1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Operators and addressing modes. The abstract syntax and dynamic
semantics for the CminorSel, RTL, LTL and Mach languages depend on the
following types, defined in this library:
- [condition]: boolean conditions for conditional branches;
- [operation]: arithmetic and logical operations;
- [addressing]: addressing modes for load and store operations.
These types are IA32-specific and correspond roughly to what the
processor can compute in one instruction. In other terms, these
types reflect the state of the program after instruction selection.
For a processor-independent set of operations, see the abstract
syntax and dynamic semantics of the Cminor language.
*)
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Set Implicit Arguments.
(** Conditions (boolean-valued operators). *)
Inductive condition : Type :=
| Ccomp: comparison -> condition (**r signed integer comparison *)
| Ccompu: comparison -> condition (**r unsigned integer comparison *)
| Ccompimm: comparison -> int -> condition (**r signed integer comparison with a constant *)
| Ccompuimm: comparison -> int -> condition (**r unsigned integer comparison with a constant *)
| Ccompf: comparison -> condition (**r floating-point comparison *)
| Cnotcompf: comparison -> condition (**r negation of a floating-point comparison *)
| Cmaskzero: int -> condition (**r test [(arg & constant) == 0] *)
| Cmasknotzero: int -> condition. (**r test [(arg & constant) != 0] *)
(** Addressing modes. [r1], [r2], etc, are the arguments to the
addressing. *)
Inductive addressing: Type :=
| Aindexed: int -> addressing (**r Address is [r1 + offset] *)
| Aindexed2: int -> addressing (**r Address is [r1 + r2 + offset] *)
| Ascaled: int -> int -> addressing (**r Address is [r1 * scale + offset] *)
| Aindexed2scaled: int -> int -> addressing
(**r Address is [r1 + r2 * scale + offset] *)
| Aglobal: ident -> int -> addressing (**r Address is [symbol + offset] *)
| Abased: ident -> int -> addressing (**r Address is [symbol + offset + r1] *)
| Abasedscaled: int -> ident -> int -> addressing (**r Address is [symbol + offset + r1 * scale] *)
| Ainstack: int -> addressing. (**r Address is [stack_pointer + offset] *)
(** Arithmetic and logical operations. In the descriptions, [rd] is the
result of the operation and [r1], [r2], etc, are the arguments. *)
Inductive operation : Type :=
| Omove: operation (**r [rd = r1] *)
| Ointconst: int -> operation (**r [rd] is set to the given integer constant *)
| Ofloatconst: float -> operation (**r [rd] is set to the given float constant *)
| Oindirectsymbol: ident -> operation (**r [rd] is set to the address of the symbol *)
(*c Integer arithmetic: *)
| Ocast8signed: operation (**r [rd] is 8-bit sign extension of [r1] *)
| Ocast8unsigned: operation (**r [rd] is 8-bit zero extension of [r1] *)
| Ocast16signed: operation (**r [rd] is 16-bit sign extension of [r1] *)
| Ocast16unsigned: operation (**r [rd] is 16-bit zero extension of [r1] *)
| Oneg: operation (**r [rd = - r1] *)
| Osub: operation (**r [rd = r1 - r2] *)
| Omul: operation (**r [rd = r1 * r2] *)
| Omulimm: int -> operation (**r [rd = r1 * n] *)
| Odiv: operation (**r [rd = r1 / r2] (signed) *)
| Odivu: operation (**r [rd = r1 / r2] (unsigned) *)
| Omod: operation (**r [rd = r1 % r2] (signed) *)
| Omodu: operation (**r [rd = r1 % r2] (unsigned) *)
| Oand: operation (**r [rd = r1 & r2] *)
| Oandimm: int -> operation (**r [rd = r1 & n] *)
| Oor: operation (**r [rd = r1 | r2] *)
| Oorimm: int -> operation (**r [rd = r1 | n] *)
| Oxor: operation (**r [rd = r1 ^ r2] *)
| Oxorimm: int -> operation (**r [rd = r1 ^ n] *)
| Oshl: operation (**r [rd = r1 << r2] *)
| Oshlimm: int -> operation (**r [rd = r1 << n] *)
| Oshr: operation (**r [rd = r1 >> r2] (signed) *)
| Oshrimm: int -> operation (**r [rd = r1 >> n] (signed) *)
| Oshrximm: int -> operation (**r [rd = r1 / 2^n] (signed) *)
| Oshru: operation (**r [rd = r1 >> r2] (unsigned) *)
| Oshruimm: int -> operation (**r [rd = r1 >> n] (unsigned) *)
| Ororimm: int -> operation (**r rotate right immediate *)
| Oshldimm: int -> operation (**r [rd = r1 << n | r2 >> (32-n)] *)
| Olea: addressing -> operation (**r effective address *)
(*c Floating-point arithmetic: *)
| Onegf: operation (**r [rd = - r1] *)
| Oabsf: operation (**r [rd = abs(r1)] *)
| Oaddf: operation (**r [rd = r1 + r2] *)
| Osubf: operation (**r [rd = r1 - r2] *)
| Omulf: operation (**r [rd = r1 * r2] *)
| Odivf: operation (**r [rd = r1 / r2] *)
| Osingleoffloat: operation (**r [rd] is [r1] truncated to single-precision float *)
(*c Conversions between int and float: *)
| Ointoffloat: operation (**r [rd = signed_int_of_float(r1)] *)
| Ofloatofint: operation (**r [rd = float_of_signed_int(r1)] *)
(*c Manipulating 64-bit integers: *)
| Omakelong: operation (**r [rd = r1 << 32 | r2] *)
| Olowlong: operation (**r [rd = low-word(r1)] *)
| Ohighlong: operation (**r [rd = high-word(r1)] *)
(*c Boolean tests: *)
| Ocmp: condition -> operation. (**r [rd = 1] if condition holds, [rd = 0] otherwise. *)
(** Derived operators. *)
Definition Oaddrsymbol (id: ident) (ofs: int) : operation := Olea (Aglobal id ofs).
