1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Instruction selection for operators *)
(** The instruction selection pass recognizes opportunities for using
combined arithmetic and logical operations and addressing modes
offered by the target processor. For instance, the expression [x + 1]
can take advantage of the "immediate add" instruction of the processor,
and on the PowerPC, the expression [(x >> 6) & 0xFF] can be turned
into a "rotate and mask" instruction.
This file defines functions for building CminorSel expressions and
statements, especially expressions consisting of operator
applications. These functions examine their arguments to choose
cheaper forms of operators whenever possible.
For instance, [add e1 e2] will return a CminorSel expression semantically
equivalent to [Eop Oadd (e1 ::: e2 ::: Enil)], but will use a
[Oaddimm] operator if one of the arguments is an integer constant,
or suppress the addition altogether if one of the arguments is the
null integer. In passing, we perform operator reassociation
([(e + c1) * c2] becomes [(e * c2) + (c1 * c2)]) and a small amount
of constant propagation.
On top of the "smart constructor" functions defined below,
module [Selection] implements the actual instruction selection pass.
*)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Cminor.
Require Import Op.
Require Import CminorSel.
Open Local Scope cminorsel_scope.
(** ** Constants **)
Definition addrsymbol (id: ident) (ofs: int) :=
Eop (Olea (Aglobal id ofs)) Enil.
Definition addrstack (ofs: int) :=
Eop (Olea (Ainstack ofs)) Enil.
(** ** Boolean negation *)
Definition notbool_base (e: expr) :=
Eop (Ocmp (Ccompuimm Ceq Int.zero)) (e ::: Enil).
Fixpoint notbool (e: expr) {struct e} : expr :=
match e with
| Eop (Ointconst n) Enil =>
Eop (Ointconst (if Int.eq n Int.zero then Int.one else Int.zero)) Enil
| Eop (Ocmp cond) args =>
Eop (Ocmp (negate_condition cond)) args
| Econdition e1 e2 e3 =>
Econdition e1 (notbool e2) (notbool e3)
| _ =>
notbool_base e
end.
(** ** Integer addition and pointer addition *)
Definition offset_addressing (a: addressing) (ofs: int) : addressing :=
match a with
| Aindexed n => Aindexed (Int.add n ofs)
| Aindexed2 n => Aindexed2 (Int.add n ofs)
| Ascaled sc n => Ascaled sc (Int.add n ofs)
| Aindexed2scaled sc n => Aindexed2scaled sc (Int.add n ofs)
| Aglobal id n => Aglobal id (Int.add n ofs)
| Abased id n => Abased id (Int.add n ofs)
| Abasedscaled sc id n => Abasedscaled sc id (Int.add n ofs)
| Ainstack n => Ainstack (Int.add n ofs)
end.
(** Addition of an integer constant *)
(*
Definition addimm (n: int) (e: expr) :=
if Int.eq n Int.zero then e else
match e with
| Eop (Ointconst m) Enil => Eop (Ointconst(Int.add n m)) Enil
| Eop (Olea addr) args => Eop (Olea (offset_addressing addr n)) args
| _ => Eop (Olea (Aindexed n)) (e ::: Enil)
end.
*)
Inductive addimm_cases: forall (e: expr), Type :=
| addimm_case1:
forall m,
addimm_cases (Eop (Ointconst m) Enil)
| addimm_case2:
forall addr args,
addimm_cases (Eop (Olea addr) args)
| addimm_default:
forall (e: expr),
addimm_cases e.
Definition addimm_match (e: expr) :=
match e as z1 return addimm_cases z1 with
| Eop (Ointconst m) Enil =>
addimm_case1 m
| Eop (Olea addr) args =>
addimm_case2 addr args
| e =>
addimm_default e
end.
Definition addimm (n: int) (e: expr) :=
if Int.eq n Int.zero then e else
match addimm_match e with
| addimm_case1 m =>
Eop (Ointconst(Int.add n m)) Enil
| addimm_case2 addr args =>
Eop (Olea (offset_addressing addr n)) args
| addimm_default e =>
Eop (Olea (Aindexed n)) (e ::: Enil)
end.
