1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for x86 generation: main proof. *)
Require Import Coqlib.
Require Import Maps.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Machsem.
Require Import Machtyping.
Require Import Conventions.
Require Import Asm.
Require Import Asmgen.
Require Import Asmgenretaddr.
Require Import Asmgenproof1.
Section PRESERVATION.
Variable prog: Mach.program.
Variable tprog: Asm.program.
Hypothesis TRANSF: transf_program prog = Errors.OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall id, Genv.find_symbol tge id = Genv.find_symbol ge id.
Proof.
intros. unfold ge, tge.
apply Genv.find_symbol_transf_partial with transf_fundef.
exact TRANSF.
Qed.
Lemma functions_translated:
forall b f,
Genv.find_funct_ptr ge b = Some f ->
exists tf, Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = Errors.OK tf.
Proof
(Genv.find_funct_ptr_transf_partial transf_fundef _ TRANSF).
Lemma functions_transl:
forall fb f tf,
Genv.find_funct_ptr ge fb = Some (Internal f) ->
transf_function f = OK tf ->
Genv.find_funct_ptr tge fb = Some (Internal tf).
Proof.
intros. exploit functions_translated; eauto. intros [tf' [A B]].
monadInv B. rewrite H0 in EQ; inv EQ; auto.
Qed.
Lemma varinfo_preserved:
forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
intros. unfold ge, tge.
apply Genv.find_var_info_transf_partial with transf_fundef.
exact TRANSF.
Qed.
(** * Properties of control flow *)
Lemma find_instr_in:
forall c pos i,
find_instr pos c = Some i -> In i c.
Proof.
induction c; simpl. intros; discriminate.
intros until i. case (zeq pos 0); intros.
left; congruence. right; eauto.
Qed.
Lemma find_instr_tail:
forall c1 i c2 pos,
code_tail pos c1 (i :: c2) ->
find_instr pos c1 = Some i.
Proof.
induction c1; simpl; intros.
inv H.
destruct (zeq pos 0). subst pos.
inv H. auto. generalize (code_tail_pos _ _ _ H4). intro. omegaContradiction.
inv H. congruence. replace (pos0 + 1 - 1) with pos0 by omega.
eauto.
Qed.
Remark code_tail_bounds:
forall fn ofs i c,
code_tail ofs fn (i :: c) -> 0 <= ofs < list_length_z fn.
Proof.
assert (forall ofs fn c, code_tail ofs fn c ->
forall i c', c = i :: c' -> 0 <= ofs < list_length_z fn).
induction 1; intros; simpl.
rewrite H. rewrite list_length_z_cons. generalize (list_length_z_pos c'). omega.
rewrite list_length_z_cons. generalize (IHcode_tail _ _ H0). omega.
eauto.
Qed.
Lemma code_tail_next:
forall fn ofs i c,
code_tail ofs fn (i :: c) ->
code_tail (ofs + 1) fn c.
Proof.
assert (forall ofs fn c, code_tail ofs fn c ->
forall i c', c = i :: c' -> code_tail (ofs + 1) fn c').
induction 1; intros.
subst c. constructor. constructor.
constructor. eauto.
eauto.
Qed.
Lemma code_tail_next_int:
forall fn ofs i c,
list_length_z fn <= Int.max_unsigned ->
code_tail (Int.unsigned ofs) fn (i :: c) ->
code_tail (Int.unsigned (Int.add ofs Int.one)) fn c.
Proof.
intros. rewrite Int.add_unsigned.
change (Int.unsigned Int.one) with 1.
rewrite Int.unsigned_repr. apply code_tail_next with i; auto.
generalize (code_tail_bounds _ _ _ _ H0). omega.
Qed.
Lemma transf_function_no_overflow:
forall f tf,
transf_function f = OK tf -> list_length_z tf <= Int.max_unsigned.
Proof.
intros. monadInv H. destruct (zlt (list_length_z x) Int.max_unsigned); monadInv EQ0.
rewrite list_length_z_cons. omega.
Qed.
(** [transl_code_at_pc pc fn c] holds if the code pointer [pc] points
within the IA32 code generated by translating Mach function [fn],
and [c] is the tail of the generated code at the position corresponding
to the code pointer [pc]. *)
Inductive transl_code_at_pc: val -> block -> Mach.function -> Mach.code -> bool ->
Asm.code -> Asm.code -> Prop :=
transl_code_at_pc_intro:
forall b ofs f c ep tf tc,
Genv.find_funct_ptr ge b = Some (Internal f) ->
transf_function f = OK tf ->
transl_code f c ep = OK tc ->
code_tail (Int.unsigned ofs) tf tc ->
transl_code_at_pc (Vptr b ofs) b f c ep tf tc.
(** The following lemmas show that straight-line executions
(predicate [exec_straight]) correspond to correct PPC executions
(predicate [exec_steps]) under adequate [transl_code_at_pc] hypotheses. *)
Lemma exec_straight_steps_1:
forall fn c rs m c' rs' m',
exec_straight tge fn c rs m c' rs' m' ->
list_length_z fn <= Int.max_unsigned ->
forall b ofs,
rs#PC = Vptr b ofs ->
Genv.find_funct_ptr tge b = Some (Internal fn) ->
code_tail (Int.unsigned ofs) fn c ->
plus step tge (State rs m) E0 (State rs' m').
Proof.
induction 1; intros.
apply plus_one.
econstructor; eauto.
eapply find_instr_tail. eauto.
eapply plus_left'.
econstructor; eauto.
eapply find_instr_tail. eauto.
apply IHexec_straight with b (Int.add ofs Int.one).
auto. rewrite H0. rewrite H3. reflexivity.
auto.
apply code_tail_next_int with i; auto.
traceEq.
Qed.
Lemma exec_straight_steps_2:
forall fn c rs m c' rs' m',
exec_straight tge fn c rs m c' rs' m' ->
list_length_z fn <= Int.max_unsigned ->
forall b ofs,
rs#PC = Vptr b ofs ->
Genv.find_funct_ptr tge b = Some (Internal fn) ->
code_tail (Int.unsigned ofs) fn c ->
exists ofs',
rs'#PC = Vptr b ofs'
/\ code_tail (Int.unsigned ofs') fn c'.