Definition Oaddrstack (ofs: int) : operation := Olea (Ainstack ofs).
Definition Oaddimm (n: int) : operation := Olea (Aindexed n).
(** Comparison functions (used in modules [CSE] and [Allocation]). *)
Definition eq_condition (x y: condition) : {x=y} + {x<>y}.
Proof.
generalize Int.eq_dec; intro.
assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality.
decide equality.
Defined.
Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}.
Proof.
generalize Int.eq_dec; intro.
assert (forall (x y: ident), {x=y}+{x<>y}). exact peq.
decide equality.
Defined.
Definition eq_operation (x y: operation): {x=y} + {x<>y}.
Proof.
generalize Int.eq_dec; intro.
generalize Float.eq_dec; intro.
generalize Int64.eq_dec; intro.
decide equality.
apply peq.
apply eq_addressing.
apply eq_condition.
Defined.
Global Opaque eq_condition eq_addressing eq_operation.
(** * Evaluation functions *)
Definition symbol_address (F V: Type) (genv: Genv.t F V) (id: ident) (ofs: int) : val :=
match Genv.find_symbol genv id with
| Some b => Vptr b ofs
| None => Vundef
end.
(** Evaluation of conditions, operators and addressing modes applied
to lists of values. Return [None] when the computation can trigger an
error, e.g. integer division by zero. [eval_condition] returns a boolean,
[eval_operation] and [eval_addressing] return a value. *)
Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool :=
match cond, vl with
| Ccomp c, v1 :: v2 :: nil => Val.cmp_bool c v1 v2
| Ccompu c, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 v2
| Ccompimm c n, v1 :: nil => Val.cmp_bool c v1 (Vint n)
| Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n)
| Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2
| Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2)
| Cmaskzero n, Vint n1 :: nil => Some (Int.eq (Int.and n1 n) Int.zero)
| Cmasknotzero n, Vint n1 :: nil => Some (negb (Int.eq (Int.and n1 n) Int.zero))
| _, _ => None
end.
Definition eval_addressing
(F V: Type) (genv: Genv.t F V) (sp: val)
(addr: addressing) (vl: list val) : option val :=
match addr, vl with
| Aindexed n, v1::nil =>
Some (Val.add v1 (Vint n))
| Aindexed2 n, v1::v2::nil =>
Some (Val.add (Val.add v1 v2) (Vint n))
| Ascaled sc ofs, v1::nil =>
Some (Val.add (Val.mul v1 (Vint sc)) (Vint ofs))
| Aindexed2scaled sc ofs, v1::v2::nil =>
Some(Val.add v1 (Val.add (Val.mul v2 (Vint sc)) (Vint ofs)))
| Aglobal s ofs, nil =>
Some (symbol_address genv s ofs)
| Abased s ofs, v1::nil =>
Some (Val.add (symbol_address genv s ofs) v1)
| Abasedscaled sc s ofs, v1::nil =>
Some (Val.add (symbol_address genv s ofs) (Val.mul v1 (Vint sc)))
| Ainstack ofs, nil =>
Some(Val.add sp (Vint ofs))
| _, _ => None
end.
Definition eval_operation
(F V: Type) (genv: Genv.t F V) (sp: val)
(op: operation) (vl: list val) (m: mem): option val :=
match op, vl with
| Omove, v1::nil => Some v1
| Ointconst n, nil => Some (Vint n)
| Ofloatconst n, nil => Some (Vfloat n)
| Oindirectsymbol id, nil => Some (symbol_address genv id Int.zero)
| Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1)
| Ocast8unsigned, v1 :: nil => Some (Val.zero_ext 8 v1)
| Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1)
| Ocast16unsigned, v1 :: nil => Some (Val.zero_ext 16 v1)
| Oneg, v1::nil => Some (Val.neg v1)
| Osub, v1::v2::nil => Some (Val.sub v1 v2)
| Omul, v1::v2::nil => Some (Val.mul v1 v2)
| Omulimm n, v1::nil => Some (Val.mul v1 (Vint n))
| Odiv, v1::v2::nil => Val.divs v1 v2
| Odivu, v1::v2::nil => Val.divu v1 v2
| Omod, v1::v2::nil => Val.mods v1 v2
| Omodu, v1::v2::nil => Val.modu v1 v2
| Oand, v1::v2::nil => Some(Val.and v1 v2)
| Oandimm n, v1::nil => Some (Val.and v1 (Vint n))
| Oor, v1::v2::nil => Some(Val.or v1 v2)
| Oorimm n, v1::nil => Some (Val.or v1 (Vint n))
| Oxor, v1::v2::nil => Some(Val.xor v1 v2)
| Oxorimm n, v1::nil => Some (Val.xor v1 (Vint n))
| Oshl, v1::v2::nil => Some (Val.shl v1 v2)
| Oshlimm n, v1::nil => Some (Val.shl v1 (Vint n))
| Oshr, v1::v2::nil => Some (Val.shr v1 v2)