(** Addition of two integer or pointer expressions *)
(*
Definition add (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 => addimm n1 t2
| t1, Eop (Ointconst n2) Enil => addimm n2 t1
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Aindexed n2)) (t2:::Enil) => Eop (Olea (Aindexed2 (Int.add n1 n2))) (t1:::t2:::Enil)
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Ascaled sc n2)) (t2:::Enil) => Eop (Olea (Aindexed2scaled sc (Int.add n1 n2))) (t1:::t2:::Enil)
| Eop (Olea (Ascaled sc n1)) (t1:::Enil), Eop (Olea (Aindexed n2)) (t2:::Enil) => Eop (Olea (Aindexed2scaled sc (Int.add n1 n2))) (t2:::t1:::Enil)
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Aglobal id ofs)) Enil) => Eop (Olea (Abased id (Int.add ofs n1))) (t1:::Enil)
| Eop (Olea (Aglobal id ofs)) Enil), Eop (Olea (Aindexed n2)) (t2:::Enil) => Eop (Olea (Abased id (Int.add ofs n2))) (t2:::Enil)
| Eop (Olea (Ascaled sc n1)) (t1:::Enil), Eop (Olea (Aglobal id ofs)) Enil) => Eop (Olea (Abasedscaled sc id (Int.add ofs n1))) (t1:::Enil)
| Eop (Olea (Aglobal id ofs)) Enil), Eop (Olea (Ascaled sc n2)) (t2:::Enil) => Eop (Olea (Abasedscaled sc id (Int.add ofs n2))) (t2:::Enil)
| Eop (Olea (Ascaled sc n)) (t1:::Enil), t2 => Eop (Olea (Aindexed2scaled sc n)) (t2:::t1:::Enil)
| t1, Eop (Olea (Ascaled sc n)) (t2:::Enil) => Eop (Olea (Aindexed2scaled sc n)) (t1:::t2:::Enil)
| Eop (Olea (Aindexed n)) (t1:::Enil), t2 => Eop (Olea (Aindexed2 n)) (t1:::t2:::Enil)
| t1, Eop (Olea (Aindexed n)) (t2:::Enil) => Eop (Olea (Aindexed2 n)) (t1:::t2:::Enil)
| _, _ => Eop (Olea (Aindexed2 Int.zero)) (e1:::e2:::Enil)
end.
*)
Inductive add_cases: forall (e1: expr) (e2: expr), Type :=
| add_case1:
forall n1 t2,
add_cases (Eop (Ointconst n1) Enil) (t2)
| add_case2:
forall t1 n2,
add_cases (t1) (Eop (Ointconst n2) Enil)
| add_case3:
forall n1 t1 n2 t2,
add_cases (Eop (Olea (Aindexed n1)) (t1:::Enil)) (Eop (Olea (Aindexed n2)) (t2:::Enil))
| add_case4:
forall n1 t1 sc n2 t2,
add_cases (Eop (Olea (Aindexed n1)) (t1:::Enil)) (Eop (Olea (Ascaled sc n2)) (t2:::Enil))
| add_case5:
forall sc n1 t1 n2 t2,
add_cases (Eop (Olea (Ascaled sc n1)) (t1:::Enil)) (Eop (Olea (Aindexed n2)) (t2:::Enil))
| add_case6:
forall n1 t1 id ofs,
add_cases (Eop (Olea (Aindexed n1)) (t1:::Enil)) (Eop (Olea (Aglobal id ofs)) Enil)
| add_case7:
forall id ofs n2 t2,
add_cases (Eop (Olea (Aglobal id ofs)) Enil) (Eop (Olea (Aindexed n2)) (t2:::Enil))
| add_case8:
forall sc n1 t1 id ofs,
add_cases (Eop (Olea (Ascaled sc n1)) (t1:::Enil)) (Eop (Olea (Aglobal id ofs)) Enil)
| add_case9:
forall id ofs sc n2 t2,
add_cases (Eop (Olea (Aglobal id ofs)) Enil) (Eop (Olea (Ascaled sc n2)) (t2:::Enil))
| add_case10:
forall sc n t1 t2,
add_cases (Eop (Olea (Ascaled sc n)) (t1:::Enil)) (t2)
| add_case11:
forall t1 sc n t2,
add_cases (t1) (Eop (Olea (Ascaled sc n)) (t2:::Enil))
| add_case12:
forall n t1 t2,
add_cases (Eop (Olea (Aindexed n)) (t1:::Enil)) (t2)
| add_case13:
forall t1 n t2,
add_cases (t1) (Eop (Olea (Aindexed n)) (t2:::Enil))
| add_default:
forall (e1: expr) (e2: expr),
add_cases e1 e2.
