1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for constant propagation (processor-dependent part). *)
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import ConstpropOp.
Require Import Constprop.
(** * Correctness of the static analysis *)
Section ANALYSIS.
Variable ge: genv.
(** We first show that the dataflow analysis is correct with respect
to the dynamic semantics: the approximations (sets of values)
of a register at a program point predicted by the static analysis
are a superset of the values actually encountered during concrete
executions. We formalize this correspondence between run-time values and
compile-time approximations by the following predicate. *)
Definition val_match_approx (a: approx) (v: val) : Prop :=
match a with
| Unknown => True
| I p => v = Vint p
| F p => v = Vfloat p
| S symb ofs => exists b, Genv.find_symbol ge symb = Some b /\ v = Vptr b ofs
| _ => False
end.
Inductive val_list_match_approx: list approx -> list val -> Prop :=
| vlma_nil:
val_list_match_approx nil nil
| vlma_cons:
forall a al v vl,
val_match_approx a v ->
val_list_match_approx al vl ->
val_list_match_approx (a :: al) (v :: vl).
Ltac SimplVMA :=
match goal with
| H: (val_match_approx (I _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (F _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (S _ _) ?v) |- _ =>
simpl in H;
(try (elim H;
let b := fresh "b" in let A := fresh in let B := fresh in
(intros b [A B]; subst v; clear H)));
SimplVMA
| _ =>
idtac
end.
Ltac InvVLMA :=
match goal with
| H: (val_list_match_approx nil ?vl) |- _ =>
inversion H
| H: (val_list_match_approx (?a :: ?al) ?vl) |- _ =>
inversion H; SimplVMA; InvVLMA
| _ =>
idtac
end.
(** We then show that [eval_static_operation] is a correct abstract
interpretations of [eval_operation]: if the concrete arguments match
the given approximations, the concrete results match the
approximations returned by [eval_static_operation]. *)
Lemma eval_static_condition_correct:
forall cond al vl b,
val_list_match_approx al vl ->
eval_static_condition cond al = Some b ->
eval_condition cond vl = Some b.
Proof.
intros until b.
unfold eval_static_condition.
case (eval_static_condition_match cond al); intros;
InvVLMA; simpl; congruence.
Qed.
Lemma eval_static_addressing_correct:
forall addr sp al vl v,
val_list_match_approx al vl ->
eval_addressing ge sp addr vl = Some v ->
val_match_approx (eval_static_addressing addr al) v.
Proof.
intros until v. unfold eval_static_addressing.
case (eval_static_addressing_match addr al); intros;
InvVLMA; simpl in *; FuncInv; try congruence.
inv H4. exists b0; auto.
inv H4. inv H14. exists b0; auto.
inv H4. inv H13. exists b0; auto.
inv H4. inv H14. exists b0; auto.
destruct (Genv.find_symbol ge id); inv H0. exists b; auto.
inv H4. destruct (Genv.find_symbol ge id); inv H0. exists b; auto.
inv H4. destruct (Genv.find_symbol ge id); inv H0.
exists b; split; auto. rewrite Int.mul_commut; auto.
auto.
Qed.
Lemma eval_static_operation_correct:
forall op sp al vl v,
val_list_match_approx al vl ->
eval_operation ge sp op vl = Some v ->
val_match_approx (eval_static_operation op al) v.
Proof.
intros until v.
unfold eval_static_operation.
case (eval_static_operation_match op al); intros;
InvVLMA; simpl in *; FuncInv; try congruence.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
exists b. split. auto. congruence.
replace n2 with i0. destruct (Int.eq i0 Int.zero).
discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
replace n2 with i0. destruct (Int.eq i0 Int.zero).
discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
replace n2 with i0. destruct (Int.eq i0 Int.zero).
discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
replace n2 with i0. destruct (Int.eq i0 Int.zero).
discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
replace n2 with i0. destruct (Int.ltu i0 Int.iwordsize).
injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
destruct (Int.ltu n Int.iwordsize).
injection H0; intro; subst v. simpl. congruence. discriminate.
replace n2 with i0. destruct (Int.ltu i0 Int.iwordsize).
injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
destruct (Int.ltu n Int.iwordsize).