| Oshrimm n, v1::nil => Some (Val.shr v1 (Vint n))
| Oshrximm n, v1::nil => Val.shrx v1 (Vint n)
| Oshru, v1::v2::nil => Some (Val.shru v1 v2)
| Oshruimm n, v1::nil => Some (Val.shru v1 (Vint n))
| Ororimm n, v1::nil => Some (Val.ror v1 (Vint n))
| Oshldimm n, v1::v2::nil => Some (Val.or (Val.shl v1 (Vint n))
(Val.shru v2 (Vint (Int.sub Int.iwordsize n))))
| Olea addr, _ => eval_addressing genv sp addr vl
| Onegf, v1::nil => Some(Val.negf v1)
| Oabsf, v1::nil => Some(Val.absf v1)
| Oaddf, v1::v2::nil => Some(Val.addf v1 v2)
| Osubf, v1::v2::nil => Some(Val.subf v1 v2)
| Omulf, v1::v2::nil => Some(Val.mulf v1 v2)
| Odivf, v1::v2::nil => Some(Val.divf v1 v2)
| Osingleoffloat, v1::nil => Some(Val.singleoffloat v1)
| Ointoffloat, v1::nil => Val.intoffloat v1
| Ofloatofint, v1::nil => Val.floatofint v1
| Omakelong, v1::v2::nil => Some(Val.longofwords v1 v2)
| Olowlong, v1::nil => Some(Val.loword v1)
| Ohighlong, v1::nil => Some(Val.hiword v1)
| Ocmp c, _ => Some(Val.of_optbool (eval_condition c vl m))
| _, _ => None
end.
Ltac FuncInv :=
match goal with
| H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ =>
destruct x; simpl in H; try discriminate; FuncInv
| H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ =>
destruct v; simpl in H; try discriminate; FuncInv
| H: (Some _ = Some _) |- _ =>
injection H; intros; clear H; FuncInv
| _ =>
idtac
end.
(** * Static typing of conditions, operators and addressing modes. *)
Definition type_of_condition (c: condition) : list typ :=
match c with
| Ccomp _ => Tint :: Tint :: nil
| Ccompu _ => Tint :: Tint :: nil
| Ccompimm _ _ => Tint :: nil
| Ccompuimm _ _ => Tint :: nil
| Ccompf _ => Tfloat :: Tfloat :: nil
| Cnotcompf _ => Tfloat :: Tfloat :: nil
| Cmaskzero _ => Tint :: nil
| Cmasknotzero _ => Tint :: nil
end.
Definition type_of_addressing (addr: addressing) : list typ :=
match addr with
| Aindexed _ => Tint :: nil
| Aindexed2 _ => Tint :: Tint :: nil
| Ascaled _ _ => Tint :: nil
| Aindexed2scaled _ _ => Tint :: Tint :: nil
| Aglobal _ _ => nil
| Abased _ _ => Tint :: nil
| Abasedscaled _ _ _ => Tint :: nil
| Ainstack _ => nil
end.
Definition type_of_operation (op: operation) : list typ * typ :=
match op with
| Omove => (nil, Tint) (* treated specially *)
| Ointconst _ => (nil, Tint)
| Ofloatconst f => (nil, if Float.is_single_dec f then Tsingle else Tfloat)
| Oindirectsymbol _ => (nil, Tint)
| Ocast8signed => (Tint :: nil, Tint)
| Ocast8unsigned => (Tint :: nil, Tint)
| Ocast16signed => (Tint :: nil, Tint)
| Ocast16unsigned => (Tint :: nil, Tint)
| Oneg => (Tint :: nil, Tint)
| Osub => (Tint :: Tint :: nil, Tint)
| Omul => (Tint :: Tint :: nil, Tint)
| Omulimm _ => (Tint :: nil, Tint)
| Odiv => (Tint :: Tint :: nil, Tint)
| Odivu => (Tint :: Tint :: nil, Tint)
| Omod => (Tint :: Tint :: nil, Tint)
| Omodu => (Tint :: Tint :: nil, Tint)
| Oand => (Tint :: Tint :: nil, Tint)
| Oandimm _ => (Tint :: nil, Tint)
| Oor => (Tint :: Tint :: nil, Tint)
| Oorimm _ => (Tint :: nil, Tint)
| Oxor => (Tint :: Tint :: nil, Tint)
| Oxorimm _ => (Tint :: nil, Tint)
| Oshl => (Tint :: Tint :: nil, Tint)
| Oshlimm _ => (Tint :: nil, Tint)
| Oshr => (Tint :: Tint :: nil, Tint)
| Oshrimm _ => (Tint :: nil, Tint)
| Oshrximm _ => (Tint :: nil, Tint)
| Oshru => (Tint :: Tint :: nil, Tint)
| Oshruimm _ => (Tint :: nil, Tint)
| Ororimm _ => (Tint :: nil, Tint)
| Oshldimm _ => (Tint :: Tint :: nil, Tint)
| Olea addr => (type_of_addressing addr, Tint)
| Onegf => (Tfloat :: nil, Tfloat)
| Oabsf => (Tfloat :: nil, Tfloat)
| Oaddf => (Tfloat :: Tfloat :: nil, Tfloat)
| Osubf => (Tfloat :: Tfloat :: nil, Tfloat)
| Omulf => (Tfloat :: Tfloat :: nil, Tfloat)
| Odivf => (Tfloat :: Tfloat :: nil, Tfloat)
| Osingleoffloat => (Tfloat :: nil, Tsingle)
| Ointoffloat => (Tfloat :: nil, Tint)
| Ofloatofint => (Tint :: nil, Tfloat)
| Omakelong => (Tint :: Tint :: nil, Tlong)
| Olowlong => (Tlong :: nil, Tint)
| Ohighlong => (Tlong :: nil, Tint)
| Ocmp c => (type_of_condition c, Tint)
end.