Definition add_match (e1: expr) (e2: expr) :=
match e1 as z1, e2 as z2 return add_cases z1 z2 with
| Eop (Ointconst n1) Enil, t2 =>
add_case1 n1 t2
| t1, Eop (Ointconst n2) Enil =>
add_case2 t1 n2
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Aindexed n2)) (t2:::Enil) =>
add_case3 n1 t1 n2 t2
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Ascaled sc n2)) (t2:::Enil) =>
add_case4 n1 t1 sc n2 t2
| Eop (Olea (Ascaled sc n1)) (t1:::Enil), Eop (Olea (Aindexed n2)) (t2:::Enil) =>
add_case5 sc n1 t1 n2 t2
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Aglobal id ofs)) Enil =>
add_case6 n1 t1 id ofs
| Eop (Olea (Aglobal id ofs)) Enil, Eop (Olea (Aindexed n2)) (t2:::Enil) =>
add_case7 id ofs n2 t2
| Eop (Olea (Ascaled sc n1)) (t1:::Enil), Eop (Olea (Aglobal id ofs)) Enil =>
add_case8 sc n1 t1 id ofs
| Eop (Olea (Aglobal id ofs)) Enil, Eop (Olea (Ascaled sc n2)) (t2:::Enil) =>
add_case9 id ofs sc n2 t2
| Eop (Olea (Ascaled sc n)) (t1:::Enil), t2 =>
add_case10 sc n t1 t2
| t1, Eop (Olea (Ascaled sc n)) (t2:::Enil) =>
add_case11 t1 sc n t2
| Eop (Olea (Aindexed n)) (t1:::Enil), t2 =>
add_case12 n t1 t2
| t1, Eop (Olea (Aindexed n)) (t2:::Enil) =>
add_case13 t1 n t2
| e1, e2 =>
add_default e1 e2
end.
Definition add (e1: expr) (e2: expr) :=
match add_match e1 e2 with
| add_case1 n1 t2 =>
addimm n1 t2
| add_case2 t1 n2 =>
addimm n2 t1
| add_case3 n1 t1 n2 t2 =>
Eop (Olea (Aindexed2 (Int.add n1 n2))) (t1:::t2:::Enil)
| add_case4 n1 t1 sc n2 t2 =>
Eop (Olea (Aindexed2scaled sc (Int.add n1 n2))) (t1:::t2:::Enil)
| add_case5 sc n1 t1 n2 t2 =>
Eop (Olea (Aindexed2scaled sc (Int.add n1 n2))) (t2:::t1:::Enil)
| add_case6 n1 t1 id ofs =>
Eop (Olea (Abased id (Int.add ofs n1))) (t1:::Enil)
| add_case7 id ofs n2 t2 =>
Eop (Olea (Abased id (Int.add ofs n2))) (t2:::Enil)
| add_case8 sc n1 t1 id ofs =>
Eop (Olea (Abasedscaled sc id (Int.add ofs n1))) (t1:::Enil)
| add_case9 id ofs sc n2 t2 =>
Eop (Olea (Abasedscaled sc id (Int.add ofs n2))) (t2:::Enil)
| add_case10 sc n t1 t2 =>
Eop (Olea (Aindexed2scaled sc n)) (t2:::t1:::Enil)
| add_case11 t1 sc n t2 =>
Eop (Olea (Aindexed2scaled sc n)) (t1:::t2:::Enil)
| add_case12 n t1 t2 =>
Eop (Olea (Aindexed2 n)) (t1:::t2:::Enil)
| add_case13 t1 n t2 =>
Eop (Olea (Aindexed2 n)) (t1:::t2:::Enil)
| add_default e1 e2 =>
Eop (Olea (Aindexed2 Int.zero)) (e1:::e2:::Enil)
end.
(** ** Integer and pointer subtraction *)
(*
Definition sub (e1: expr) (e2: expr) :=
match e1, e2 with
| t1, Eop (Ointconst n2) Enil => addimm (Int.neg n2) t1
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Aindexed n2)) (t2:::Enil) => addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
| Eop (Olea (Aindexed n1)) (t1:::Enil), t2 => addimm n1 (Eop Osub (t1:::t2:::Enil))
| t1, Eop (Olea (Aindexed n2)) (t2:::Enil) => addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
| _, _ => Eop Osub (e1:::e2:::Enil)
end.
*)
Inductive sub_cases: forall (e1: expr) (e2: expr), Type :=
| sub_case1:
forall t1 n2,
sub_cases (t1) (Eop (Ointconst n2) Enil)
| sub_case2:
forall n1 t1 n2 t2,
sub_cases (Eop (Olea (Aindexed n1)) (t1:::Enil)) (Eop (Olea (Aindexed n2)) (t2:::Enil))
| sub_case3:
forall n1 t1 t2,
sub_cases (Eop (Olea (Aindexed n1)) (t1:::Enil)) (t2)
| sub_case4:
forall t1 n2 t2,
sub_cases (t1) (Eop (Olea (Aindexed n2)) (t2:::Enil))
| sub_default:
forall (e1: expr) (e2: expr),
sub_cases e1 e2.