Proof.
induction 1; intros.
exists (Int.add ofs Int.one). split.
rewrite H0. rewrite H2. auto.
apply code_tail_next_int with i1; auto.
apply IHexec_straight with (Int.add ofs Int.one).
auto. rewrite H0. rewrite H3. reflexivity. auto.
apply code_tail_next_int with i; auto.
Qed.
Lemma exec_straight_exec:
forall fb f c ep tf tc c' rs m rs' m',
transl_code_at_pc (rs PC) fb f c ep tf tc ->
exec_straight tge tf tc rs m c' rs' m' ->
plus step tge (State rs m) E0 (State rs' m').
Proof.
intros. inv H.
eapply exec_straight_steps_1; eauto.
eapply transf_function_no_overflow; eauto.
eapply functions_transl; eauto.
Qed.
Lemma exec_straight_at:
forall fb f c ep tf tc c' ep' tc' rs m rs' m',
transl_code_at_pc (rs PC) fb f c ep tf tc ->
transl_code f c' ep' = OK tc' ->
exec_straight tge tf tc rs m tc' rs' m' ->
transl_code_at_pc (rs' PC) fb f c' ep' tf tc'.
Proof.
intros. inv H.
exploit exec_straight_steps_2; eauto.
eapply transf_function_no_overflow; eauto.
eapply functions_transl; eauto.
intros [ofs' [PC' CT']].
rewrite PC'. constructor; auto.
Qed.
(** Correctness of the return addresses predicted by
[Asmgen.return_address_offset]. *)
Remark code_tail_no_bigger:
forall pos c1 c2, code_tail pos c1 c2 -> (length c2 <= length c1)%nat.
Proof.
induction 1; simpl; omega.
Qed.
Remark code_tail_unique:
forall fn c pos pos',
code_tail pos fn c -> code_tail pos' fn c -> pos = pos'.
Proof.
induction fn; intros until pos'; intros ITA CT; inv ITA; inv CT; auto.
generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
f_equal. eauto.
Qed.
Lemma return_address_offset_correct:
forall b ofs fb f c tf tc ofs',
transl_code_at_pc (Vptr b ofs) fb f c false tf tc ->
return_address_offset f c ofs' ->
ofs' = ofs.
Proof.
intros. inv H0. inv H.
exploit code_tail_unique. eexact H12. eapply H1; eauto. intro.
subst ofs0. apply Int.repr_unsigned.
Qed.
(** The [find_label] function returns the code tail starting at the
given label. A connection with [code_tail] is then established. *)
Fixpoint find_label (lbl: label) (c: code) {struct c} : option code :=
match c with
| nil => None
| instr :: c' =>
if is_label lbl instr then Some c' else find_label lbl c'
end.
Lemma label_pos_code_tail:
forall lbl c pos c',
find_label lbl c = Some c' ->
exists pos',
label_pos lbl pos c = Some pos'
/\ code_tail (pos' - pos) c c'
/\ pos < pos' <= pos + list_length_z c.
Proof.
induction c.
simpl; intros. discriminate.
simpl; intros until c'.
case (is_label lbl a).
intro EQ; injection EQ; intro; subst c'.
exists (pos + 1). split. auto. split.
replace (pos + 1 - pos) with (0 + 1) by omega. constructor. constructor.
rewrite list_length_z_cons. generalize (list_length_z_pos c). omega.
intros. generalize (IHc (pos + 1) c' H). intros [pos' [A [B C]]].
exists pos'. split. auto. split.
replace (pos' - pos) with ((pos' - (pos + 1)) + 1) by omega.
constructor. auto.
rewrite list_length_z_cons. omega.
Qed.
(** The following lemmas show that the translation from Mach to Asm
preserves labels, in the sense that the following diagram commutes:
<<
translation
Mach code ------------------------ Asm instr sequence
| |
| Mach.find_label lbl find_label lbl |
| |
v v
Mach code tail ------------------- Asm instr seq tail
translation
>>
The proof demands many boring lemmas showing that Asm constructor
functions do not introduce new labels.
*)
Section TRANSL_LABEL.
Variable lbl: label.
Remark mk_mov_label:
forall rd rs k c, mk_mov rd rs k = OK c -> find_label lbl c = find_label lbl k.
Proof.
unfold mk_mov; intros.
destruct rd; try discriminate; destruct rs; inv H; auto.
Qed.
Remark mk_shift_label:
forall f r1 r2 k c, mk_shift f r1 r2 k = OK c ->
(forall r, is_label lbl (f r) = false) ->
find_label lbl c = find_label lbl k.
Proof.
unfold mk_shift; intros.
destruct (ireg_eq r2 ECX); monadInv H; simpl; rewrite H0; auto.
Qed.
Remark mk_div_label:
forall f r1 r2 k c, mk_div f r1 r2 k = OK c ->
(forall r, is_label lbl (f r) = false) ->
find_label lbl c = find_label lbl k.
Proof.
unfold mk_div; intros.
destruct (ireg_eq r1 EAX).
destruct (ireg_eq r2 EDX); monadInv H; simpl; rewrite H0; auto.
destruct (ireg_eq r2 EAX); monadInv H; simpl; rewrite H0; auto.
Qed.
Remark mk_mod_label:
forall f r1 r2 k c, mk_mod f r1 r2 k = OK c ->
(forall r, is_label lbl (f r) = false) ->
find_label lbl c = find_label lbl k.
Proof.
unfold mk_mod; intros.
destruct (ireg_eq r1 EAX).
destruct (ireg_eq r2 EDX); monadInv H; simpl; rewrite H0; auto.
destruct (ireg_eq r2 EDX); monadInv H; simpl; rewrite H0; auto.
Qed.
Remark mk_shrximm_label:
forall r n k c, mk_shrximm r n k = OK c -> find_label lbl c = find_label lbl k.
Proof.
intros. monadInv H; auto.
Qed.
Remark mk_intconv_label:
forall f r1 r2 k c, mk_intconv f r1 r2 k = OK c ->
(forall r r', is_label lbl (f r r') = false) ->
find_label lbl c = find_label lbl k.
Proof.
unfold mk_intconv; intros. destruct (low_ireg r2); inv H; simpl; rewrite H0; auto.
Qed.
Remark mk_smallstore_label:
forall f addr r k c, mk_smallstore f addr r k = OK c ->
(forall r addr, is_label lbl (f r addr) = false) ->
find_label lbl c = find_label lbl k.
