lemma Zdiv_unique:
  forall x y a b,
  x = a * y + b -> 0 <= b < y -> x / y = a.
Proof.
  intros. subst x. rewrite Zplus_comm.
  rewrite Z_div_plus. rewrite (Zdiv_small b y H0). omega. omega.
Qed.

(** Alignment: [align n amount] returns the smallest multiple of [amount]
  greater than or equal to [n]. *)

Definition align (n: Z) (amount: Z) :=
  ((n + amount - 1) / amount) * amount.

Lemma align_le: forall x y, y > 0 -> x <= align x y.
Proof.
  intros. unfold align. 
  generalize (Z_div_mod_eq (x + y - 1) y H). intro.
  replace ((x + y - 1) / y * y) 
     with ((x + y - 1) - (x + y - 1) mod y).
  generalize (Z_mod_lt (x + y - 1) y H). omega.
  rewrite Zmult_comm. omega.
Qed.

(** * Definitions and theorems on the data types [option], [sum] and [list] *)

Set Implicit Arguments.

(** Mapping a function over an option type. *)

Definition option_map (A B: Set) (f: A -> B) (x: option A) : option B :=
  match x with
  | None => None
  | Some y => Some (f y)
  end.

(** Mapping a function over a sum type. *)

Definition sum_left_map (A B C: Set) (f: A -> B) (x: A + C) : B + C :=
  match x with
  | inl y => inl C (f y)
  | inr z => inr B z
  end.

(** Properties of [List.nth] (n-th element of a list). *)

Hint Resolve in_eq in_cons: coqlib.

Lemma nth_error_in:
  forall (A: Set) (n: nat) (l: list A) (x: A),
  List.nth_error l n = Some x -> In x l.
Proof.
  induction n; simpl.
   destruct l; intros.
    discriminate.
    injection H; intro; subst a. apply in_eq.
   destruct l; intros.
    discriminate.
    apply in_cons. auto.
Qed.
Hint Resolve nth_error_in: coqlib.

Lemma nth_error_nil:
  forall (A: Set) (idx: nat), nth_error (@nil A) idx = None.
Proof.
  induction idx; simpl; intros; reflexivity.
Qed.
Hint Resolve nth_error_nil: coqlib.

(** Properties of [List.incl] (list inclusion). *)

Lemma incl_cons_inv:
  forall (A: Set) (a: A) (b c: list A),
  incl (a :: b) c -> incl b c.
Proof.
  unfold incl; intros. apply H. apply in_cons. auto.
Qed.
Hint Resolve incl_cons_inv: coqlib.

Lemma incl_app_inv_l:
  forall (A: Set) (l1 l2 m: list A),
  incl (l1 ++ l2) m -> incl l1 m.
Proof.
  unfold incl; intros. apply H. apply in_or_app. left; assumption.
Qed.

Lemma incl_app_inv_r:
  forall (A: Set) (l1 l2 m: list A),
  incl (l1 ++ l2) m -> incl l2 m.
Proof.
  unfold incl; intros. apply H. apply in_or_app. right; assumption.
Qed.

Hint Resolve  incl_tl incl_refl incl_app_inv_l incl_app_inv_r: coqlib.

Lemma incl_same_head:
  forall (A: Set) (x: A) (l1 l2: list A),
  incl l1 l2 -> incl (x::l1) (x::l2).
Proof.
  intros; red; simpl; intros. intuition. 
Qed.

(** Properties of [List.map] (mapping a function over a list). *)

Lemma list_map_exten:
  forall (A B: Set) (f f': A -> B) (l: list A),
  (forall x, In x l -> f x = f' x) ->
  List.map f' l = List.map f l.
Proof.
  induction l; simpl; intros.
  reflexivity.
  rewrite <- H. rewrite IHl. reflexivity.
  intros. apply H. tauto.
  tauto.
Qed.

Lemma list_map_compose:
  forall (A B C: Set) (f: A -> B) (g: B -> C) (l: list A),
  List.map g (List.map f l) = List.map (fun x => g(f x)) l.
Proof.
  induction l; simpl. reflexivity. rewrite IHl; reflexivity.
Qed.