Definition sub_match (e1: expr) (e2: expr) :=
match e1 as z1, e2 as z2 return sub_cases z1 z2 with
| t1, Eop (Ointconst n2) Enil =>
sub_case1 t1 n2
| Eop (Olea (Aindexed n1)) (t1:::Enil), Eop (Olea (Aindexed n2)) (t2:::Enil) =>
sub_case2 n1 t1 n2 t2
| Eop (Olea (Aindexed n1)) (t1:::Enil), t2 =>
sub_case3 n1 t1 t2
| t1, Eop (Olea (Aindexed n2)) (t2:::Enil) =>
sub_case4 t1 n2 t2
| e1, e2 =>
sub_default e1 e2
end.
Definition sub (e1: expr) (e2: expr) :=
match sub_match e1 e2 with
| sub_case1 t1 n2 =>
addimm (Int.neg n2) t1
| sub_case2 n1 t1 n2 t2 =>
addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
| sub_case3 n1 t1 t2 =>
addimm n1 (Eop Osub (t1:::t2:::Enil))
| sub_case4 t1 n2 t2 =>
addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
| sub_default e1 e2 =>
Eop Osub (e1:::e2:::Enil)
end.
(** ** Immediate shifts *)
Definition shift_is_scale (n: int) : bool :=
Int.eq n (Int.repr 1) || Int.eq n (Int.repr 2) || Int.eq n (Int.repr 3).
(*
Definition shlimm (e1: expr) :=
if Int.eq n Int.zero then e1 else
match e1 with
| Eop (Ointconst n1) Enil => Eop (Ointconst(Int.shl n1 n))
| Eop (Oshlimm n1) (t1:::Enil) => if Int.ltu (Int.add n n1) Int.iwordsize then Eop (Oshlimm (Int.add n n1)) (t1:::Enil) else Eop (Oshlimm n) (e1:::Enil)
| Eop (Olea (Aindexed n1)) (t1:::Enil) => if shift_is_scale n then Eop (Olea (Ascaled (Int.shl Int.one n) (Int.shl n1 n))) (t1:::Enil) else Eop (Oshlimm n) (e1:::Enil)
| _ => if shift_is_scale n then Eop (Olea (Ascaled (Int.shl Int.one n) Int.zero) (t1:::Enil) else Eop (Oshlimm n) (e1:::Enil)
end.
*)
Inductive shlimm_cases: forall (e1: expr), Type :=
| shlimm_case1:
forall n1,
shlimm_cases (Eop (Ointconst n1) Enil)
| shlimm_case2:
forall n1 t1,
shlimm_cases (Eop (Oshlimm n1) (t1:::Enil))
| shlimm_case3:
forall n1 t1,
shlimm_cases (Eop (Olea (Aindexed n1)) (t1:::Enil))
| shlimm_default:
forall (e1: expr),
shlimm_cases e1.
Definition shlimm_match (e1: expr) :=
match e1 as z1 return shlimm_cases z1 with
| Eop (Ointconst n1) Enil =>
shlimm_case1 n1
| Eop (Oshlimm n1) (t1:::Enil) =>
shlimm_case2 n1 t1
| Eop (Olea (Aindexed n1)) (t1:::Enil) =>
shlimm_case3 n1 t1
| e1 =>
shlimm_default e1
end.
Definition shlimm (e1: expr) (n: int) :=
if Int.eq n Int.zero then e1 else
match shlimm_match e1 with
| shlimm_case1 n1 =>
Eop (Ointconst(Int.shl n1 n)) Enil
| shlimm_case2 n1 t1 =>
if Int.ltu (Int.add n n1) Int.iwordsize then Eop (Oshlimm (Int.add n n1)) (t1:::Enil) else Eop (Oshlimm n) (e1:::Enil)
| shlimm_case3 n1 t1 =>
if shift_is_scale n then Eop (Olea (Ascaled (Int.shl Int.one n) (Int.shl n1 n))) (t1:::Enil) else Eop (Oshlimm n) (e1:::Enil)
| shlimm_default e1 =>
if shift_is_scale n then Eop (Olea (Ascaled (Int.shl Int.one n) Int.zero)) (e1:::Enil) else Eop (Oshlimm n) (e1:::Enil)
end.