injection H0; intro; subst v. simpl. congruence. discriminate.
destruct (Int.ltu n (Int.repr 31)).
injection H0; intro; subst v. simpl. congruence. discriminate.
replace n2 with i0. destruct (Int.ltu i0 Int.iwordsize).
injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
destruct (Int.ltu n Int.iwordsize).
injection H0; intro; subst v. simpl. congruence. discriminate.
destruct (Int.ltu n Int.iwordsize).
injection H0; intro; subst v. simpl. congruence. discriminate.
eapply eval_static_addressing_correct; eauto.
rewrite <- H3. replace v0 with (Vfloat n1). reflexivity. congruence.
caseEq (eval_static_condition c vl0).
intros. generalize (eval_static_condition_correct _ _ _ _ H H1).
intro. rewrite H2 in H0.
destruct b; injection H0; intro; subst v; simpl; auto.
intros; simpl; auto.
auto.
Qed.
(** * Correctness of strength reduction *)
(** We now show that strength reduction over operators and addressing
modes preserve semantics: the strength-reduced operations and
addressings evaluate to the same values as the original ones if the
actual arguments match the static approximations used for strength
reduction. *)
Section STRENGTH_REDUCTION.
Variable app: reg -> approx.
Variable sp: val.
Variable rs: regset.
Hypothesis MATCH: forall r, val_match_approx (app r) rs#r.
Lemma intval_correct:
forall r n,
intval app r = Some n -> rs#r = Vint n.
Proof.
intros until n.
unfold intval. caseEq (app r); intros; try discriminate.
generalize (MATCH r). unfold val_match_approx. rewrite H.
congruence.
Qed.
Lemma cond_strength_reduction_correct:
forall cond args,
let (cond', args') := cond_strength_reduction app cond args in
eval_condition cond' rs##args' = eval_condition cond rs##args.
Proof.
intros. unfold cond_strength_reduction.
case (cond_strength_reduction_match cond args); intros.
caseEq (intval app r1); intros.
simpl. rewrite (intval_correct _ _ H).
destruct (rs#r2); auto. rewrite Int.swap_cmp. auto.
destruct c; reflexivity.
caseEq (intval app r2); intros.
simpl. rewrite (intval_correct _ _ H0). auto.
auto.
caseEq (intval app r1); intros.
simpl. rewrite (intval_correct _ _ H).
destruct (rs#r2); auto. rewrite Int.swap_cmpu. auto.
caseEq (intval app r2); intros.
simpl. rewrite (intval_correct _ _ H0). auto.
auto.
auto.
Qed.
Ltac KnownApprox :=
match goal with
| H: ?approx ?r = ?a |- _ =>
generalize (MATCH r); rewrite H; intro; clear H; KnownApprox
| _ => idtac
end.
Lemma addr_strength_reduction_correct:
forall addr args,
let (addr', args') := addr_strength_reduction app addr args in
eval_addressing ge sp addr' rs##args' = eval_addressing ge sp addr rs##args.
Proof.
intros.
unfold addr_strength_reduction. destruct (addr_strength_reduction_match addr args).
generalize (MATCH r1); caseEq (app r1); intros; auto.
simpl in H0. destruct H0 as [b [A B]]. simpl. rewrite A; rewrite B.
rewrite Int.add_commut; auto.
generalize (MATCH r1) (MATCH r2); caseEq (app r1); auto; caseEq (app r2); auto;
simpl val_match_approx; intros; try contradiction; simpl.
rewrite H2. destruct (rs#r1); auto. rewrite Int.add_assoc; auto. rewrite Int.add_assoc; auto.
destruct H2 as [b [A B]]. rewrite A; rewrite B.
destruct (rs#r1); auto. repeat rewrite Int.add_assoc. decEq. decEq. decEq. apply Int.add_commut.
rewrite H1. destruct (rs#r2); auto.
rewrite Int.add_assoc; auto. rewrite Int.add_permut. auto.
rewrite Int.add_assoc; auto.
rewrite H1; rewrite H2. rewrite Int.add_permut. rewrite Int.add_assoc. auto.
rewrite H1; rewrite H2. auto.
destruct H2 as [b [A B]]. rewrite A; rewrite B. rewrite H1. do 3 decEq. apply Int.add_commut.
