summaryrefslogtreecommitdiff
path: root/lib/Camlcoq.ml
blob: e057771e980076c4b4f049b6ec744a2fe1995e7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(* Library of useful Caml <-> Coq conversions *)

open Datatypes
open BinNums
open BinInt
open BinPos
open Floats

(* Coq's [nat] type and some of its operations *)

module Nat = struct

  type t = nat = O | S of t

  let rec to_int = function
  | O -> 0
  | S n -> succ (to_int n)

  let rec to_int32 = function
  | O -> 0l
  | S n -> Int32.succ(to_int32 n)

  let rec of_int n =
    assert (n >= 0);
    if n = 0 then O else S (of_int (pred n))

  let rec of_int32 n =
    assert (n >= 0l);
    if n = 0l then O else S (of_int32 (Int32.pred n))

end


(* Coq's [positive] type and some of its operations *)

module P = struct

  type t = positive = Coq_xI of t | Coq_xO of t | Coq_xH

  let one = Coq_xH
  let succ = Pos.succ
  let pred = Pos.pred
  let add = Pos.add
  let sub = Pos.sub
  let eq x y = (Pos.compare x y = Eq)
  let lt x y = (Pos.compare x y = Lt)
  let gt x y = (Pos.compare x y = Gt)
  let le x y = (Pos.compare x y <> Gt)
  let ge x y = (Pos.compare x y <> Lt)
  let compare x y = match Pos.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1

  let rec to_int = function
  | Coq_xI p -> (to_int p lsl 1) + 1
  | Coq_xO p -> to_int p lsl 1
  | Coq_xH -> 1

  let rec of_int n =
    if n = 0 then assert false else
    if n = 1 then Coq_xH else
    if n land 1 = 0
    then Coq_xO (of_int (n lsr 1))
    else Coq_xI (of_int (n lsr 1))

  let rec to_int32 = function
  | Coq_xI p -> Int32.add (Int32.shift_left (to_int32 p) 1) 1l
  | Coq_xO p -> Int32.shift_left (to_int32 p) 1
  | Coq_xH -> 1l

  let rec of_int32 n =
    if n = 0l then assert false else
    if n = 1l then Coq_xH else
    if Int32.logand n 1l = 0l
    then Coq_xO (of_int32 (Int32.shift_right_logical n 1))
    else Coq_xI (of_int32 (Int32.shift_right_logical n 1))

  let rec to_int64 = function
  | Coq_xI p -> Int64.add (Int64.shift_left (to_int64 p) 1) 1L
  | Coq_xO p -> Int64.shift_left (to_int64 p) 1
  | Coq_xH -> 1L

  let rec of_int64 n =
    if n = 0L then assert false else
    if n = 1L then Coq_xH else
    if Int64.logand n 1L = 0L
    then Coq_xO (of_int64 (Int64.shift_right_logical n 1))
    else Coq_xI (of_int64 (Int64.shift_right_logical n 1))

  let (+) = add
  let (-) = sub
  let (=) = eq
  let (<) = lt
  let (<=) = le
  let (>) = gt
  let (>=) = ge

end

(* Coq's [Z] type and some of its operations *)

module Z = struct

  type t = coq_Z = Z0 | Zpos of positive | Zneg of positive

  let zero = Z0
  let one = Zpos Coq_xH
  let mone = Zneg Coq_xH
  let succ = Z.succ
  let pred = Z.pred
  let neg = Z.opp
  let add = Z.add
  let sub = Z.sub
  let mul = Z.mul
  let eq x y = (Z.compare x y = Eq)
  let lt x y = (Z.compare x y = Lt)
  let gt x y = (Z.compare x y = Gt)
  let le x y = (Z.compare x y <> Gt)
  let ge x y = (Z.compare x y <> Lt)
  let compare x y = match Z.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1

  let to_int = function
  | Z0 -> 0
  | Zpos p -> P.to_int p
  | Zneg p -> - (P.to_int p)

  let of_sint n =
    if n = 0 then Z0 else
    if n > 0 then Zpos (P.of_int n)
    else Zneg (P.of_int (-n))

  let of_uint n =
    if n = 0 then Z0 else Zpos (P.of_int n)

  let to_int32 = function
  | Z0 -> 0l
  | Zpos p -> P.to_int32 p
  | Zneg p -> Int32.neg (P.to_int32 p)

  let of_sint32 n =
    if n = 0l then Z0 else
    if n > 0l then Zpos (P.of_int32 n)
    else Zneg (P.of_int32 (Int32.neg n))