(*
Definition shruimm (e1: expr) :=
if Int.eq n Int.zero then e1 else
match e1 with
| Eop (Ointconst n1) Enil => Eop (Ointconst(Int.shru n1 n))
| Eop (Oshruimm n1) (t1:::Enil) => if Int.ltu (Int.add n n1) Int.iwordsize then Eop (Oshruimm (Int.add n n1)) (t1:::Enil) else Eop (Oshruimm n) (e1:::Enil)
| _ => Eop (Oshruimm n) (e1:::Enil)
end.
*)
Inductive shruimm_cases: forall (e1: expr), Type :=
| shruimm_case1:
forall n1,
shruimm_cases (Eop (Ointconst n1) Enil)
| shruimm_case2:
forall n1 t1,
shruimm_cases (Eop (Oshruimm n1) (t1:::Enil))
| shruimm_default:
forall (e1: expr),
shruimm_cases e1.
Definition shruimm_match (e1: expr) :=
match e1 as z1 return shruimm_cases z1 with
| Eop (Ointconst n1) Enil =>
shruimm_case1 n1
| Eop (Oshruimm n1) (t1:::Enil) =>
shruimm_case2 n1 t1
| e1 =>
shruimm_default e1
end.
Definition shruimm (e1: expr) (n: int) :=
if Int.eq n Int.zero then e1 else
match shruimm_match e1 with
| shruimm_case1 n1 =>
Eop (Ointconst(Int.shru n1 n)) Enil
| shruimm_case2 n1 t1 =>
if Int.ltu (Int.add n n1) Int.iwordsize then Eop (Oshruimm (Int.add n n1)) (t1:::Enil) else Eop (Oshruimm n) (e1:::Enil)
| shruimm_default e1 =>
Eop (Oshruimm n) (e1:::Enil)
end.
(*
Definition shrimm (e1: expr) :=
if Int.eq n Int.zero then e1 else
match e1 with
| Eop (Ointconst n1) Enil => Eop (Ointconst(Int.shr n1 n)) Enil
| Eop (Oshrimm n1) (t1:::Enil) => if Int.ltu (Int.add n n1) Int.iwordsize then Eop (Oshrimm (Int.add n n1)) (t1:::Enil) else Eop (Oshrimm n) (e1:::Enil)
| _ => Eop (Oshrimm n) (e1:::Enil)
end.
*)
Inductive shrimm_cases: forall (e1: expr), Type :=
| shrimm_case1:
forall n1,
shrimm_cases (Eop (Ointconst n1) Enil)
| shrimm_case2:
forall n1 t1,
shrimm_cases (Eop (Oshrimm n1) (t1:::Enil))
| shrimm_default:
forall (e1: expr),
shrimm_cases e1.
Definition shrimm_match (e1: expr) :=
match e1 as z1 return shrimm_cases z1 with
| Eop (Ointconst n1) Enil =>
shrimm_case1 n1
| Eop (Oshrimm n1) (t1:::Enil) =>
shrimm_case2 n1 t1
| e1 =>
shrimm_default e1
end.
Definition shrimm (e1: expr) (n: int) :=
if Int.eq n Int.zero then e1 else
match shrimm_match e1 with
| shrimm_case1 n1 =>
Eop (Ointconst(Int.shr n1 n)) Enil
| shrimm_case2 n1 t1 =>
if Int.ltu (Int.add n n1) Int.iwordsize then Eop (Oshrimm (Int.add n n1)) (t1:::Enil) else Eop (Oshrimm n) (e1:::Enil)
| shrimm_default e1 =>
Eop (Oshrimm n) (e1:::Enil)
end.
(** ** Integer multiply *)
Definition mulimm_base (n1: int) (e2: expr) :=
match Int.one_bits n1 with
| i :: nil =>
shlimm e2 i
| i :: j :: nil =>
Elet e2 (add (shlimm (Eletvar 0) i) (shlimm (Eletvar 0) j))
| _ =>
Eop (Omulimm n1) (e2:::Enil)
end.
(*
Definition mulimm (n1: int) (e2: expr) :=
if Int.eq n1 Int.zero then
Eop (Ointconst Int.zero) Enil
else if Int.eq n1 Int.one then
e2
else match e2 with
| Eop (Ointconst n2) Enil => Eop (Ointconst(intmul n1 n2)) Enil
| Eop (Olea (Aindexed n2)) (t2:::Enil) => if mul_is_scale n1 then Eop (Olea (Ascaled n1 (Int.mul n1 n2))) (t2:::Enil) else addimm (Int.mul n1 n2) (mulimm_base n1 t2)
| _ => mulimm_base n1 e2
end.
