1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Static analysis and strength reduction for operators
and conditions. This is the machine-dependent part of [Constprop]. *)
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Registers.
(** * Static analysis *)
(** To each pseudo-register at each program point, the static analysis
associates a compile-time approximation taken from the following set. *)
Inductive approx : Type :=
| Novalue: approx (** No value possible, code is unreachable. *)
| Unknown: approx (** All values are possible,
no compile-time information is available. *)
| I: int -> approx (** A known integer value. *)
| F: float -> approx (** A known floating-point value. *)
| L: int64 -> approx (** A know 64-bit integer value. *)
| G: ident -> int -> approx
(** The value is the address of the given global
symbol plus the given integer offset. *)
| S: int -> approx. (** The value is the stack pointer plus the offset. *)
(** We now define the abstract interpretations of conditions and operators
over this set of approximations. For instance, the abstract interpretation
of the operator [Oaddf] applied to two expressions [a] and [b] is
[F(Float.add f g)] if [a] and [b] have static approximations [Vfloat f]
and [Vfloat g] respectively, and [Unknown] otherwise.
The static approximations are defined by large pattern-matchings over
the approximations of the results. We write these matchings in the
indirect style described in file [SelectOp] to avoid excessive
duplication of cases in proofs. *)
Nondetfunction eval_static_condition (cond: condition) (vl: list approx) :=
match cond, vl with
| Ccomp c, I n1 :: I n2 :: nil => Some(Int.cmp c n1 n2)
| Ccompu c, I n1 :: I n2 :: nil => Some(Int.cmpu c n1 n2)
| Ccompimm c n, I n1 :: nil => Some(Int.cmp c n1 n)
| Ccompuimm c n, I n1 :: nil => Some(Int.cmpu c n1 n)
| Ccompf c, F n1 :: F n2 :: nil => Some(Float.cmp c n1 n2)
| Cnotcompf c, F n1 :: F n2 :: nil => Some(negb(Float.cmp c n1 n2))
| Cmaskzero n, I n1 :: nil => Some(Int.eq (Int.and n1 n) Int.zero)
| Cmasknotzero n, I n1::nil => Some(negb(Int.eq (Int.and n1 n) Int.zero))
| _, _ => None
end.
Definition eval_static_condition_val (cond: condition) (vl: list approx) :=
match eval_static_condition cond vl with
| None => Unknown
| Some b => I(if b then Int.one else Int.zero)
end.
Definition eval_static_intoffloat (f: float) :=
match Float.intoffloat f with Some x => I x | None => Unknown end.
Nondetfunction eval_static_addressing (addr: addressing) (vl: list approx) :=
match addr, vl with
| Aindexed n, I n1::nil => I (Int.add n1 n)
| Aindexed n, G id ofs::nil => G id (Int.add ofs n)
| Aindexed n, S ofs::nil => S (Int.add ofs n)
| Aindexed2 n, I n1::I n2::nil => I (Int.add (Int.add n1 n2) n)
| Aindexed2 n, G id ofs::I n2::nil => G id (Int.add (Int.add ofs n2) n)
| Aindexed2 n, I n1::G id ofs::nil => G id (Int.add (Int.add ofs n1) n)
| Aindexed2 n, S ofs::I n2::nil => S (Int.add (Int.add ofs n2) n)
| Aindexed2 n, I n1::S ofs::nil => S (Int.add (Int.add ofs n1) n)
| Ascaled sc n, I n1::nil => I (Int.add (Int.mul n1 sc) n)
| Aindexed2scaled sc n, I n1::I n2::nil => I (Int.add n1 (Int.add (Int.mul n2 sc) n))
| Aindexed2scaled sc n, G id ofs::I n2::nil => G id (Int.add ofs (Int.add (Int.mul n2 sc) n))
| Aindexed2scaled sc n, S ofs::I n2::nil => S (Int.add ofs (Int.add (Int.mul n2 sc) n))
| Aglobal id ofs, nil => G id ofs
| Abased id ofs, I n1::nil => G id (Int.add ofs n1)
| Abasedscaled sc id ofs, I n1::nil => G id (Int.add ofs (Int.mul sc n1))
| Ainstack ofs, nil => S ofs
| _, _ => Unknown
end.