Proof.
unfold mk_smallstore; intros. destruct (low_ireg r).
monadInv H; simpl; rewrite H0; auto.
destruct (addressing_mentions addr ECX); monadInv H; simpl; rewrite H0; auto.
Qed.
Remark loadind_label:
forall base ofs ty dst k c,
loadind base ofs ty dst k = OK c ->
find_label lbl c = find_label lbl k.
Proof.
unfold loadind; intros. destruct ty.
monadInv H; auto.
destruct (preg_of dst); inv H; auto.
Qed.
Remark storeind_label:
forall base ofs ty src k c,
storeind src base ofs ty k = OK c ->
find_label lbl c = find_label lbl k.
Proof.
unfold storeind; intros. destruct ty.
monadInv H; auto.
destruct (preg_of src); inv H; auto.
Qed.
Ltac ArgsInv :=
match goal with
| [ H: Error _ = OK _ |- _ ] => discriminate
| [ H: match ?args with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct args; ArgsInv
| [ H: bind _ _ = OK _ |- _ ] => monadInv H; ArgsInv
| _ => idtac
end.
Remark transl_cond_label:
forall cond args k c,
transl_cond cond args k = OK c ->
find_label lbl c = find_label lbl k.
Proof.
unfold transl_cond; intros.
destruct cond; ArgsInv; auto.
destruct (Int.eq_dec i Int.zero); auto.
destruct c0; auto.
destruct c0; auto.
Qed.
Remark transl_op_label:
forall op args r k c,
transl_op op args r k = OK c ->
find_label lbl c = find_label lbl k.
Proof.
unfold transl_op; intros. destruct op; ArgsInv; auto.
eapply mk_mov_label; eauto.
eapply mk_intconv_label; eauto.
eapply mk_intconv_label; eauto.
eapply mk_intconv_label; eauto.
eapply mk_intconv_label; eauto.
eapply mk_div_label; eauto.
eapply mk_div_label; eauto.
eapply mk_mod_label; eauto.
eapply mk_mod_label; eauto.
eapply mk_shift_label; eauto.
eapply mk_shift_label; eauto.
eapply mk_shrximm_label; eauto.
eapply mk_shift_label; eauto.
eapply trans_eq. eapply transl_cond_label; eauto. auto.
Qed.
Remark transl_load_label:
forall chunk addr args dest k c,
transl_load chunk addr args dest k = OK c ->
find_label lbl c = find_label lbl k.
Proof.
intros. monadInv H. destruct chunk; monadInv EQ0; auto.
Qed.
Remark transl_store_label:
forall chunk addr args src k c,
transl_store chunk addr args src k = OK c ->
find_label lbl c = find_label lbl k.
Proof.
intros. monadInv H. destruct chunk; monadInv EQ0; auto; eapply mk_smallstore_label; eauto.
Qed.
Lemma transl_instr_label:
forall f i ep k c,
transl_instr f i ep k = OK c ->
find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k.
Proof.
intros. generalize (Mach.is_label_correct lbl i).
case (Mach.is_label lbl i); intro.
subst i. monadInv H. simpl. rewrite peq_true. auto.
Opaque loadind.
destruct i; simpl in H.
eapply loadind_label; eauto.
eapply storeind_label; eauto.
destruct ep. eapply loadind_label; eauto. monadInv H. eapply trans_eq; eapply loadind_label; eauto.
eapply transl_op_label; eauto.
eapply transl_load_label; eauto.
eapply transl_store_label; eauto.
destruct s0; monadInv H; auto.
destruct s0; monadInv H; auto.
monadInv H; auto.
inv H; simpl. destruct (peq lbl l). congruence. auto.
monadInv H; auto.
eapply trans_eq. eapply transl_cond_label; eauto. auto.
monadInv H; auto.
monadInv H; auto.
Qed.
Lemma transl_code_label:
forall f c ep tc,
transl_code f c ep = OK tc ->
match Mach.find_label lbl c with
| None => find_label lbl tc = None
| Some c' => exists tc', find_label lbl tc = Some tc' /\ transl_code f c' false = OK tc'
end.
Proof.
induction c; simpl; intros.
inv H. auto.
monadInv H. rewrite (transl_instr_label _ _ _ _ _ EQ0).
generalize (Mach.is_label_correct lbl a).
destruct (Mach.is_label lbl a); intros.
subst a. simpl in EQ. exists x; auto.
eapply IHc; eauto.
Qed.
Lemma transl_find_label:
forall f tf,
transf_function f = OK tf ->
match Mach.find_label lbl f.(fn_code) with
| None => find_label lbl tf = None
| Some c => exists tc, find_label lbl tf = Some tc /\ transl_code f c false = OK tc
end.
Proof.
intros. monadInv H. destruct (zlt (list_length_z x) Int.max_unsigned); inv EQ0.
simpl. eapply transl_code_label; eauto.
Qed.
End TRANSL_LABEL.
(** A valid branch in a piece of Mach code translates to a valid ``go to''
transition in the generated PPC code. *)
Lemma find_label_goto_label:
forall f tf lbl rs m c' b ofs,
Genv.find_funct_ptr ge b = Some (Internal f) ->
transf_function f = OK tf ->
rs PC = Vptr b ofs ->
Mach.find_label lbl f.(fn_code) = Some c' ->
exists tc', exists rs',
goto_label tf lbl rs m = Next rs' m
/\ transl_code_at_pc (rs' PC) b f c' false tf tc'
/\ forall r, r <> PC -> rs'#r = rs#r.
Proof.
intros. exploit (transl_find_label lbl f tf); eauto. rewrite H2.
intros [tc [A B]].
exploit label_pos_code_tail; eauto. instantiate (1 := 0).
intros [pos' [P [Q R]]].
exists tc; exists (rs#PC <- (Vptr b (Int.repr pos'))).
split. unfold goto_label. rewrite P. rewrite H1. auto.
split. rewrite Pregmap.gss. constructor; auto.
rewrite Int.unsigned_repr. replace (pos' - 0) with pos' in Q.
auto. omega.
generalize (transf_function_no_overflow _ _ H0). omega.
intros. apply Pregmap.gso; auto.
Qed.
(** * Proof of semantic preservation *)
(** Semantic preservation is proved using simulation diagrams
of the following form.
<<
st1 --------------- st2
| |
t| *|t
| |
v v
st1'--------------- st2'
>>
The invariant is the [match_states] predicate below, which includes:
- The PPC code pointed by the PC register is the translation of
the current Mach code sequence.