Definition mulimm (e2: expr) :=
match e2 with
| Eop (Ointconst n2) Enil => Eop (Ointconst(intmul n1 n2)) Enil
| Eop (Olea (Aindexed n2)) (t2:::Enil) => if mul_is_scale n1 then Eop (Olea (Ascaled n1 (Int.mul n1 n2))) (t2:::Enil) else addimm (Int.mul n1 n2) (mulimm_base n1 t2)
| _ => mulimm_base n1 e2
end.
*)
Inductive mulimm_cases: forall (e2: expr), Type :=
| mulimm_case1:
forall n2,
mulimm_cases (Eop (Ointconst n2) Enil)
| mulimm_case2:
forall n2 t2,
mulimm_cases (Eop (Olea (Aindexed n2)) (t2:::Enil))
| mulimm_default:
forall (e2: expr),
mulimm_cases e2.
Definition mulimm_match (e2: expr) :=
match e2 as z1 return mulimm_cases z1 with
| Eop (Ointconst n2) Enil =>
mulimm_case1 n2
| Eop (Olea (Aindexed n2)) (t2:::Enil) =>
mulimm_case2 n2 t2
| e2 =>
mulimm_default e2
end.
Definition mulimm (n1: int) (e2: expr) :=
if Int.eq n1 Int.zero then
Eop (Ointconst Int.zero) Enil
else if Int.eq n1 Int.one then
e2
else match mulimm_match e2 with
| mulimm_case1 n2 =>
Eop (Ointconst(Int.mul n1 n2)) Enil
| mulimm_case2 n2 t2 =>
addimm (Int.mul n1 n2) (mulimm_base n1 t2)
| mulimm_default e2 =>
mulimm_base n1 e2
end.
(*
Definition mul (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 => mulimm n1 t2
| t1, Eop (Ointconst n2) Enil => mulimm n2 t1
| _, _ => Eop Omul (e1:::e2:::Enil)
end.
*)
Inductive mul_cases: forall (e1: expr) (e2: expr), Type :=
| mul_case1:
forall (n1: int) (t2: expr),
mul_cases (Eop (Ointconst n1) Enil) (t2)
| mul_case2:
forall (t1: expr) (n2: int),
mul_cases (t1) (Eop (Ointconst n2) Enil)
| mul_default:
forall (e1: expr) (e2: expr),
mul_cases e1 e2.
Definition mul_match_aux (e1: expr) (e2: expr) :=
match e2 as z2 return mul_cases e1 z2 with
| Eop (Ointconst n2) Enil =>
mul_case2 e1 n2
| e2 =>
mul_default e1 e2
end.
Definition mul_match (e1: expr) (e2: expr) :=
match e1 as z1 return mul_cases z1 e2 with
| Eop (Ointconst n1) Enil =>
mul_case1 n1 e2
| e1 =>
mul_match_aux e1 e2
end.
Definition mul (e1: expr) (e2: expr) :=
match mul_match e1 e2 with
| mul_case1 n1 t2 =>
mulimm n1 t2
| mul_case2 t1 n2 =>
mulimm n2 t1
| mul_default e1 e2 =>
Eop Omul (e1:::e2:::Enil)
end.
(** ** Bitwise and, or, xor *)
Definition orimm (n: int) (e: expr) :=
if Int.eq n Int.zero then e
else if Int.eq n Int.mone then Eop (Ointconst Int.mone) Enil
else Eop (Oorimm n) (e:::Enil).
Definition same_expr_pure (e1 e2: expr) :=
match e1, e2 with
| Evar v1, Evar v2 => if ident_eq v1 v2 then true else false
| _, _ => false
end.
(*
Definition or (e1: expr) (e2: expr) :=
match e1, e2 with
| Eop (Ointconst n1) Enil, t2 => orimm n1 t2
| t1, Eop (Ointconst n2) Enil => orimm n2 t1
| Eop (Oshlimm n1) (t1:::Enil), Eop (Oshruimm n2) (t2:::Enil)) => ...
| Eop (Oshruimm n2) (t2:::Enil)), Eop (Oshlimm n1) (t1:::Enil) => ...
| _, _ => Eop Oor (e1:::e2:::Enil)
end.
*)
Inductive or_cases: forall (e1: expr) (e2: expr), Type :=
| or_case1:
forall n1 t2,
or_cases (Eop (Ointconst n1) Enil) (t2)
| or_case2:
forall t1 n2,
or_cases (t1) (Eop (Ointconst n2) Enil)
| or_case3:
forall n1 t1 n2 t2,
or_cases (Eop (Oshlimm n1) (t1:::Enil)) (Eop (Oshruimm n2) (t2:::Enil))
| or_case4:
forall n2 t2 n1 t1,
or_cases (Eop (Oshruimm n2) (t2:::Enil)) (Eop (Oshlimm n1) (t1:::Enil))
| or_default:
forall (e1: expr) (e2: expr),
or_cases e1 e2.