Parameter propagate_float_constants: unit -> bool.
Nondetfunction eval_static_operation (op: operation) (vl: list approx) :=
match op, vl with
| Omove, v1::nil => v1
| Ointconst n, nil => I n
| Ofloatconst n, nil => if propagate_float_constants tt then F n else Unknown
| Ocast8signed, I n1 :: nil => I(Int.sign_ext 8 n1)
| Ocast8unsigned, I n1 :: nil => I(Int.zero_ext 8 n1)
| Ocast16signed, I n1 :: nil => I(Int.sign_ext 16 n1)
| Ocast16unsigned, I n1 :: nil => I(Int.zero_ext 16 n1)
| Oneg, I n1 :: nil => I(Int.neg n1)
| Osub, I n1 :: I n2 :: nil => I(Int.sub n1 n2)
| Osub, G s1 n1 :: I n2 :: nil => G s1 (Int.sub n1 n2)
| Omul, I n1 :: I n2 :: nil => I(Int.mul n1 n2)
| Omulimm n, I n1 :: nil => I(Int.mul n1 n)
| Odiv, I n1 :: I n2 :: nil =>
if Int.eq n2 Int.zero then Unknown else
if Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone then Unknown
else I(Int.divs n1 n2)
| Odivu, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2)
| Omod, I n1 :: I n2 :: nil =>
if Int.eq n2 Int.zero then Unknown else
if Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone then Unknown
else I(Int.mods n1 n2)
| Omodu, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.modu n1 n2)
| Oand, I n1 :: I n2 :: nil => I(Int.and n1 n2)
| Oandimm n, I n1 :: nil => I(Int.and n1 n)
| Oor, I n1 :: I n2 :: nil => I(Int.or n1 n2)
| Oorimm n, I n1 :: nil => I(Int.or n1 n)
| Oxor, I n1 :: I n2 :: nil => I(Int.xor n1 n2)
| Oxorimm n, I n1 :: nil => I(Int.xor n1 n)
| Oshl, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shl n1 n2) else Unknown
| Oshlimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shl n1 n) else Unknown
| Oshr, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shr n1 n2) else Unknown
| Oshrimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shr n1 n) else Unknown
| Oshrximm n, I n1 :: nil => if Int.ltu n (Int.repr 31) then I(Int.shrx n1 n) else Unknown
| Oshru, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shru n1 n2) else Unknown
| Oshruimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shru n1 n) else Unknown
| Ororimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.ror n1 n) else Unknown
| Oshldimm n, I n1 :: I n2 :: nil =>
let n' := Int.sub Int.iwordsize n in
if Int.ltu n Int.iwordsize && Int.ltu n' Int.iwordsize
then I(Int.or (Int.shl n1 n) (Int.shru n2 n'))
else Unknown
| Olea mode, vl => eval_static_addressing mode vl
| Onegf, F n1 :: nil => F(Float.neg n1)
| Oabsf, F n1 :: nil => F(Float.abs n1)
| Oaddf, F n1 :: F n2 :: nil => F(Float.add n1 n2)
| Osubf, F n1 :: F n2 :: nil => F(Float.sub n1 n2)
| Omulf, F n1 :: F n2 :: nil => F(Float.mul n1 n2)
| Odivf, F n1 :: F n2 :: nil => F(Float.div n1 n2)
| Osingleoffloat, F n1 :: nil => F(Float.singleoffloat n1)
| Ointoffloat, F n1 :: nil => eval_static_intoffloat n1
| Ofloatofint, I n1 :: nil => if propagate_float_constants tt then F(Float.floatofint n1) else Unknown
| Omakelong, I n1 :: I n2 :: nil => L(Int64.ofwords n1 n2)
| Olowlong, L n :: nil => I(Int64.loword n)
| Ohighlong, L n :: nil => I(Int64.hiword n)
| Ocmp c, vl => eval_static_condition_val c vl
| _, _ => Unknown
end.