- Mach register values and PPC register values agree.
*)
Inductive match_stack: list Machsem.stackframe -> Prop :=
| match_stack_nil:
match_stack nil
| match_stack_cons: forall fb sp ra c s f tf tc,
Genv.find_funct_ptr ge fb = Some (Internal f) ->
transl_code_at_pc ra fb f c false tf tc ->
sp <> Vundef -> ra <> Vundef ->
match_stack s ->
match_stack (Stackframe fb sp ra c :: s).
Inductive match_states: Machsem.state -> Asm.state -> Prop :=
| match_states_intro:
forall s fb sp c ep ms m m' rs f tf tc
(STACKS: match_stack s)
(FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
(MEXT: Mem.extends m m')
(AT: transl_code_at_pc (rs PC) fb f c ep tf tc)
(AG: agree ms sp rs)
(DXP: ep = true -> rs#EDX = parent_sp s),
match_states (Machsem.State s fb sp c ms m)
(Asm.State rs m')
| match_states_call:
forall s fb ms m m' rs
(STACKS: match_stack s)
(MEXT: Mem.extends m m')
(AG: agree ms (parent_sp s) rs)
(ATPC: rs PC = Vptr fb Int.zero)
(ATLR: rs RA = parent_ra s),
match_states (Machsem.Callstate s fb ms m)
(Asm.State rs m')
| match_states_return:
forall s ms m m' rs
(STACKS: match_stack s)
(MEXT: Mem.extends m m')
(AG: agree ms (parent_sp s) rs)
(ATPC: rs PC = parent_ra s),
match_states (Machsem.Returnstate s ms m)
(Asm.State rs m').
Lemma exec_straight_steps:
forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2,
match_stack s ->
Mem.extends m2 m2' ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
transl_code_at_pc (rs1 PC) fb f (i :: c) ep tf tc ->
(forall k c, transl_instr f i ep k = OK c ->
exists rs2,
exec_straight tge tf c rs1 m1' k rs2 m2'
/\ agree ms2 sp rs2
/\ (edx_preserved ep i = true -> rs2#EDX = parent_sp s)) ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
match_states (Machsem.State s fb sp c ms2 m2) st'.
Proof.
intros. inversion H2. subst. monadInv H7.
exploit H3; eauto. intros [rs2 [A [B C]]].
exists (State rs2 m2'); split.
eapply exec_straight_exec; eauto.
econstructor; eauto. eapply exec_straight_at; eauto.
Qed.
Lemma parent_sp_def: forall s, match_stack s -> parent_sp s <> Vundef.
Proof. induction 1; simpl. congruence. auto. Qed.
Lemma parent_ra_def: forall s, match_stack s -> parent_ra s <> Vundef.
Proof. induction 1; simpl. unfold Vzero. congruence. auto. Qed.
Lemma lessdef_parent_sp:
forall s v,
match_stack s -> Val.lessdef (parent_sp s) v -> v = parent_sp s.
Proof.
intros. inv H0. auto. exploit parent_sp_def; eauto. tauto.
Qed.
Lemma lessdef_parent_ra:
forall s v,
match_stack s -> Val.lessdef (parent_ra s) v -> v = parent_ra s.
Proof.
intros. inv H0. auto. exploit parent_ra_def; eauto. tauto.
Qed.
(** We need to show that, in the simulation diagram, we cannot
take infinitely many Mach transitions that correspond to zero
transitions on the PPC side. Actually, all Mach transitions
correspond to at least one Asm transition, except the
transition from [Machsem.Returnstate] to [Machsem.State].
So, the following integer measure will suffice to rule out
the unwanted behaviour. *)
Definition measure (s: Machsem.state) : nat :=
match s with
| Machsem.State _ _ _ _ _ _ => 0%nat
| Machsem.Callstate _ _ _ _ => 0%nat
| Machsem.Returnstate _ _ _ => 1%nat
end.
(** We show the simulation diagram by case analysis on the Mach transition
on the left. Since the proof is large, we break it into one lemma
per transition. *)
Definition exec_instr_prop (s1: Machsem.state) (t: trace) (s2: Machsem.state) : Prop :=
forall s1' (MS: match_states s1 s1'),
(exists s2', plus step tge s1' t s2' /\ match_states s2 s2')
\/ (measure s2 < measure s1 /\ t = E0 /\ match_states s2 s1')%nat.
Lemma exec_Mlabel_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
(m : mem),
exec_instr_prop (Machsem.State s fb sp (Mlabel lbl :: c) ms m) E0
(Machsem.State s fb sp c ms m).
Proof.
intros; red; intros; inv MS.
left; eapply exec_straight_steps; eauto; intros.
monadInv H. econstructor; split. apply exec_straight_one. simpl; eauto. auto.
split. apply agree_nextinstr; auto. simpl; congruence.
Qed.
Lemma exec_Mgetstack_prop:
forall (s : list stackframe) (fb : block) (sp : val) (ofs : int)
(ty : typ) (dst : mreg) (c : list Mach.instruction)
(ms : Mach.regset) (m : mem) (v : val),
load_stack m sp ty ofs = Some v ->
exec_instr_prop (Machsem.State s fb sp (Mgetstack ofs ty dst :: c) ms m) E0
(Machsem.State s fb sp c (Regmap.set dst v ms) m).
Proof.
intros; red; intros; inv MS.
unfold load_stack in H.
exploit Mem.loadv_extends; eauto. intros [v' [A B]].
rewrite (sp_val _ _ _ AG) in A.
left; eapply exec_straight_steps; eauto. intros. simpl in H0.
exploit loadind_correct; eauto. intros [rs' [P [Q R]]].
exists rs'; split. eauto.
split. eapply agree_set_mreg; eauto. congruence.
simpl; congruence.
Qed.
Lemma exec_Msetstack_prop:
forall (s : list stackframe) (fb : block) (sp : val) (src : mreg)
(ofs : int) (ty : typ) (c : list Mach.instruction)
(ms : mreg -> val) (m m' : mem),
store_stack m sp ty ofs (ms src) = Some m' ->
exec_instr_prop (Machsem.State s fb sp (Msetstack src ofs ty :: c) ms m) E0
(Machsem.State s fb sp c ms m').