Definition or_match (e1: expr) (e2: expr) :=
match e1 as z1, e2 as z2 return or_cases z1 z2 with
| Eop (Ointconst n1) Enil, t2 =>
or_case1 n1 t2
| t1, Eop (Ointconst n2) Enil =>
or_case2 t1 n2
| Eop (Oshlimm n1) (t1:::Enil), Eop (Oshruimm n2) (t2:::Enil) =>
or_case3 n1 t1 n2 t2
| Eop (Oshruimm n2) (t2:::Enil), Eop (Oshlimm n1) (t1:::Enil) =>
or_case4 n2 t2 n1 t1
| e1, e2 =>
or_default e1 e2
end.
Definition or (e1: expr) (e2: expr) :=
match or_match e1 e2 with
| or_case1 n1 t2 =>
orimm n1 t2
| or_case2 t1 n2 =>
orimm n2 t1
| or_case3 n1 t1 n2 t2 =>
if Int.eq (Int.add n1 n2) Int.iwordsize
&& same_expr_pure t1 t2
then Eop (Ororimm n2) (t1:::Enil)
else Eop Oor (e1:::e2:::Enil)
| or_case4 n2 t2 n1 t1 =>
if Int.eq (Int.add n1 n2) Int.iwordsize
&& same_expr_pure t1 t2
then Eop (Ororimm n2) (t1:::Enil)
else Eop Oor (e1:::e2:::Enil)
| or_default e1 e2 =>
Eop Oor (e1:::e2:::Enil)
end.
Definition andimm (n: int) (e: expr) :=
if Int.eq n Int.zero then Eop (Ointconst Int.zero) Enil
else if Int.eq n Int.mone then e
else Eop (Oandimm n) (e:::Enil).
Definition and (e1: expr) (e2: expr) :=
match mul_match e1 e2 with
| mul_case1 n1 t2 =>
andimm n1 t2
| mul_case2 t1 n2 =>
andimm n2 t1
| mul_default e1 e2 =>
Eop Oand (e1:::e2:::Enil)
end.
Definition xorimm (n: int) (e: expr) :=
if Int.eq n Int.zero then e
else Eop (Oxorimm n) (e:::Enil).
Definition xor (e1: expr) (e2: expr) :=
match mul_match e1 e2 with
| mul_case1 n1 t2 =>
xorimm n1 t2
| mul_case2 t1 n2 =>
xorimm n2 t1
| mul_default e1 e2 =>
Eop Oxor (e1:::e2:::Enil)
end.
(** ** General shifts *)
Inductive shift_cases: forall (e1: expr), Type :=
| shift_case1:
forall (n2: int),
shift_cases (Eop (Ointconst n2) Enil)
| shift_default:
forall (e1: expr),
shift_cases e1.
Definition shift_match (e1: expr) :=
match e1 as z1 return shift_cases z1 with
| Eop (Ointconst n2) Enil =>
shift_case1 n2
| e1 =>
shift_default e1
end.
Definition shl (e1: expr) (e2: expr) :=
match shift_match e2 with
| shift_case1 n2 =>
shlimm e1 n2
| shift_default e2 =>
Eop Oshl (e1:::e2:::Enil)
end.
Definition shru (e1: expr) (e2: expr) :=
match shift_match e2 with
| shift_case1 n2 =>
shruimm e1 n2
| shift_default e2 =>
Eop Oshru (e1:::e2:::Enil)
end.
Definition shr (e1: expr) (e2: expr) :=
match shift_match e2 with
| shift_case1 n2 =>
shrimm e1 n2
| shift_default e2 =>
Eop Oshr (e1:::e2:::Enil)
end.
(** ** Comparisons *)
Inductive comp_cases: forall (e1: expr) (e2: expr), Type :=
| comp_case1:
forall n1 t2,
comp_cases (Eop (Ointconst n1) Enil) (t2)
| comp_case2:
forall t1 n2,
comp_cases (t1) (Eop (Ointconst n2) Enil)
| comp_default:
forall (e1: expr) (e2: expr),
comp_cases e1 e2.
Definition comp_match (e1: expr) (e2: expr) :=
match e1 as z1, e2 as z2 return comp_cases z1 z2 with
| Eop (Ointconst n1) Enil, t2 =>
comp_case1 n1 t2
| t1, Eop (Ointconst n2) Enil =>
comp_case2 t1 n2
| e1, e2 =>
comp_default e1 e2
end.