(** * Operator strength reduction *)
(** We now define auxiliary functions for strength reduction of
operators and addressing modes: replacing an operator with a cheaper
one if some of its arguments are statically known. These are again
large pattern-matchings expressed in indirect style. *)
Section STRENGTH_REDUCTION.
Variable app: reg -> approx.
Nondetfunction cond_strength_reduction
(cond: condition) (args: list reg) (vl: list approx) :=
match cond, args, vl with
| Ccomp c, r1 :: r2 :: nil, I n1 :: v2 :: nil =>
(Ccompimm (swap_comparison c) n1, r2 :: nil)
| Ccomp c, r1 :: r2 :: nil, v1 :: I n2 :: nil =>
(Ccompimm c n2, r1 :: nil)
| Ccompu c, r1 :: r2 :: nil, I n1 :: v2 :: nil =>
(Ccompuimm (swap_comparison c) n1, r2 :: nil)
| Ccompu c, r1 :: r2 :: nil, v1 :: I n2 :: nil =>
(Ccompuimm c n2, r1 :: nil)
| _, _, _ =>
(cond, args)
end.
Nondetfunction addr_strength_reduction
(addr: addressing) (args: list reg) (vl: list approx) :=
match addr, args, vl with
| Aindexed ofs, r1 :: nil, G symb n :: nil =>
(Aglobal symb (Int.add n ofs), nil)
| Aindexed ofs, r1 :: nil, S n :: nil =>
(Ainstack (Int.add n ofs), nil)
| Aindexed2 ofs, r1 :: r2 :: nil, G symb n1 :: I n2 :: nil =>
(Aglobal symb (Int.add (Int.add n1 n2) ofs), nil)
| Aindexed2 ofs, r1 :: r2 :: nil, I n1 :: G symb n2 :: nil =>
(Aglobal symb (Int.add (Int.add n1 n2) ofs), nil)
| Aindexed2 ofs, r1 :: r2 :: nil, S n1 :: I n2 :: nil =>
(Ainstack (Int.add (Int.add n1 n2) ofs), nil)
| Aindexed2 ofs, r1 :: r2 :: nil, I n1 :: S n2 :: nil =>
(Ainstack (Int.add (Int.add n1 n2) ofs), nil)
| Aindexed2 ofs, r1 :: r2 :: nil, G symb n1 :: v2 :: nil =>
(Abased symb (Int.add n1 ofs), r2 :: nil)
| Aindexed2 ofs, r1 :: r2 :: nil, v1 :: G symb n2 :: nil =>
(Abased symb (Int.add n2 ofs), r1 :: nil)
| Aindexed2 ofs, r1 :: r2 :: nil, I n1 :: v2 :: nil =>
(Aindexed (Int.add n1 ofs), r2 :: nil)
| Aindexed2 ofs, r1 :: r2 :: nil, v1 :: I n2 :: nil =>
(Aindexed (Int.add n2 ofs), r1 :: nil)
| Aindexed2scaled sc ofs, r1 :: r2 :: nil, G symb n1 :: I n2 :: nil =>
(Aglobal symb (Int.add (Int.add n1 (Int.mul n2 sc)) ofs), nil)
| Aindexed2scaled sc ofs, r1 :: r2 :: nil, G symb n1 :: v2 :: nil =>
(Abasedscaled sc symb (Int.add n1 ofs), r2 :: nil)
| Aindexed2scaled sc ofs, r1 :: r2 :: nil, v1 :: I n2 :: nil =>
(Aindexed (Int.add (Int.mul n2 sc) ofs), r1 :: nil)
| Abased id ofs, r1 :: nil, I n1 :: nil =>
(Aglobal id (Int.add ofs n1), nil)
| Abasedscaled sc id ofs, r1 :: nil, I n1 :: nil =>
(Aglobal id (Int.add ofs (Int.mul sc n1)), nil)
| _, _ =>
(addr, args)
end.