(** Weak type soundness results for [eval_operation]:
the result values, when defined, are always of the type predicted
by [type_of_operation]. *)
Section SOUNDNESS.
Variable A V: Type.
Variable genv: Genv.t A V.
Lemma type_of_addressing_sound:
forall addr vl sp v,
eval_addressing genv sp addr vl = Some v ->
Val.has_type v Tint.
Proof with (try exact I).
intros. destruct addr; simpl in H; FuncInv; subst; simpl.
destruct v0...
destruct v0... destruct v1... destruct v1...
destruct v0...
destruct v0... destruct v1... destruct v1...
unfold symbol_address; destruct (Genv.find_symbol genv i)...
unfold symbol_address; destruct (Genv.find_symbol genv i)...
unfold symbol_address; destruct (Genv.find_symbol genv i)... destruct v0...
destruct v0...
unfold symbol_address; destruct (Genv.find_symbol genv i0)... destruct v0...
destruct sp...
Qed.
Lemma type_of_operation_sound:
forall op vl sp v m,
op <> Omove ->
eval_operation genv sp op vl m = Some v ->
Val.has_type v (snd (type_of_operation op)).
Proof with (try exact I).
intros.
destruct op; simpl in H0; FuncInv; subst; simpl.
congruence.
exact I.
destruct (Float.is_single_dec f); auto.
unfold symbol_address; destruct (Genv.find_symbol genv i)...
destruct v0...
destruct v0...
destruct v0...
destruct v0...
destruct v0...
destruct v0; destruct v1... simpl. destruct (eq_block b b0)...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1; simpl in *; inv H0.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2...
destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
destruct v0; destruct v1; simpl in *; inv H0.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2...
destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1...
destruct v0...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu i Int.iwordsize)...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu i Int.iwordsize)...
destruct v0; simpl in H0; try discriminate. destruct (Int.ltu i (Int.repr 31)); inv H0...
destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu i Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu i Int.iwordsize)...
destruct v0; simpl... destruct (Int.ltu i Int.iwordsize)...
destruct v1; simpl... destruct (Int.ltu (Int.sub Int.iwordsize i) Int.iwordsize)...
eapply type_of_addressing_sound; eauto.
destruct v0...
destruct v0...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0; destruct v1...
destruct v0... apply Float.singleoffloat_is_single.
destruct v0; simpl in H0; inv H0. destruct (Float.intoffloat f); inv H2...
destruct v0; simpl in H0; inv H0...
destruct v0; destruct v1...
destruct v0...
destruct v0...
destruct (eval_condition c vl m); simpl... destruct b...
Qed.
End SOUNDNESS.
(** * Manipulating and transforming operations *)
(** Recognition of move operations. *)
Definition is_move_operation
(A: Type) (op: operation) (args: list A) : option A :=
match op, args with
| Omove, arg :: nil => Some arg
| _, _ => None
end.
Lemma is_move_operation_correct:
forall (A: Type) (op: operation) (args: list A) (a: A),
is_move_operation op args = Some a ->
op = Omove /\ args = a :: nil.
Proof.
intros until a. unfold is_move_operation; destruct op;
try (intros; discriminate).
destruct args. intros; discriminate.
destruct args. intros. intuition congruence.
intros; discriminate.
Qed.
(** [negate_condition cond] returns a condition that is logically
equivalent to the negation of [cond]. *)
Definition negate_condition (cond: condition): condition :=
match cond with
| Ccomp c => Ccomp(negate_comparison c)
| Ccompu c => Ccompu(negate_comparison c)
| Ccompimm c n => Ccompimm (negate_comparison c) n
| Ccompuimm c n => Ccompuimm (negate_comparison c) n
| Ccompf c => Cnotcompf c
| Cnotcompf c => Ccompf c
| Cmaskzero n => Cmasknotzero n
| Cmasknotzero n => Cmaskzero n
end.
Lemma eval_negate_condition:
forall cond vl m,
eval_condition (negate_condition cond) vl m = option_map negb (eval_condition cond vl m).
Proof.
intros. destruct cond; simpl.
repeat (destruct vl; auto). apply Val.negate_cmp_bool.
repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
repeat (destruct vl; auto). apply Val.negate_cmp_bool.
repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
repeat (destruct vl; auto).
repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0); auto. destruct b; auto.
destruct vl; auto. destruct v; auto. destruct vl; auto.
destruct vl; auto. destruct v; auto. destruct vl; auto. simpl. rewrite negb_involutive. auto.
Qed.
(** Shifting stack-relative references. This is used in [Stacking]. *)
Definition shift_stack_addressing (delta: int) (addr: addressing) :=
match addr with
| Ainstack ofs => Ainstack (Int.add delta ofs)
| _ => addr
end.