Proof.
intros; red; intros; inv MS.
unfold store_stack in H.
assert (Val.lessdef (ms src) (rs (preg_of src))). eapply preg_val; eauto.
exploit Mem.storev_extends; eauto. intros [m2' [A B]].
rewrite (sp_val _ _ _ AG) in A.
left; eapply exec_straight_steps; eauto. intros. simpl in H1.
exploit storeind_correct; eauto. intros [rs' [P Q]].
exists rs'; split. eauto.
split. eapply agree_exten; eauto.
simpl; intros. rewrite Q; auto with ppcgen.
Qed.
Lemma exec_Mgetparam_prop:
forall (s : list stackframe) (fb : block) (f: Mach.function) (sp : val)
(ofs : int) (ty : typ) (dst : mreg) (c : list Mach.instruction)
(ms : Mach.regset) (m : mem) (v : val),
Genv.find_funct_ptr ge fb = Some (Internal f) ->
load_stack m sp Tint f.(fn_link_ofs) = Some (parent_sp s) ->
load_stack m (parent_sp s) ty ofs = Some v ->
exec_instr_prop (Machsem.State s fb sp (Mgetparam ofs ty dst :: c) ms m) E0
(Machsem.State s fb sp c (Regmap.set dst v (Regmap.set IT1 Vundef ms)) m).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
unfold load_stack in *.
exploit Mem.loadv_extends. eauto. eexact H0. auto.
intros [parent' [A B]]. rewrite (sp_val _ _ _ AG) in A.
assert (parent' = parent_sp s). inv B. auto. rewrite <- H3 in H1. simpl in H1. congruence.
subst parent'.
exploit Mem.loadv_extends. eauto. eexact H1. auto.
intros [v' [C D]].
Opaque loadind.
left; eapply exec_straight_steps; eauto; intros.
assert (DIFF: negb (mreg_eq dst IT1) = true -> IR EDX <> preg_of dst).
intros. change (IR EDX) with (preg_of IT1). red; intros.
exploit preg_of_injective; eauto. intros. subst dst.
unfold proj_sumbool in H3. rewrite dec_eq_true in H3. simpl in H3. congruence.
destruct ep; simpl in H2.
(* EDX contains parent *)
exploit loadind_correct. eexact H2.
instantiate (2 := rs). rewrite DXP; eauto.
intros [rs1 [P [Q R]]].
exists rs1; split. eauto.
split. eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto.
simpl; intros. rewrite R; auto.
(* EDX does not contain parent *)
monadInv H2.
exploit loadind_correct. eexact EQ0. eauto. intros [rs1 [P [Q R]]]. simpl in Q.
exploit loadind_correct. eexact EQ. instantiate (2 := rs1). rewrite Q. eauto.
intros [rs2 [S [T U]]].
exists rs2; split. eapply exec_straight_trans; eauto.
split. eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto.
simpl; intros. rewrite U; auto.
Qed.
Lemma exec_Mop_prop:
forall (s : list stackframe) (fb : block) (sp : val) (op : operation)
(args : list mreg) (res : mreg) (c : list Mach.instruction)
(ms : mreg -> val) (m : mem) (v : val),
eval_operation ge sp op ms ## args m = Some v ->
exec_instr_prop (Machsem.State s fb sp (Mop op args res :: c) ms m) E0
(Machsem.State s fb sp c (Regmap.set res v (undef_op op ms)) m).
Proof.
intros; red; intros; inv MS.
assert (eval_operation tge sp op ms##args m = Some v).
rewrite <- H. apply eval_operation_preserved. exact symbols_preserved.
exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eexact H0.
intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A.
left; eapply exec_straight_steps; eauto; intros. simpl in H1.
exploit transl_op_correct; eauto. intros [rs2 [P [Q R]]].
exists rs2; split. eauto.
split. rewrite <- Q in B.
unfold undef_op.
destruct op; try (eapply agree_set_undef_mreg; eauto).
eapply agree_set_mreg; eauto.
simpl; congruence.
Qed.
Lemma exec_Mload_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(chunk : memory_chunk) (addr : addressing) (args : list mreg)
(dst : mreg) (c : list Mach.instruction) (ms : mreg -> val)
(m : mem) (a v : val),
eval_addressing ge sp addr ms ## args = Some a ->
Mem.loadv chunk m a = Some v ->
exec_instr_prop (Machsem.State s fb sp (Mload chunk addr args dst :: c) ms m)
E0 (Machsem.State s fb sp c (Regmap.set dst v (undef_temps ms)) m).
Proof.
intros; red; intros; inv MS.
assert (eval_addressing tge sp addr ms##args = Some a).
rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
exploit Mem.loadv_extends; eauto. intros [v' [C D]].
left; eapply exec_straight_steps; eauto; intros. simpl in H2.
exploit transl_load_correct; eauto. intros [rs2 [P [Q R]]].
exists rs2; split. eauto.
split. eapply agree_set_undef_mreg; eauto. congruence.
simpl; congruence.
Qed.
Lemma exec_Mstore_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(chunk : memory_chunk) (addr : addressing) (args : list mreg)
(src : mreg) (c : list Mach.instruction) (ms : mreg -> val)
(m m' : mem) (a : val),
eval_addressing ge sp addr ms ## args = Some a ->
Mem.storev chunk m a (ms src) = Some m' ->
exec_instr_prop (Machsem.State s fb sp (Mstore chunk addr args src :: c) ms m) E0
(Machsem.State s fb sp c (undef_temps ms) m').
Proof.
intros; red; intros; inv MS.
assert (eval_addressing tge sp addr ms##args = Some a).
rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
assert (Val.lessdef (ms src) (rs (preg_of src))). eapply preg_val; eauto.
exploit Mem.storev_extends; eauto. intros [m2' [C D]].
left; eapply exec_straight_steps; eauto; intros. simpl in H3.
exploit transl_store_correct; eauto. intros [rs2 [P Q]].
exists rs2; split. eauto.
split. eapply agree_exten_temps; eauto.
simpl; congruence.
Qed.
Lemma exec_Mcall_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(sig : signature) (ros : mreg + ident) (c : Mach.code)
(ms : Mach.regset) (m : mem) (f : function) (f' : block)
(ra : int),
find_function_ptr ge ros ms = Some f' ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
return_address_offset f c ra ->
exec_instr_prop (Machsem.State s fb sp (Mcall sig ros :: c) ms m) E0
(Callstate (Stackframe fb sp (Vptr fb ra) c :: s) f' ms m).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
inv AT.
assert (NOOV: list_length_z tf <= Int.max_unsigned).
eapply transf_function_no_overflow; eauto.
destruct ros as [rf|fid]; simpl in H; monadInv H5.