Lemma list_map_identity:
  forall (A: Set) (l: list A),
  List.map (fun (x:A) => x) l = l.
Proof.
  induction l; simpl; congruence.
Qed.

Lemma list_map_nth:
  forall (A B: Set) (f: A -> B) (l: list A) (n: nat),
  nth_error (List.map f l) n = option_map f (nth_error l n).
Proof.
  induction l; simpl; intros.
  repeat rewrite nth_error_nil. reflexivity.
  destruct n; simpl. reflexivity. auto.
Qed.

Lemma list_length_map:
  forall (A B: Set) (f: A -> B) (l: list A),
  List.length (List.map f l) = List.length l.
Proof.
  induction l; simpl; congruence.
Qed.

Lemma list_in_map_inv:
  forall (A B: Set) (f: A -> B) (l: list A) (y: B),
  In y (List.map f l) -> exists x:A, y = f x /\ In x l.
Proof.
  induction l; simpl; intros.
  contradiction.
  elim H; intro. 
  exists a; intuition auto.
  generalize (IHl y H0). intros [x [EQ IN]]. 
  exists x; tauto.
Qed.

Lemma list_append_map:
  forall (A B: Set) (f: A -> B) (l1 l2: list A),
  List.map f (l1 ++ l2) = List.map f l1 ++ List.map f l2.
Proof.
  induction l1; simpl; intros.
  auto. rewrite IHl1. auto.
Qed.

(** Properties of list membership. *)

Lemma in_cns:
  forall (A: Set) (x y: A) (l: list A), In x (y :: l) <-> y = x \/ In x l.
Proof.
  intros. simpl. tauto.
Qed.

Lemma in_app:
  forall (A: Set) (x: A) (l1 l2: list A), In x (l1 ++ l2) <-> In x l1 \/ In x l2.
Proof.
  intros. split; intro. apply in_app_or. auto. apply in_or_app. auto.
Qed.

Lemma list_in_insert:
  forall (A: Set) (x: A) (l1 l2: list A) (y: A),
  In x (l1 ++ l2) -> In x (l1 ++ y :: l2).
Proof.
  intros. apply in_or_app; simpl. elim (in_app_or _ _ _ H); intro; auto.
Qed.

(** [list_disjoint l1 l2] holds iff [l1] and [l2] have no elements 
  in common. *)

Definition list_disjoint (A: Set) (l1 l2: list A) : Prop :=
  forall (x y: A), In x l1 -> In y l2 -> x <> y.

Lemma list_disjoint_cons_left:
  forall (A: Set) (a: A) (l1 l2: list A),
  list_disjoint (a :: l1) l2 -> list_disjoint l1 l2.
Proof.
  unfold list_disjoint; simpl; intros. apply H; tauto. 
Qed.

Lemma list_disjoint_cons_right:
  forall (A: Set) (a: A) (l1 l2: list A),
  list_disjoint l1 (a :: l2) -> list_disjoint l1 l2.
Proof.
  unfold list_disjoint; simpl; intros. apply H; tauto. 
Qed.

Lemma list_disjoint_notin:
  forall (A: Set) (l1 l2: list A) (a: A),
  list_disjoint l1 l2 -> In a l1 -> ~(In a l2).
Proof.
  unfold list_disjoint; intros; red; intros. 
  apply H with a a; auto.
Qed.

Lemma list_disjoint_sym:
  forall (A: Set) (l1 l2: list A),
  list_disjoint l1 l2 -> list_disjoint l2 l1.
Proof.
  unfold list_disjoint; intros. 
  apply sym_not_equal. apply H; auto.
Qed.

Lemma list_disjoint_dec:
  forall (A: Set) (eqA_dec: forall (x y: A), {x=y} + {x<>y}) (l1 l2: list A),
  {list_disjoint l1 l2} + {~list_disjoint l1 l2}.
Proof.
  induction l1; intros.
  left; red; intros. elim H.
  case (In_dec eqA_dec a l2); intro.
  right; red; intro. apply (H a a); auto with coqlib. 
  case (IHl1 l2); intro.
  left; red; intros. elim H; intro. 
    red; intro; subst a y. contradiction.
    apply l; auto.
  right; red; intros. elim n0. eapply list_disjoint_cons_left; eauto.
Defined.