rewrite H1; auto.
rewrite H1; auto.
destruct H1 as [b [A B]]. rewrite A; rewrite B. destruct (rs#r2); auto.
repeat rewrite Int.add_assoc. do 3 decEq. apply Int.add_commut.
destruct H1 as [b [A B]]. rewrite A; rewrite B; rewrite H2. auto.
rewrite H2. destruct (rs#r1); auto.
destruct H1 as [b [A B]]. destruct H2 as [b' [A' B']].
rewrite A; rewrite B; rewrite B'. auto.
generalize (MATCH r1) (MATCH r2); caseEq (app r1); auto; caseEq (app r2); auto;
simpl val_match_approx; intros; try contradiction; simpl.
rewrite H2. destruct (rs#r1); auto.
rewrite H1; rewrite H2. auto.
rewrite H1. auto.
destruct H1 as [b [A B]]. rewrite A; rewrite B.
destruct (rs#r2); auto. rewrite Int.add_assoc. do 3 decEq. apply Int.add_commut.
destruct H1 as [b [A B]]. rewrite A; rewrite B; rewrite H2. rewrite Int.add_assoc. auto.
rewrite H2. destruct (rs#r1); auto.
destruct H1 as [b [A B]]. destruct H2 as [b' [A' B']].
rewrite A; rewrite B; rewrite B'. auto.
generalize (MATCH r1); caseEq (app r1); auto;
simpl val_match_approx; intros; try contradiction; simpl.
rewrite H0. auto.
generalize (MATCH r1); caseEq (app r1); auto;
simpl val_match_approx; intros; try contradiction; simpl.
rewrite H0. rewrite Int.mul_commut. auto.
auto.
Qed.
Lemma make_shlimm_correct:
forall n r v,
let (op, args) := make_shlimm n r in
eval_operation ge sp Oshl (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_shlimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.shl_zero in H. congruence.
simpl in *. auto.
Qed.
Lemma make_shrimm_correct:
forall n r v,
let (op, args) := make_shrimm n r in
eval_operation ge sp Oshr (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_shrimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.shr_zero in H. congruence.
assumption.
Qed.
Lemma make_shruimm_correct:
forall n r v,
let (op, args) := make_shruimm n r in
eval_operation ge sp Oshru (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_shruimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.shru_zero in H. congruence.
assumption.
Qed.
Lemma make_mulimm_correct:
forall n r v,
let (op, args) := make_mulimm n r in
eval_operation ge sp Omul (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_mulimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in H0. FuncInv. rewrite Int.mul_zero in H. simpl. congruence.
generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intros.
subst n. simpl in H1. simpl. FuncInv. rewrite Int.mul_one in H0. congruence.
caseEq (Int.is_power2 n); intros.
replace (eval_operation ge sp Omul (rs # r :: Vint n :: nil))
with (eval_operation ge sp Oshl (rs # r :: Vint i :: nil)).
apply make_shlimm_correct.
simpl. generalize (Int.is_power2_range _ _ H1).
change (Z_of_nat Int.wordsize) with 32. intro. rewrite H2.
destruct rs#r; auto. rewrite (Int.mul_pow2 i0 _ _ H1). auto.
exact H2.
Qed.
Lemma make_andimm_correct:
forall n r v,
let (op, args) := make_andimm n r in
eval_operation ge sp Oand (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_andimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.and_zero in H. congruence.
generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
subst n. simpl in *. FuncInv. rewrite Int.and_mone in H0. congruence.
exact H1.
Qed.
Lemma make_orimm_correct:
forall n r v,
let (op, args) := make_orimm n r in
eval_operation ge sp Oor (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_orimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.or_zero in H. congruence.
generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
subst n. simpl in *. FuncInv. rewrite Int.or_mone in H0. congruence.
exact H1.
Qed.
Lemma make_xorimm_correct:
forall n r v,
let (op, args) := make_xorimm n r in
eval_operation ge sp Oxor (rs#r :: Vint n :: nil) = Some v ->
eval_operation ge sp op rs##args = Some v.
Proof.
intros; unfold make_xorimm.
generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
subst n. simpl in *. FuncInv. rewrite Int.xor_zero in H. congruence.
exact H0.