(* Indirect call *)
assert (DEST: ms rf = Vptr f' Int.zero).
destruct (ms rf); try discriminate.
generalize (Int.eq_spec i Int.zero); destruct (Int.eq i Int.zero); congruence.
clear H.
generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1.
assert (TCA: transl_code_at_pc (Vptr fb (Int.add ofs Int.one)) fb f c false tf x).
econstructor; eauto.
exploit return_address_offset_correct; eauto. intros; subst ra.
left; econstructor; split.
apply plus_one. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto.
constructor; auto.
econstructor; eauto. eapply agree_sp_def; eauto. congruence.
simpl. eapply agree_exten; eauto. intros. repeat rewrite Pregmap.gso; auto with ppcgen.
exploit ireg_val; eauto. rewrite DEST. intros LD. inv LD. auto.
rewrite <- H2. auto.
(* Direct call *)
generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1.
assert (TCA: transl_code_at_pc (Vptr fb (Int.add ofs Int.one)) fb f c false tf x).
econstructor; eauto.
exploit return_address_offset_correct; eauto. intros; subst ra.
left; econstructor; split.
apply plus_one. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite H. eauto.
constructor; auto.
econstructor; eauto. eapply agree_sp_def; eauto. congruence.
simpl. eapply agree_exten; eauto. intros. repeat rewrite Pregmap.gso; auto with ppcgen.
rewrite <- H2. auto.
Qed.
Lemma agree_change_sp:
forall ms sp rs sp',
agree ms sp rs -> sp' <> Vundef ->
agree ms sp' (rs#ESP <- sp').
Proof.
intros. inv H. split. apply Pregmap.gss. auto.
intros. rewrite Pregmap.gso; auto with ppcgen.
Qed.
Lemma exec_Mtailcall_prop:
forall (s : list stackframe) (fb stk : block) (soff : int)
(sig : signature) (ros : mreg + ident) (c : list Mach.instruction)
(ms : Mach.regset) (m : mem) (f: Mach.function) (f' : block) m',
find_function_ptr ge ros ms = Some f' ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
exec_instr_prop
(Machsem.State s fb (Vptr stk soff) (Mtailcall sig ros :: c) ms m) E0
(Callstate s f' ms m').
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
inv AT.
assert (NOOV: list_length_z tf <= Int.max_unsigned).
eapply transf_function_no_overflow; eauto.
rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *.
exploit Mem.loadv_extends. eauto. eexact H1. auto. simpl. intros [parent' [A B]].
exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B.
exploit Mem.loadv_extends. eauto. eexact H2. auto. simpl. intros [ra' [C D]].
exploit lessdef_parent_ra; eauto. intros. subst ra'. clear D.
exploit Mem.free_parallel_extends; eauto. intros [m2' [E F]].
destruct ros as [rf|fid]; simpl in H; monadInv H7.
(* Indirect call *)
assert (DEST: ms rf = Vptr f' Int.zero).
destruct (ms rf); try discriminate.
generalize (Int.eq_spec i Int.zero); destruct (Int.eq i Int.zero); congruence.
clear H.
generalize (code_tail_next_int _ _ _ _ NOOV H8). intro CT1.
left; econstructor; split.
eapply plus_left. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto.
apply star_one. eapply exec_step_internal.
transitivity (Val.add rs#PC Vone). auto. rewrite <- H4. simpl. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto. traceEq.
constructor; auto.
apply agree_set_other; auto. apply agree_nextinstr. apply agree_set_other; auto.
eapply agree_change_sp; eauto. eapply parent_sp_def; eauto.
rewrite Pregmap.gss. rewrite nextinstr_inv; auto with ppcgen.
repeat rewrite Pregmap.gso; auto with ppcgen.
exploit ireg_val; eauto. rewrite DEST. intros LD. inv LD. auto.
generalize (preg_of_not_ESP rf). rewrite (ireg_of_eq _ _ EQ1). congruence.
(* Direct call *)
generalize (code_tail_next_int _ _ _ _ NOOV H8). intro CT1.
left; econstructor; split.
eapply plus_left. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto.
apply star_one. eapply exec_step_internal.
transitivity (Val.add rs#PC Vone). auto. rewrite <- H4. simpl. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto. traceEq.
constructor; auto.
apply agree_set_other; auto. apply agree_nextinstr. apply agree_set_other; auto.
eapply agree_change_sp; eauto. eapply parent_sp_def; eauto.
rewrite Pregmap.gss. unfold symbol_offset. rewrite symbols_preserved. rewrite H. auto.
Qed.
Lemma exec_Mgoto_prop:
forall (s : list stackframe) (fb : block) (f : function) (sp : val)
(lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
(m : mem) (c' : Mach.code),
Genv.find_funct_ptr ge fb = Some (Internal f) ->
Mach.find_label lbl (fn_code f) = Some c' ->
exec_instr_prop (Machsem.State s fb sp (Mgoto lbl :: c) ms m) E0
(Machsem.State s fb sp c' ms m).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
inv AT. monadInv H4.
exploit find_label_goto_label; eauto. intros [tc' [rs' [GOTO [AT2 INV]]]].
left; exists (State rs' m'); split.
apply plus_one. econstructor; eauto.
eapply functions_transl; eauto.
eapply find_instr_tail; eauto.
simpl; eauto.
econstructor; eauto.
eapply agree_exten; eauto with ppcgen.
congruence.
Qed.
Lemma exec_Mbuiltin_prop:
forall (s : list stackframe) (f : block) (sp : val)
(ms : Mach.regset) (m : mem) (ef : external_function)
(args : list mreg) (res : mreg) (b : list Mach.instruction)
(t : trace) (v : val) (m' : mem),
external_call ef ge ms ## args m t v m' ->
exec_instr_prop (Machsem.State s f sp (Mbuiltin ef args res :: b) ms m) t
(Machsem.State s f sp b (Regmap.set res v (undef_temps ms)) m').