Definition shift_stack_operation (delta: int) (op: operation) :=
match op with
| Olea addr => Olea (shift_stack_addressing delta addr)
| _ => op
end.
Lemma type_shift_stack_addressing:
forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr.
Proof.
intros. destruct addr; auto.
Qed.
Lemma type_shift_stack_operation:
forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op.
Proof.
intros. destruct op; auto. simpl. decEq. apply type_shift_stack_addressing.
Qed.
Lemma eval_shift_stack_addressing:
forall F V (ge: Genv.t F V) sp addr vl delta,
eval_addressing ge sp (shift_stack_addressing delta addr) vl =
eval_addressing ge (Val.add sp (Vint delta)) addr vl.
Proof.
intros. destruct addr; simpl; auto.
rewrite Val.add_assoc. simpl. auto.
Qed.
Lemma eval_shift_stack_operation:
forall F V (ge: Genv.t F V) sp op vl m delta,
eval_operation ge sp (shift_stack_operation delta op) vl m =
eval_operation ge (Val.add sp (Vint delta)) op vl m.
Proof.
intros. destruct op; simpl; auto.
apply eval_shift_stack_addressing.
Qed.
(** Offset an addressing mode [addr] by a quantity [delta], so that
it designates the pointer [delta] bytes past the pointer designated
by [addr]. May be undefined, in which case [None] is returned. *)
Definition offset_addressing (addr: addressing) (delta: int) : option addressing :=
match addr with
| Aindexed n => Some(Aindexed (Int.add n delta))
| Aindexed2 n => Some(Aindexed2 (Int.add n delta))
| Ascaled sc n => Some(Ascaled sc (Int.add n delta))
| Aindexed2scaled sc n => Some(Aindexed2scaled sc (Int.add n delta))
| Aglobal s n => Some(Aglobal s (Int.add n delta))
| Abased s n => Some(Abased s (Int.add n delta))
| Abasedscaled sc s n => Some(Abasedscaled sc s (Int.add n delta))
| Ainstack n => Some(Ainstack (Int.add n delta))
end.
Lemma eval_offset_addressing:
forall (F V: Type) (ge: Genv.t F V) sp addr args delta addr' v,
offset_addressing addr delta = Some addr' ->
eval_addressing ge sp addr args = Some v ->
eval_addressing ge sp addr' args = Some(Val.add v (Vint delta)).
Proof.
intros. destruct addr; simpl in H; inv H; simpl in *; FuncInv; inv H.
rewrite Val.add_assoc; auto.
rewrite !Val.add_assoc; auto.
rewrite !Val.add_assoc; auto.
rewrite !Val.add_assoc; auto.
unfold symbol_address. destruct (Genv.find_symbol ge i); auto.
unfold symbol_address. destruct (Genv.find_symbol ge i); auto.
rewrite Val.add_assoc. rewrite Val.add_permut. rewrite Val.add_commut. auto.
unfold symbol_address. destruct (Genv.find_symbol ge i0); auto.
rewrite Val.add_assoc. rewrite Val.add_permut. rewrite Val.add_commut. auto.
rewrite Val.add_assoc. auto.
Qed.
(** Operations that are so cheap to recompute that CSE should not factor them out. *)
Definition is_trivial_op (op: operation) : bool :=
match op with
| Omove => true
| Ointconst _ => true
| Olea (Aglobal _ _) => true
| Olea (Ainstack _) => true
| _ => false
end.
(** Operations that depend on the memory state. *)
Definition op_depends_on_memory (op: operation) : bool :=
match op with
| Ocmp (Ccompu _) => true
| _ => false
end.
Lemma op_depends_on_memory_correct:
forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2,
op_depends_on_memory op = false ->
eval_operation ge sp op args m1 = eval_operation ge sp op args m2.
Proof.
intros until m2. destruct op; simpl; try congruence.
destruct c; simpl; try congruence. reflexivity.
Qed.
(** Checking whether two addressings, applied to the same arguments, produce
separated memory addresses. Used in [CSE]. *)
Definition addressing_separated (chunk1: memory_chunk) (addr1: addressing)
(chunk2: memory_chunk) (addr2: addressing) : bool :=
match addr1, addr2 with
| Aindexed ofs1, Aindexed ofs2 =>
Int.no_overlap ofs1 (size_chunk chunk1) ofs2 (size_chunk chunk2)
| Aglobal s1 ofs1, Aglobal s2 ofs2 =>
if ident_eq s1 s2 then Int.no_overlap ofs1 (size_chunk chunk1) ofs2 (size_chunk chunk2) else true
| Abased s1 ofs1, Abased s2 ofs2 =>
if ident_eq s1 s2 then Int.no_overlap ofs1 (size_chunk chunk1) ofs2 (size_chunk chunk2) else true
| Ainstack ofs1, Ainstack ofs2 =>
Int.no_overlap ofs1 (size_chunk chunk1) ofs2 (size_chunk chunk2)
| _, _ => false
end.
Lemma addressing_separated_sound:
forall (F V: Type) (ge: Genv.t F V) sp chunk1 addr1 chunk2 addr2 vl b1 n1 b2 n2,
addressing_separated chunk1 addr1 chunk2 addr2 = true ->
eval_addressing ge sp addr1 vl = Some(Vptr b1 n1) ->
eval_addressing ge sp addr2 vl = Some(Vptr b2 n2) ->
b1 <> b2 \/ Int.unsigned n1 + size_chunk chunk1 <= Int.unsigned n2 \/ Int.unsigned n2 + size_chunk chunk2 <= Int.unsigned n1.