(** [list_norepet l] holds iff the list [l] contains no repetitions,
  i.e. no element occurs twice. *)

Inductive list_norepet (A: Set) : list A -> Prop :=
  | list_norepet_nil:
      list_norepet nil
  | list_norepet_cons:
      forall hd tl,
      ~(In hd tl) -> list_norepet tl -> list_norepet (hd :: tl).

Lemma list_norepet_dec:
  forall (A: Set) (eqA_dec: forall (x y: A), {x=y} + {x<>y}) (l: list A),
  {list_norepet l} + {~list_norepet l}.
Proof.
  induction l.
  left; constructor.
  destruct IHl. 
  case (In_dec eqA_dec a l); intro.
  right. red; intro. inversion H. contradiction. 
  left. constructor; auto.
  right. red; intro. inversion H. contradiction.
Defined.

Lemma list_map_norepet:
  forall (A B: Set) (f: A -> B) (l: list A),
  list_norepet l ->
  (forall x y, In x l -> In y l -> x <> y -> f x <> f y) ->
  list_norepet (List.map f l).
Proof.
  induction 1; simpl; intros.
  constructor.
  constructor.
  red; intro. generalize (list_in_map_inv f _ _ H2).
  intros [x [EQ IN]]. generalize EQ. change (f hd <> f x).
  apply H1. tauto. tauto. 
  red; intro; subst x. contradiction.
  apply IHlist_norepet. intros. apply H1. tauto. tauto. auto.
Qed.

Remark list_norepet_append_commut:
  forall (A: Set) (a b: list A),
  list_norepet (a ++ b) -> list_norepet (b ++ a).
Proof.
  intro A.
  assert (forall (x: A) (b: list A) (a: list A), 
           list_norepet (a ++ b) -> ~(In x a) -> ~(In x b) -> 
           list_norepet (a ++ x :: b)).
    induction a; simpl; intros.
    constructor; auto.
    inversion H. constructor. red; intro.
    elim (in_app_or _ _ _ H6); intro.
    elim H4. apply in_or_app. tauto.
    elim H7; intro. subst a. elim H0. left. auto. 
    elim H4. apply in_or_app. tauto.
    auto.
  induction a; simpl; intros.
  rewrite <- app_nil_end. auto.
  inversion H0. apply H. auto. 
  red; intro; elim H3. apply in_or_app. tauto.
  red; intro; elim H3. apply in_or_app. tauto.
Qed.

Lemma list_norepet_app:
  forall (A: Set) (l1 l2: list A),
  list_norepet (l1 ++ l2) <->
  list_norepet l1 /\ list_norepet l2 /\ list_disjoint l1 l2.
Proof.
  induction l1; simpl; intros; split; intros.
  intuition. constructor. red;simpl;auto.
  tauto.
  inversion H; subst. rewrite IHl1 in H3. rewrite in_app in H2.
  intuition.
  constructor; auto. red; intros. elim H2; intro. congruence. auto. 
  destruct H as [B [C D]]. inversion B; subst. 
  constructor. rewrite in_app. intuition. elim (D a a); auto. apply in_eq. 
  rewrite IHl1. intuition. red; intros. apply D; auto. apply in_cons; auto. 
Qed.

Lemma list_norepet_append:
  forall (A: Set) (l1 l2: list A),
  list_norepet l1 -> list_norepet l2 -> list_disjoint l1 l2 ->
  list_norepet (l1 ++ l2).
Proof.
  generalize list_norepet_app; firstorder.
Qed.

Lemma list_norepet_append_right:
  forall (A: Set) (l1 l2: list A),
  list_norepet (l1 ++ l2) -> list_norepet l2.
Proof.
  generalize list_norepet_app; firstorder.
Qed.

Lemma list_norepet_append_left:
  forall (A: Set) (l1 l2: list A),
  list_norepet (l1 ++ l2) -> list_norepet l1.
Proof.
  generalize list_norepet_app; firstorder.
Qed.

(** [list_forall2 P [x1 ... xN] [y1 ... yM] holds iff [N = M] and
  [P xi yi] holds for all [i]. *)

Section FORALL2.

Variable A: Set.
Variable B: Set.
Variable P: A -> B -> Prop.