Proof.
intros; red; intros; inv MS.
inv AT. monadInv H3.
exploit functions_transl; eauto. intro FN.
generalize (transf_function_no_overflow _ _ H2); intro NOOV.
exploit external_call_mem_extends; eauto. eapply preg_vals; eauto.
intros [vres' [m2' [A [B [C D]]]]].
left. econstructor; split. apply plus_one.
eapply exec_step_builtin. eauto. eauto.
eapply find_instr_tail; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
econstructor; eauto.
instantiate (2 := tf); instantiate (1 := x).
unfold nextinstr_nf, nextinstr. rewrite Pregmap.gss.
simpl undef_regs. repeat rewrite Pregmap.gso; auto with ppcgen.
rewrite <- H0. simpl. econstructor; eauto.
eapply code_tail_next_int; eauto.
apply agree_nextinstr_nf. eapply agree_set_undef_mreg; eauto.
rewrite Pregmap.gss. auto.
intros. repeat rewrite Pregmap.gso; auto with ppcgen.
congruence.
Qed.
Lemma exec_Mcond_true_prop:
forall (s : list stackframe) (fb : block) (f : function) (sp : val)
(cond : condition) (args : list mreg) (lbl : Mach.label)
(c : list Mach.instruction) (ms : mreg -> val) (m : mem)
(c' : Mach.code),
eval_condition cond ms ## args m = Some true ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
Mach.find_label lbl (fn_code f) = Some c' ->
exec_instr_prop (Machsem.State s fb sp (Mcond cond args lbl :: c) ms m) E0
(Machsem.State s fb sp c' (undef_temps ms) m).
Proof.
intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0.
exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
inv AT. monadInv H5.
exploit transl_cond_correct; eauto. intros [rs' [A [B C]]].
generalize (functions_transl _ _ _ FIND H4); intro FN.
generalize (transf_function_no_overflow _ _ H4); intro NOOV.
exploit exec_straight_steps_2; eauto.
intros [ofs' [PC2 CT2]].
exploit find_label_goto_label; eauto.
intros [tc' [rs3 [GOTO [AT3 INV3]]]].
left; exists (State rs3 m'); split.
eapply plus_right'.
eapply exec_straight_steps_1; eauto.
econstructor; eauto.
eapply find_instr_tail. eauto. simpl. rewrite B. eauto. traceEq.
econstructor; eauto.
eapply agree_exten_temps; eauto. intros. rewrite INV3; auto with ppcgen.
congruence.
Qed.
Lemma exec_Mcond_false_prop:
forall (s : list stackframe) (fb : block) (sp : val)
(cond : condition) (args : list mreg) (lbl : Mach.label)
(c : list Mach.instruction) (ms : mreg -> val) (m : mem),
eval_condition cond ms ## args m = Some false ->
exec_instr_prop (Machsem.State s fb sp (Mcond cond args lbl :: c) ms m) E0
(Machsem.State s fb sp c (undef_temps ms) m).
Proof.
intros; red; intros; inv MS.
exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
left; eapply exec_straight_steps; eauto. intros. simpl in H0.
exploit transl_cond_correct; eauto. intros [rs' [A [B C]]].
econstructor; split.
eapply exec_straight_trans. eexact A.
apply exec_straight_one. simpl. rewrite B. eauto. auto.
split. apply agree_nextinstr. eapply agree_exten_temps; eauto.
simpl; congruence.
Qed.
Lemma exec_Mjumptable_prop:
forall (s : list stackframe) (fb : block) (f : function) (sp : val)
(arg : mreg) (tbl : list Mach.label) (c : list Mach.instruction)
(rs : mreg -> val) (m : mem) (n : int) (lbl : Mach.label)
(c' : Mach.code),
rs arg = Vint n ->
list_nth_z tbl (Int.unsigned n) = Some lbl ->
Genv.find_funct_ptr ge fb = Some (Internal f) ->
Mach.find_label lbl (fn_code f) = Some c' ->
exec_instr_prop
(Machsem.State s fb sp (Mjumptable arg tbl :: c) rs m) E0
(Machsem.State s fb sp c' (undef_temps rs) m).
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
inv AT. monadInv H6.
exploit functions_transl; eauto. intro FN.
generalize (transf_function_no_overflow _ _ H5); intro NOOV.
exploit find_label_goto_label. eauto. eauto. instantiate (2 := rs0#ECX <- Vundef #EDX <- Vundef).
rewrite Pregmap.gso; auto with ppcgen. rewrite Pregmap.gso; auto with ppcgen. eauto. eauto.
intros [tc' [rs' [A [B C]]]].
exploit ireg_val; eauto. rewrite H. intros LD; inv LD.
left; econstructor; split.
apply plus_one. econstructor; eauto.
eapply find_instr_tail; eauto.
simpl. rewrite <- H9. unfold Mach.label in H0; unfold label; rewrite H0. eauto.
econstructor; eauto.
eapply agree_exten_temps; eauto. intros. rewrite C; auto with ppcgen.
repeat rewrite Pregmap.gso; auto with ppcgen.
congruence.
Qed.
Lemma exec_Mreturn_prop:
forall (s : list stackframe) (fb stk : block) (soff : int)
(c : list Mach.instruction) (ms : Mach.regset) (m : mem) (f: Mach.function) m',
Genv.find_funct_ptr ge fb = Some (Internal f) ->
load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
exec_instr_prop (Machsem.State s fb (Vptr stk soff) (Mreturn :: c) ms m) E0
(Returnstate s ms m').
Proof.
intros; red; intros; inv MS.
assert (f0 = f) by congruence. subst f0.
inv AT.
assert (NOOV: list_length_z tf <= Int.max_unsigned).
eapply transf_function_no_overflow; eauto.
rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *.
exploit Mem.loadv_extends. eauto. eexact H0. auto. simpl. intros [parent' [A B]].
exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B.
exploit Mem.loadv_extends. eauto. eexact H1. auto. simpl. intros [ra' [C D]].
exploit lessdef_parent_ra; eauto. intros. subst ra'. clear D.
exploit Mem.free_parallel_extends; eauto. intros [m2' [E F]].
monadInv H6.
exploit code_tail_next_int; eauto. intro CT1.
left; econstructor; split.
eapply plus_left. eapply exec_step_internal. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto.
apply star_one. eapply exec_step_internal.
transitivity (Val.add rs#PC Vone). auto. rewrite <- H3. simpl. eauto.
eapply functions_transl; eauto. eapply find_instr_tail; eauto.
simpl. eauto. traceEq.
constructor; auto.
apply agree_set_other; auto. apply agree_nextinstr. apply agree_set_other; auto.
eapply agree_change_sp; eauto. eapply parent_sp_def; eauto.