Definition comp (c: comparison) (e1: expr) (e2: expr) :=
match comp_match e1 e2 with
| comp_case1 n1 t2 =>
Eop (Ocmp (Ccompimm (swap_comparison c) n1)) (t2 ::: Enil)
| comp_case2 t1 n2 =>
Eop (Ocmp (Ccompimm c n2)) (t1 ::: Enil)
| comp_default e1 e2 =>
Eop (Ocmp (Ccomp c)) (e1 ::: e2 ::: Enil)
end.
Definition compu (c: comparison) (e1: expr) (e2: expr) :=
match comp_match e1 e2 with
| comp_case1 n1 t2 =>
Eop (Ocmp (Ccompuimm (swap_comparison c) n1)) (t2 ::: Enil)
| comp_case2 t1 n2 =>
Eop (Ocmp (Ccompuimm c n2)) (t1 ::: Enil)
| comp_default e1 e2 =>
Eop (Ocmp (Ccompu c)) (e1 ::: e2 ::: Enil)
end.
Definition compf (c: comparison) (e1: expr) (e2: expr) :=
Eop (Ocmp (Ccompf c)) (e1 ::: e2 ::: Enil).
(** ** Other operators, not optimized. *)
Definition cast8unsigned (e: expr) := Eop Ocast8unsigned (e ::: Enil).
Definition cast8signed (e: expr) := Eop Ocast8signed (e ::: Enil).
Definition cast16unsigned (e: expr) := Eop Ocast16unsigned (e ::: Enil).
Definition cast16signed (e: expr) := Eop Ocast16signed (e ::: Enil).
Definition divu (e1: expr) (e2: expr) := Eop Odivu (e1:::e2:::Enil).
Definition modu (e1: expr) (e2: expr) := Eop Omodu (e1:::e2:::Enil).
Definition divs (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil).
Definition mods (e1: expr) (e2: expr) := Eop Omod (e1:::e2:::Enil).
Definition negint (e: expr) := Eop Oneg (e ::: Enil).
Definition notint (e: expr) := Eop (Oxorimm Int.mone) (e ::: Enil).
Definition negf (e: expr) := Eop Onegf (e ::: Enil).
Definition absf (e: expr) := Eop Oabsf (e ::: Enil).
Definition singleoffloat (e: expr) := Eop Osingleoffloat (e ::: Enil).
Definition intoffloat (e: expr) := Eop Ointoffloat (e ::: Enil).
Definition floatofint (e: expr) := Eop Ofloatofint (e ::: Enil).
Definition addf (e1 e2: expr) := Eop Oaddf (e1 ::: e2 ::: Enil).
Definition subf (e1 e2: expr) := Eop Osubf (e1 ::: e2 ::: Enil).
Definition mulf (e1 e2: expr) := Eop Omulf (e1 ::: e2 ::: Enil).
Definition divf (e1 e2: expr) := Eop Odivf (e1 ::: e2 ::: Enil).
(** ** Conversions between unsigned ints and floats *)
Definition intuoffloat (e: expr) :=
let f := Eop (Ofloatconst (Float.floatofintu Float.ox8000_0000)) Enil in
Elet e
(Econdition (CEcond (Ccompf Clt) (Eletvar O ::: f ::: Enil))
(intoffloat (Eletvar O))
(addimm Float.ox8000_0000 (intoffloat (subf (Eletvar O) f)))).
Definition floatofintu (e: expr) :=
let f := Eop (Ofloatconst (Float.floatofintu Float.ox8000_0000)) Enil in
Elet e
(Econdition (CEcond (Ccompuimm Clt Float.ox8000_0000) (Eletvar O ::: Enil))
(floatofint (Eletvar O))
(addf (floatofint (addimm (Int.neg Float.ox8000_0000) (Eletvar O))) f)).
(** ** Addressing modes *)
(*
Definition addressing (e: expr) :=
match e with
| Eop (Olea addr) args => (addr, args)
| _ => (Aindexed Int.zero, e:::Enil)
end.
*)
Inductive addressing_cases: forall (e: expr), Type :=
| addressing_case1:
forall addr args,
addressing_cases (Eop (Olea addr) args)
| addressing_default:
forall (e: expr),
addressing_cases e.
Definition addressing_match (e: expr) :=
match e as z1 return addressing_cases z1 with
| Eop (Olea addr) args =>
addressing_case1 addr args
| e =>
addressing_default e
end.
Definition addressing (chunk: memory_chunk) (e: expr) :=
match addressing_match e with
| addressing_case1 addr args =>
(addr, args)
| addressing_default e =>
(Aindexed Int.zero, e:::Enil)
end.
|