Inductive list_forall2: list A -> list B -> Prop :=
  | list_forall2_nil:
      list_forall2 nil nil
  | list_forall2_cons:
      forall a1 al b1 bl,
      P a1 b1 ->
      list_forall2 al bl ->
      list_forall2 (a1 :: al) (b1 :: bl).

End FORALL2.

Lemma list_forall2_imply:
  forall (A B: Set) (P1: A -> B -> Prop) (l1: list A) (l2: list B),
  list_forall2 P1 l1 l2 ->
  forall (P2: A -> B -> Prop),
  (forall v1 v2, In v1 l1 -> In v2 l2 -> P1 v1 v2 -> P2 v1 v2) ->
  list_forall2 P2 l1 l2.
Proof.
  induction 1; intros.
  constructor.
  constructor. auto with coqlib. apply IHlist_forall2; auto. 
  intros. auto with coqlib.
Qed.

(** Dropping the first or first two elements of a list. *)

Definition list_drop1 (A: Set) (x: list A) :=
  match x with nil => nil | hd :: tl => tl end.
Definition list_drop2 (A: Set) (x: list A) :=
  match x with nil => nil | hd :: nil => nil | hd1 :: hd2 :: tl => tl end.

Lemma list_drop1_incl:
  forall (A: Set) (x: A) (l: list A), In x (list_drop1 l) -> In x l.
Proof.
  intros. destruct l. elim H. simpl in H. auto with coqlib.
Qed.

Lemma list_drop2_incl:
  forall (A: Set) (x: A) (l: list A), In x (list_drop2 l) -> In x l.
Proof.
  intros. destruct l. elim H. destruct l. elim H.
  simpl in H. auto with coqlib.
Qed.

Lemma list_drop1_norepet:
  forall (A: Set) (l: list A), list_norepet l -> list_norepet (list_drop1 l).
Proof.
  intros. destruct l; simpl. constructor. inversion H. auto.
Qed.

Lemma list_drop2_norepet:
  forall (A: Set) (l: list A), list_norepet l -> list_norepet (list_drop2 l).
Proof.
  intros. destruct l; simpl. constructor.
  destruct l; simpl. constructor. inversion H. inversion H3. auto.
Qed.

Lemma list_map_drop1:
  forall (A B: Set) (f: A -> B) (l: list A), list_drop1 (map f l) = map f (list_drop1 l).
Proof.
  intros; destruct l; reflexivity.
Qed.

Lemma list_map_drop2:
  forall (A B: Set) (f: A -> B) (l: list A), list_drop2 (map f l) = map f (list_drop2 l).
Proof.
  intros; destruct l. reflexivity. destruct l; reflexivity.
Qed.

(** * Definitions and theorems over boolean types *)

Definition proj_sumbool (P Q: Prop) (a: {P} + {Q}) : bool :=
  if a then true else false.

Implicit Arguments proj_sumbool [P Q].

Coercion proj_sumbool: sumbool >-> bool.

Lemma proj_sumbool_true:
  forall (P Q: Prop) (a: {P}+{Q}), proj_sumbool a = true -> P.
Proof.
  intros P Q a. destruct a; simpl. auto. congruence.
Qed.

Section DECIDABLE_EQUALITY.

Variable A: Set.
Variable dec_eq: forall (x y: A), {x=y} + {x<>y}.
Variable B: Set.

Lemma dec_eq_true:
  forall (x: A) (ifso ifnot: B),
  (if dec_eq x x then ifso else ifnot) = ifso.
Proof.
  intros. destruct (dec_eq x x). auto. congruence.
Qed.

Lemma dec_eq_false:
  forall (x y: A) (ifso ifnot: B),
  x <> y -> (if dec_eq x y then ifso else ifnot) = ifnot.
Proof.
  intros. destruct (dec_eq x y). congruence. auto.
Qed.

Lemma dec_eq_sym:
  forall (x y: A) (ifso ifnot: B),
  (if dec_eq x y then ifso else ifnot) =
  (if dec_eq y x then ifso else ifnot).
Proof.
  intros. destruct (dec_eq x y). 
  subst y. rewrite dec_eq_true. auto.
  rewrite dec_eq_false; auto.
Qed.

End DECIDABLE_EQUALITY.