Proof.
unfold addressing_separated; intros.
generalize (size_chunk_pos chunk1) (size_chunk_pos chunk2); intros SZ1 SZ2.
destruct addr1; destruct addr2; try discriminate; simpl in *; FuncInv.
(* Aindexed *)
destruct v; simpl in *; inv H1; inv H2.
right. apply Int.no_overlap_sound; auto.
(* Aglobal *)
unfold symbol_address in *.
destruct (Genv.find_symbol ge i1) eqn:?; inv H2.
destruct (Genv.find_symbol ge i) eqn:?; inv H1.
destruct (ident_eq i i1). subst.
replace (Int.unsigned n1) with (Int.unsigned (Int.add Int.zero n1)).
replace (Int.unsigned n2) with (Int.unsigned (Int.add Int.zero n2)).
right. apply Int.no_overlap_sound; auto.
rewrite Int.add_commut; rewrite Int.add_zero; auto.
rewrite Int.add_commut; rewrite Int.add_zero; auto.
left. red; intros; elim n. subst. eapply Genv.genv_vars_inj; eauto.
(* Abased *)
unfold symbol_address in *.
destruct (Genv.find_symbol ge i1) eqn:?; simpl in *; try discriminate.
destruct v; inv H2.
destruct (Genv.find_symbol ge i) eqn:?; inv H1.
destruct (ident_eq i i1). subst.
rewrite (Int.add_commut i0 i3). rewrite (Int.add_commut i2 i3).
right. apply Int.no_overlap_sound; auto.
left. red; intros; elim n. subst. eapply Genv.genv_vars_inj; eauto.
(* Ainstack *)
destruct sp; simpl in *; inv H1; inv H2.
right. apply Int.no_overlap_sound; auto.
Qed.
(** * Invariance and compatibility properties. *)
(** [eval_operation] and [eval_addressing] depend on a global environment
for resolving references to global symbols. We show that they give
the same results if a global environment is replaced by another that
assigns the same addresses to the same symbols. *)
Section GENV_TRANSF.
Variable F1 F2 V1 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Hypothesis agree_on_symbols:
forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.
Lemma eval_addressing_preserved:
forall sp addr vl,
eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
Proof.
intros.
unfold eval_addressing, symbol_address; destruct addr; try rewrite agree_on_symbols;
reflexivity.
Qed.
Lemma eval_operation_preserved:
forall sp op vl m,
eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m.
Proof.
intros.
unfold eval_operation; destruct op; auto.
unfold symbol_address. rewrite agree_on_symbols. auto.
apply eval_addressing_preserved.
Qed.
End GENV_TRANSF.
(** Compatibility of the evaluation functions with value injections. *)
Section EVAL_COMPAT.
Variable F V: Type.
Variable genv: Genv.t F V.
Variable f: meminj.
Hypothesis symbol_address_inj:
forall id ofs,
val_inject f (symbol_address genv id ofs) (symbol_address genv id ofs).
Variable m1: mem.
Variable m2: mem.
Hypothesis valid_pointer_inj:
forall b1 ofs b2 delta,
f b1 = Some(b2, delta) ->
Mem.valid_pointer m1 b1 (Int.unsigned ofs) = true ->
Mem.valid_pointer m2 b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.
Hypothesis weak_valid_pointer_inj:
forall b1 ofs b2 delta,
f b1 = Some(b2, delta) ->
Mem.weak_valid_pointer m1 b1 (Int.unsigned ofs) = true ->
Mem.weak_valid_pointer m2 b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.
Hypothesis weak_valid_pointer_no_overflow:
forall b1 ofs b2 delta,
f b1 = Some(b2, delta) ->
Mem.weak_valid_pointer m1 b1 (Int.unsigned ofs) = true ->
0 <= Int.unsigned ofs + Int.unsigned (Int.repr delta) <= Int.max_unsigned.
Hypothesis valid_different_pointers_inj:
forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
b1 <> b2 ->
Mem.valid_pointer m1 b1 (Int.unsigned ofs1) = true ->
Mem.valid_pointer m1 b2 (Int.unsigned ofs2) = true ->
f b1 = Some (b1', delta1) ->
f b2 = Some (b2', delta2) ->
b1' <> b2' \/
Int.unsigned (Int.add ofs1 (Int.repr delta1)) <> Int.unsigned (Int.add ofs2 (Int.repr delta2)).
Ltac InvInject :=
match goal with
| [ H: val_inject _ (Vint _) _ |- _ ] =>
inv H; InvInject
| [ H: val_inject _ (Vfloat _) _ |- _ ] =>
inv H; InvInject
| [ H: val_inject _ (Vptr _ _) _ |- _ ] =>
inv H; InvInject
| [ H: val_list_inject _ nil _ |- _ ] =>
inv H; InvInject
| [ H: val_list_inject _ (_ :: _) _ |- _ ] =>
inv H; InvInject
| _ => idtac
end.
Lemma eval_condition_inj:
forall cond vl1 vl2 b,
val_list_inject f vl1 vl2 ->
eval_condition cond vl1 m1 = Some b ->
eval_condition cond vl2 m2 = Some b.