  let of_uint32 n =
    if n = 0l then Z0 else Zpos (P.of_int32 n)

  let to_int64 = function
  | Z0 -> 0L
  | Zpos p -> P.to_int64 p
  | Zneg p -> Int64.neg (P.to_int64 p)

  let of_sint64 n =
    if n = 0L then Z0 else
    if n > 0L then Zpos (P.of_int64 n)
    else Zneg (P.of_int64 (Int64.neg n))

  let of_uint64 n =
    if n = 0L then Z0 else Zpos (P.of_int64 n)

  let rec to_string_rec base buff x =
    if x = Z0 then () else begin
      let (q, r) = Z.div_eucl x base in
      to_string_rec base buff q;
      let d = to_int r in
      Buffer.add_char buff (Char.chr
        (if d < 10 then Char.code '0' + d
                         else Char.code 'A' + d - 10))
    end

  let to_string_aux base x =
    match x with
    | Z0 -> "0"
    | Zpos _ ->
        let buff = Buffer.create 10 in
        to_string_rec base buff x;
        Buffer.contents buff
    | Zneg p ->
        let buff = Buffer.create 10 in
        Buffer.add_char buff '-';
        to_string_rec base buff (Zpos p);
        Buffer.contents buff

  let dec = to_string_aux (of_uint 10)

  let hex = to_string_aux (of_uint 16)

  let to_string = dec

  let (+) = add
  let (-) = sub
  let ( * ) = mul
  let (=) = eq
  let (<) = lt
  let (<=) = le
  let (>) = gt
  let (>=) = ge
end

(* Alternate names *)

let camlint_of_coqint : Integers.Int.int -> int32 = Z.to_int32
let coqint_of_camlint : int32 -> Integers.Int.int = Z.of_uint32
   (* interpret the int32 as unsigned so that result Z is in range for int *)
let camlint64_of_coqint : Integers.Int64.int -> int64 = Z.to_int64
let coqint_of_camlint64 : int64 -> Integers.Int64.int = Z.of_uint64
   (* interpret the int64 as unsigned so that result Z is in range for int *)

(* Atoms (positive integers representing strings) *)

let atom_of_string = (Hashtbl.create 17 : (string, positive) Hashtbl.t)
let string_of_atom = (Hashtbl.create 17 : (positive, string) Hashtbl.t)
let next_atom = ref Coq_xH

let intern_string s =
  try
    Hashtbl.find atom_of_string s
  with Not_found ->
    let a = !next_atom in
    next_atom := Pos.succ !next_atom;
    Hashtbl.add atom_of_string s a;
    Hashtbl.add string_of_atom a s;
    a

let extern_atom a =
  try
    Hashtbl.find string_of_atom a
  with Not_found ->
    Printf.sprintf "$%d" (P.to_int a)

let first_unused_ident () = !next_atom

(* Strings *)

let camlstring_of_coqstring (s: char list) =
  let r = String.create (List.length s) in
  let rec fill pos = function
  | [] -> r
  | c :: s -> r.[pos] <- c; fill (pos + 1) s
  in fill 0 s

let coqstring_of_camlstring s =
  let rec cstring accu pos =
    if pos < 0 then accu else cstring (s.[pos] :: accu) (pos - 1)
  in cstring [] (String.length s - 1)

(* Floats *)

let coqfloat_of_camlfloat f =
  Float.double_of_bits(coqint_of_camlint64(Int64.bits_of_float f))
let camlfloat_of_coqfloat f =
  Int64.float_of_bits(camlint64_of_coqint(Float.bits_of_double f))

(* Timing facility *)

(*
let timers = (Hashtbl.create 9 : (string, float) Hashtbl.t)

let add_to_timer name time =
  let old = try Hashtbl.find timers name with Not_found -> 0.0 in
  Hashtbl.replace timers name (old +. time)

let time name fn arg =
  let start = Unix.gettimeofday() in
  try
    let res = fn arg in
    add_to_timer name (Unix.gettimeofday() -. start);
    res
  with x ->
    add_to_timer name (Unix.gettimeofday() -. start);
    raise x

let print_timers () =
  Hashtbl.iter
    (fun name time -> Printf.printf "%-20s %.3f\n" name time)
    timers

let _ = at_exit print_timers
*)

(* Heap profiling facility *)

(*
let heap_info msg =
  Gc.full_major();
  let s = Gc.stat() in
  Printf.printf "%s: size %d live %d\n " msg s.Gc.heap_words s.Gc.live_words;
  flush stdout
*)