Qed.
Lemma op_strength_reduction_correct:
forall op args v,
let (op', args') := op_strength_reduction app op args in
eval_operation ge sp op rs##args = Some v ->
eval_operation ge sp op' rs##args' = Some v.
Proof.
intros; unfold op_strength_reduction;
case (op_strength_reduction_match op args); intros; simpl List.map.
(* Osub *)
caseEq (intval app r2); intros.
rewrite (intval_correct _ _ H).
unfold make_addimm. generalize (Int.eq_spec (Int.neg i) Int.zero).
destruct (Int.eq (Int.neg i) (Int.zero)); intros.
assert (i = Int.zero). rewrite <- (Int.neg_involutive i). rewrite H0. reflexivity.
subst i. simpl in *. destruct (rs#r1); inv H1; rewrite Int.sub_zero_l; auto.
simpl in *. destruct (rs#r1); inv H1; rewrite Int.sub_add_opp; auto.
auto.
(* Omul *)
caseEq (intval app r2); intros.
rewrite (intval_correct _ _ H). apply make_mulimm_correct.
assumption.
(* Odiv *)
caseEq (intval app r2); intros.
caseEq (Int.is_power2 i); intros.
caseEq (Int.ltu i0 (Int.repr 31)); intros.
rewrite (intval_correct _ _ H) in H2.
simpl in *; FuncInv. destruct (Int.eq i Int.zero). congruence.
rewrite H1. rewrite (Int.divs_pow2 i1 _ _ H0) in H2. auto.
assumption.
assumption.
assumption.
(* Odivu *)
caseEq (intval app r2); intros.
caseEq (Int.is_power2 i); intros.
rewrite (intval_correct _ _ H).
replace (eval_operation ge sp Odivu (rs # r1 :: Vint i :: nil))
with (eval_operation ge sp Oshru (rs # r1 :: Vint i0 :: nil)).
apply make_shruimm_correct.
simpl. destruct rs#r1; auto.
rewrite (Int.is_power2_range _ _ H0).
generalize (Int.eq_spec i Int.zero); case (Int.eq i Int.zero); intros.
subst i. discriminate.
rewrite (Int.divu_pow2 i1 _ _ H0). auto.
assumption.
assumption.
(* Omodu *)
caseEq (intval app r2); intros.
caseEq (Int.is_power2 i); intros.
rewrite (intval_correct _ _ H) in H1.
simpl in *; FuncInv. destruct (Int.eq i Int.zero). congruence.
rewrite (Int.modu_and i1 _ _ H0) in H1. auto.
assumption.
assumption.
(* Oand *)
caseEq (intval app r2); intros.
rewrite (intval_correct _ _ H). apply make_andimm_correct.
assumption.
(* Oor *)
caseEq (intval app r2); intros.
rewrite (intval_correct _ _ H). apply make_orimm_correct.
assumption.
(* Oxor *)
caseEq (intval app r2); intros.
rewrite (intval_correct _ _ H). apply make_xorimm_correct.
assumption.
(* Oshl *)
caseEq (intval app r2); intros.
caseEq (Int.ltu i Int.iwordsize); intros.
rewrite (intval_correct _ _ H). apply make_shlimm_correct.
assumption.
assumption.
(* Oshr *)
caseEq (intval app r2); intros.
caseEq (Int.ltu i Int.iwordsize); intros.
rewrite (intval_correct _ _ H). apply make_shrimm_correct.
assumption.
assumption.
(* Oshru *)
caseEq (intval app r2); intros.
caseEq (Int.ltu i Int.iwordsize); intros.
rewrite (intval_correct _ _ H). apply make_shruimm_correct.
assumption.
assumption.
(* Olea *)
generalize (addr_strength_reduction_correct addr args0).
destruct (addr_strength_reduction app addr args0) as [addr' args'].
intros. simpl in *. congruence.
(* Ocmp *)
generalize (cond_strength_reduction_correct c args0).
destruct (cond_strength_reduction app c args0).
simpl. intro. rewrite H. auto.
(* default *)
assumption.
Qed.
End STRENGTH_REDUCTION.
End ANALYSIS.
|