Proof.
intros. destruct cond; simpl in H0; FuncInv; InvInject; simpl; auto.
inv H3; inv H2; simpl in H0; inv H0; auto.
eauto 3 using val_cmpu_bool_inject, Mem.valid_pointer_implies.
inv H3; simpl in H0; inv H0; auto.
eauto 3 using val_cmpu_bool_inject, Mem.valid_pointer_implies.
inv H3; inv H2; simpl in H0; inv H0; auto.
inv H3; inv H2; simpl in H0; inv H0; auto.
inv H3; try discriminate; inv H5; auto.
inv H3; try discriminate; inv H5; auto.
Qed.
Ltac TrivialExists :=
match goal with
| [ |- exists v2, Some ?v1 = Some v2 /\ val_inject _ _ v2 ] =>
exists v1; split; auto
| _ => idtac
end.
Lemma eval_addressing_inj:
forall addr sp1 vl1 sp2 vl2 v1,
val_inject f sp1 sp2 ->
val_list_inject f vl1 vl2 ->
eval_addressing genv sp1 addr vl1 = Some v1 ->
exists v2, eval_addressing genv sp2 addr vl2 = Some v2 /\ val_inject f v1 v2.
Proof.
intros. destruct addr; simpl in H1; simpl; FuncInv; InvInject; TrivialExists.
apply Values.val_add_inject; auto.
apply Values.val_add_inject; auto. apply Values.val_add_inject; auto.
apply Values.val_add_inject; auto. inv H4; simpl; auto.
apply Values.val_add_inject; auto. apply Values.val_add_inject; auto. inv H2; simpl; auto.
apply Values.val_add_inject; auto.
apply Values.val_add_inject; auto. inv H4; simpl; auto.
apply Values.val_add_inject; auto.
Qed.
Lemma eval_operation_inj:
forall op sp1 vl1 sp2 vl2 v1,
val_inject f sp1 sp2 ->
val_list_inject f vl1 vl2 ->
eval_operation genv sp1 op vl1 m1 = Some v1 ->
exists v2, eval_operation genv sp2 op vl2 m2 = Some v2 /\ val_inject f v1 v2.
Proof.
intros. destruct op; simpl in H1; simpl; FuncInv; InvInject; TrivialExists.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto. econstructor; eauto.
rewrite Int.sub_add_l. auto.
destruct (eq_block b1 b0); auto. subst. rewrite H1 in H0. inv H0. rewrite dec_eq_true.
rewrite Int.sub_shifted. auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists.
inv H4; inv H3; simpl in H1; inv H1. simpl.
destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu i Int.iwordsize); auto.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu i Int.iwordsize); auto.
inv H4; simpl in H1; try discriminate. simpl.
destruct (Int.ltu i (Int.repr 31)); inv H1. TrivialExists.
inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu i Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu i Int.iwordsize); auto.
inv H4; simpl; auto. destruct (Int.ltu i Int.iwordsize); auto.
inv H2; simpl; auto. destruct (Int.ltu (Int.sub Int.iwordsize i) Int.iwordsize); auto.
eapply eval_addressing_inj; eauto.
inv H4; simpl; auto.
inv H4; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl in H1; inv H1. simpl. destruct (Float.intoffloat f0); simpl in H2; inv H2.
exists (Vint i); auto.
inv H4; simpl in H1; inv H1. simpl. TrivialExists.
inv H4; inv H2; simpl; auto.
inv H4; simpl; auto.
inv H4; simpl; auto.
subst v1. destruct (eval_condition c vl1 m1) eqn:?.
exploit eval_condition_inj; eauto. intros EQ; rewrite EQ.
destruct b; simpl; constructor.
simpl; constructor.
Qed.
End EVAL_COMPAT.
(** Compatibility of the evaluation functions with the ``is less defined'' relation over values. *)
Section EVAL_LESSDEF.
Variable F V: Type.
Variable genv: Genv.t F V.
Remark valid_pointer_extends:
forall m1 m2, Mem.extends m1 m2 ->
forall b1 ofs b2 delta,
Some(b1, 0) = Some(b2, delta) ->
Mem.valid_pointer m1 b1 (Int.unsigned ofs) = true ->
Mem.valid_pointer m2 b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.
Proof.
intros. inv H0. rewrite Int.add_zero. eapply Mem.valid_pointer_extends; eauto.
Qed.
Remark weak_valid_pointer_extends:
forall m1 m2, Mem.extends m1 m2 ->
forall b1 ofs b2 delta,
Some(b1, 0) = Some(b2, delta) ->
Mem.weak_valid_pointer m1 b1 (Int.unsigned ofs) = true ->
Mem.weak_valid_pointer m2 b2 (Int.unsigned (Int.add ofs (Int.repr delta))) = true.
Proof.
intros. inv H0. rewrite Int.add_zero. eapply Mem.weak_valid_pointer_extends; eauto.
Qed.
Remark weak_valid_pointer_no_overflow_extends:
forall m1 b1 ofs b2 delta,
Some(b1, 0) = Some(b2, delta) ->
Mem.weak_valid_pointer m1 b1 (Int.unsigned ofs) = true ->
0 <= Int.unsigned ofs + Int.unsigned (Int.repr delta) <= Int.max_unsigned.
Proof.
intros. inv H. rewrite Zplus_0_r. apply Int.unsigned_range_2.
Qed.