Qed.
Lemma exec_function_internal_prop:
forall (s : list stackframe) (fb : block) (ms : Mach.regset)
(m : mem) (f : function) (m1 m2 m3 : mem) (stk : block),
Genv.find_funct_ptr ge fb = Some (Internal f) ->
Mem.alloc m 0 (fn_stacksize f) = (m1, stk) ->
let sp := Vptr stk Int.zero in
store_stack m1 sp Tint f.(fn_link_ofs) (parent_sp s) = Some m2 ->
store_stack m2 sp Tint f.(fn_retaddr_ofs) (parent_ra s) = Some m3 ->
exec_instr_prop (Machsem.Callstate s fb ms m) E0
(Machsem.State s fb sp (fn_code f) (undef_temps ms) m3).
Proof.
intros; red; intros; inv MS.
exploit functions_translated; eauto. intros [tf [A B]]. monadInv B.
generalize EQ; intros EQ'. monadInv EQ'.
destruct (zlt (list_length_z x0) Int.max_unsigned); inversion EQ1. clear EQ1.
unfold store_stack in *.
exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl.
intros [m1' [C D]].
exploit Mem.storev_extends. eauto. eexact H1. eauto. eauto.
intros [m2' [E F]].
exploit Mem.storev_extends. eexact F. eauto. eauto. eauto.
intros [m3' [P Q]].
left; econstructor; split.
apply plus_one. econstructor; eauto.
rewrite <- H4; simpl. eauto.
simpl. rewrite C. simpl in E. rewrite (sp_val _ _ _ AG) in E. rewrite E.
rewrite ATLR. simpl in P. rewrite P. eauto.
econstructor; eauto.
unfold nextinstr. rewrite Pregmap.gss. repeat rewrite Pregmap.gso; auto with ppcgen.
rewrite ATPC. simpl. constructor; eauto.
subst x. eapply code_tail_next_int. rewrite list_length_z_cons. omega.
constructor.
apply agree_nextinstr. eapply agree_change_sp; eauto.
apply agree_exten_temps with rs; eauto.
intros. apply Pregmap.gso; auto with ppcgen.
congruence.
intros. rewrite nextinstr_inv; auto with ppcgen.
rewrite Pregmap.gso; auto with ppcgen.
rewrite Pregmap.gss. eapply agree_sp; eauto.
Qed.
Lemma exec_function_external_prop:
forall (s : list stackframe) (fb : block) (ms : Mach.regset)
(m : mem) (t0 : trace) (ms' : RegEq.t -> val)
(ef : external_function) (args : list val) (res : val) (m': mem),
Genv.find_funct_ptr ge fb = Some (External ef) ->
external_call ef ge args m t0 res m' ->
Machsem.extcall_arguments ms m (parent_sp s) (ef_sig ef) args ->
ms' = Regmap.set (loc_result (ef_sig ef)) res ms ->
exec_instr_prop (Machsem.Callstate s fb ms m)
t0 (Machsem.Returnstate s ms' m').
Proof.
intros; red; intros; inv MS.
exploit functions_translated; eauto.
intros [tf [A B]]. simpl in B. inv B.
exploit extcall_arguments_match; eauto.
intros [args' [C D]].
exploit external_call_mem_extends; eauto.
intros [res' [m2' [P [Q [R S]]]]].
left; econstructor; split.
apply plus_one. eapply exec_step_external; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
econstructor; eauto.
unfold loc_external_result.
eapply agree_set_mreg; eauto.
rewrite Pregmap.gso; auto with ppcgen. rewrite Pregmap.gss. auto.
intros. repeat rewrite Pregmap.gso; auto with ppcgen.
Qed.
Lemma exec_return_prop:
forall (s : list stackframe) (fb : block) (sp ra : val)
(c : Mach.code) (ms : Mach.regset) (m : mem),
exec_instr_prop (Machsem.Returnstate (Stackframe fb sp ra c :: s) ms m) E0
(Machsem.State s fb sp c ms m).
Proof.
intros; red; intros; inv MS. inv STACKS. simpl in *.
right. split. omega. split. auto.
econstructor; eauto. rewrite ATPC; eauto.
congruence.
Qed.
Theorem transf_instr_correct:
forall s1 t s2, Machsem.step ge s1 t s2 ->
exec_instr_prop s1 t s2.
Proof
(Machsem.step_ind ge exec_instr_prop
exec_Mlabel_prop
exec_Mgetstack_prop
exec_Msetstack_prop
exec_Mgetparam_prop
exec_Mop_prop
exec_Mload_prop
exec_Mstore_prop
exec_Mcall_prop
exec_Mtailcall_prop
exec_Mbuiltin_prop
exec_Mgoto_prop
exec_Mcond_true_prop
exec_Mcond_false_prop
exec_Mjumptable_prop
exec_Mreturn_prop
exec_function_internal_prop
exec_function_external_prop
exec_return_prop).
Lemma transf_initial_states:
forall st1, Machsem.initial_state prog st1 ->
exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inversion H. unfold ge0 in *.
econstructor; split.
econstructor.
eapply Genv.init_mem_transf_partial; eauto.
replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero)
with (Vptr fb Int.zero).
econstructor; eauto. constructor. apply Mem.extends_refl.
split. auto. unfold parent_sp; congruence.
intros. repeat rewrite Pregmap.gso; auto with ppcgen.
destruct r; simpl; congruence.
unfold symbol_offset.
rewrite (transform_partial_program_main _ _ TRANSF).
rewrite symbols_preserved. unfold ge; rewrite H1. auto.
Qed.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 -> Machsem.final_state st1 r -> Asm.final_state st2 r.
Proof.
intros. inv H0. inv H. constructor. auto.
compute in H1.
generalize (preg_val _ _ _ AX AG). rewrite H1. intros LD; inv LD. auto.
Qed.
Theorem transf_program_correct:
forall (beh: program_behavior), not_wrong beh ->
Machsem.exec_program prog beh -> Asm.exec_program tprog beh.
Proof.
unfold Machsem.exec_program, Asm.exec_program; intros.
eapply simulation_star_preservation with (measure := measure); eauto.
eexact transf_initial_states.
eexact transf_final_states.
exact transf_instr_correct.
Qed.
End PRESERVATION.
|