Definition make_addimm (n: int) (r: reg) :=
if Int.eq n Int.zero
then (Omove, r :: nil)
else (Olea (Aindexed n), r :: nil).
Definition make_shlimm (n: int) (r: reg) :=
if Int.eq n Int.zero
then (Omove, r :: nil)
else (Oshlimm n, r :: nil).
Definition make_shrimm (n: int) (r: reg) :=
if Int.eq n Int.zero
then (Omove, r :: nil)
else (Oshrimm n, r :: nil).
Definition make_shruimm (n: int) (r: reg) :=
if Int.eq n Int.zero
then (Omove, r :: nil)
else (Oshruimm n, r :: nil).
Definition make_mulimm (n: int) (r: reg) :=
if Int.eq n Int.zero then
(Ointconst Int.zero, nil)
else if Int.eq n Int.one then
(Omove, r :: nil)
else
match Int.is_power2 n with
| Some l => make_shlimm l r
| None => (Omulimm n, r :: nil)
end.
Definition make_andimm (n: int) (r: reg) :=
if Int.eq n Int.zero
then (Ointconst Int.zero, nil)
else if Int.eq n Int.mone then (Omove, r :: nil)
else (Oandimm n, r :: nil).
Definition make_orimm (n: int) (r: reg) :=
if Int.eq n Int.zero then (Omove, r :: nil)
else if Int.eq n Int.mone then (Ointconst Int.mone, nil)
else (Oorimm n, r :: nil).
Definition make_xorimm (n: int) (r: reg) :=
if Int.eq n Int.zero
then (Omove, r :: nil)
else (Oxorimm n, r :: nil).
Definition make_divimm n (r1 r2: reg) :=
match Int.is_power2 n with
| Some l => if Int.ltu l (Int.repr 31)
then (Oshrximm l, r1 :: nil)
else (Odiv, r1 :: r2 :: nil)
| None => (Odiv, r1 :: r2 :: nil)
end.
Definition make_divuimm n (r1 r2: reg) :=
match Int.is_power2 n with
| Some l => make_shruimm l r1
| None => (Odivu, r1 :: r2 :: nil)
end.
Definition make_moduimm n (r1 r2: reg) :=
match Int.is_power2 n with
| Some l => (Oandimm (Int.sub n Int.one), r1 :: nil)
| None => (Omodu, r1 :: r2 :: nil)
end.
(** We must be careful to preserve 2-address constraints over the
RTL code, which means that commutative operations cannot
be specialized if their first argument is a constant. *)
Nondetfunction op_strength_reduction
(op: operation) (args: list reg) (vl: list approx) :=
match op, args, vl with
| Osub, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_addimm (Int.neg n2) r1
| Omul, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_mulimm n2 r1
| Odiv, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divimm n2 r1 r2
| Odivu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divuimm n2 r1 r2
| Omodu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_moduimm n2 r1 r2
| Oand, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_andimm n2 r1
| Oor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_orimm n2 r1
| Oxor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_xorimm n2 r1
| Oshl, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shlimm n2 r1
| Oshr, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shrimm n2 r1
| Oshru, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shruimm n2 r1
| Olea addr, args, vl =>
let (addr', args') := addr_strength_reduction addr args vl in
(Olea addr', args')
| Ocmp c, args, vl =>
let (c', args') := cond_strength_reduction c args vl in
(Ocmp c', args')
| _, _, _ => (op, args)
end.
End STRENGTH_REDUCTION.
|