Remark valid_different_pointers_extends:
forall m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
b1 <> b2 ->
Mem.valid_pointer m1 b1 (Int.unsigned ofs1) = true ->
Mem.valid_pointer m1 b2 (Int.unsigned ofs2) = true ->
Some(b1, 0) = Some (b1', delta1) ->
Some(b2, 0) = Some (b2', delta2) ->
b1' <> b2' \/
Int.unsigned(Int.add ofs1 (Int.repr delta1)) <> Int.unsigned(Int.add ofs2 (Int.repr delta2)).
Proof.
intros. inv H2; inv H3. auto.
Qed.
Lemma eval_condition_lessdef:
forall cond vl1 vl2 b m1 m2,
Val.lessdef_list vl1 vl2 ->
Mem.extends m1 m2 ->
eval_condition cond vl1 m1 = Some b ->
eval_condition cond vl2 m2 = Some b.
Proof.
intros. eapply eval_condition_inj with (f := fun b => Some(b, 0)) (m1 := m1).
apply valid_pointer_extends; auto.
apply weak_valid_pointer_extends; auto.
apply weak_valid_pointer_no_overflow_extends.
apply valid_different_pointers_extends; auto.
rewrite <- val_list_inject_lessdef. eauto. auto.
Qed.
Lemma eval_operation_lessdef:
forall sp op vl1 vl2 v1 m1 m2,
Val.lessdef_list vl1 vl2 ->
Mem.extends m1 m2 ->
eval_operation genv sp op vl1 m1 = Some v1 ->
exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
intros. rewrite val_list_inject_lessdef in H.
assert (exists v2 : val,
eval_operation genv sp op vl2 m2 = Some v2
/\ val_inject (fun b => Some(b, 0)) v1 v2).
eapply eval_operation_inj with (m1 := m1) (sp1 := sp).
intros. rewrite <- val_inject_lessdef; auto.
apply valid_pointer_extends; auto.
apply weak_valid_pointer_extends; auto.
apply weak_valid_pointer_no_overflow_extends.
apply valid_different_pointers_extends; auto.
rewrite <- val_inject_lessdef; auto.
eauto. auto.
destruct H2 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.
Lemma eval_addressing_lessdef:
forall sp addr vl1 vl2 v1,
Val.lessdef_list vl1 vl2 ->
eval_addressing genv sp addr vl1 = Some v1 ->
exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
intros. rewrite val_list_inject_lessdef in H.
assert (exists v2 : val,
eval_addressing genv sp addr vl2 = Some v2
/\ val_inject (fun b => Some(b, 0)) v1 v2).
eapply eval_addressing_inj with (sp1 := sp).
intros. rewrite <- val_inject_lessdef; auto.
rewrite <- val_inject_lessdef; auto.
eauto. auto.
destruct H1 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.
End EVAL_LESSDEF.
(** Compatibility of the evaluation functions with memory injections. *)
Section EVAL_INJECT.
Variable F V: Type.
Variable genv: Genv.t F V.
Variable f: meminj.
Hypothesis globals: meminj_preserves_globals genv f.
Variable sp1: block.
Variable sp2: block.
Variable delta: Z.
Hypothesis sp_inj: f sp1 = Some(sp2, delta).
Remark symbol_address_inject:
forall id ofs, val_inject f (symbol_address genv id ofs) (symbol_address genv id ofs).
Proof.
intros. unfold symbol_address. destruct (Genv.find_symbol genv id) eqn:?; auto.
exploit (proj1 globals); eauto. intros.
econstructor; eauto. rewrite Int.add_zero; auto.
Qed.
Lemma eval_condition_inject:
forall cond vl1 vl2 b m1 m2,
val_list_inject f vl1 vl2 ->
Mem.inject f m1 m2 ->
eval_condition cond vl1 m1 = Some b ->
eval_condition cond vl2 m2 = Some b.
Proof.
intros. eapply eval_condition_inj with (f := f) (m1 := m1); eauto.
intros; eapply Mem.valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
intros; eapply Mem.different_pointers_inject; eauto.
Qed.
Lemma eval_addressing_inject:
forall addr vl1 vl2 v1,
val_list_inject f vl1 vl2 ->
eval_addressing genv (Vptr sp1 Int.zero) addr vl1 = Some v1 ->
exists v2,
eval_addressing genv (Vptr sp2 Int.zero) (shift_stack_addressing (Int.repr delta) addr) vl2 = Some v2
/\ val_inject f v1 v2.
Proof.
intros.
rewrite eval_shift_stack_addressing. simpl.
eapply eval_addressing_inj with (sp1 := Vptr sp1 Int.zero); eauto.
exact symbol_address_inject.
Qed.
Lemma eval_operation_inject:
forall op vl1 vl2 v1 m1 m2,
val_list_inject f vl1 vl2 ->
Mem.inject f m1 m2 ->
eval_operation genv (Vptr sp1 Int.zero) op vl1 m1 = Some v1 ->
exists v2,
eval_operation genv (Vptr sp2 Int.zero) (shift_stack_operation (Int.repr delta) op) vl2 m2 = Some v2
/\ val_inject f v1 v2.
Proof.
intros.
rewrite eval_shift_stack_operation. simpl.
eapply eval_operation_inj with (sp1 := Vptr sp1 Int.zero) (m1 := m1); eauto.
exact symbol_address_inject.
intros; eapply Mem.valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
intros; eapply Mem.different_pointers_inject; eauto.
Qed.
End EVAL_INJECT.
|