summaryrefslogtreecommitdiff
path: root/flocq/Prop/Fprop_relative.v
blob: 8df7336185abf8c9a34641cd220119a457f9528b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010-2011 Sylvie Boldo
#<br />#
Copyright (C) 2010-2011 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * Relative error of the roundings *)
Require Import Fcore.

Section Fprop_relative.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Section Fprop_relative_generic.

Variable fexp : Z -> Z.
Context { prop_exp : Valid_exp fexp }.

Section relative_error_conversion.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Lemma relative_error_lt_conversion :
  forall x b, (0 < b)%R ->
  (Rabs (round beta fexp rnd x - x) < b * Rabs x)%R ->
  exists eps,
  (Rabs eps < b)%R /\ round beta fexp rnd x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x b Hb0 Hxb.
destruct (Req_dec x 0) as [Hx0|Hx0].
(* *)
exists R0.
split.
now rewrite Rabs_R0.
rewrite Hx0, Rmult_0_l.
apply round_0...
(* *)
exists ((round beta fexp rnd x - x) / x)%R.
split. 2: now field.
unfold Rdiv.
rewrite Rabs_mult.
apply Rmult_lt_reg_r with (Rabs x).
now apply Rabs_pos_lt.
rewrite Rmult_assoc, <- Rabs_mult.
rewrite Rinv_l with (1 := Hx0).
now rewrite Rabs_R1, Rmult_1_r.
Qed.

Lemma relative_error_le_conversion :
  forall x b, (0 <= b)%R ->
  (Rabs (round beta fexp rnd x - x) <= b * Rabs x)%R ->
  exists eps,
  (Rabs eps <= b)%R /\ round beta fexp rnd x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x b Hb0 Hxb.
destruct (Req_dec x 0) as [Hx0|Hx0].
(* *)
exists R0.
split.
now rewrite Rabs_R0.
rewrite Hx0, Rmult_0_l.
apply round_0...
(* *)
exists ((round beta fexp rnd x - x) / x)%R.
split. 2: now field.
unfold Rdiv.
rewrite Rabs_mult.
apply Rmult_le_reg_r with (Rabs x).
now apply Rabs_pos_lt.
rewrite Rmult_assoc, <- Rabs_mult.
rewrite Rinv_l with (1 := Hx0).
now rewrite Rabs_R1, Rmult_1_r.
Qed.

End relative_error_conversion.

Variable emin p : Z.
Hypothesis Hmin : forall k, (emin < k)%Z -> (p <= k - fexp k)%Z.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Theorem relative_error :
  forall x,
  (bpow emin <= Rabs x)%R ->
  (Rabs (round beta fexp rnd x - x) < bpow (-p + 1) * Rabs x)%R.
Proof.
intros x Hx.
apply Rlt_le_trans with (ulp beta fexp x)%R.
now apply ulp_error.
unfold ulp, canonic_exp.
assert (Hx': (x <> 0)%R).
intros H.
apply Rlt_not_le with (2 := Hx).
rewrite H, Rabs_R0.
apply bpow_gt_0.
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He Hx').
apply Rle_trans with (bpow (-p + 1) * bpow (ex - 1))%R.
rewrite <- bpow_plus.
apply bpow_le.
assert (emin < ex)%Z.
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := proj2 He).
exact Hx.
generalize (Hmin ex).
omega.
apply Rmult_le_compat_l.
apply bpow_ge_0.
apply He.
Qed.

(** 1+#&epsilon;# property in any rounding *)
Theorem relative_error_ex :
  forall x,
  (bpow emin <= Rabs x)%R ->
  exists eps,
  (Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error_lt_conversion...
apply bpow_gt_0.
now apply relative_error.
Qed.

Theorem relative_error_F2R_emin :
  forall m, let x := F2R (Float beta m emin) in
  (x <> 0)%R ->
  (Rabs (round beta fexp rnd x - x) < bpow (-p + 1) * Rabs x)%R.
Proof.
intros m x Hx.
apply relative_error.
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
apply F2R_lt_reg with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.

Theorem relative_error_F2R_emin_ex :
  forall m, let x := F2R (Float beta m emin) in
  (x <> 0)%R ->
  exists eps,
  (Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros m x Hx.
apply relative_error_lt_conversion...
apply bpow_gt_0.
now apply relative_error_F2R_emin.
Qed.

Theorem relative_error_round :
  (0 < p)%Z ->
  forall x,
  (bpow emin <= Rabs x)%R ->
  (Rabs (round beta fexp rnd x - x) < bpow (-p + 1) * Rabs (round beta fexp rnd x))%R.
Proof with auto with typeclass_instances.
intros Hp x Hx.
apply Rlt_le_trans with (ulp beta fexp x)%R.
now apply ulp_error.
assert (Hx': (x <> 0)%R).
intros H.
apply Rlt_not_le with (2 := Hx).
rewrite H, Rabs_R0.
apply bpow_gt_0.
unfold ulp, canonic_exp.
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He Hx').
assert (He': (emin < ex)%Z).
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := proj2 He).
exact Hx.
apply Rle_trans with (bpow (-p + 1) * bpow (ex - 1))%R.
rewrite <- bpow_plus.
apply bpow_le.
generalize (Hmin ex).
omega.
apply Rmult_le_compat_l.
apply bpow_ge_0.
generalize He.
apply round_abs_abs...
clear rnd valid_rnd x Hx Hx' He.
intros rnd valid_rnd x Hx.
rewrite <- (round_generic beta fexp rnd (bpow (ex - 1))).
now apply round_le.
apply generic_format_bpow.
ring_simplify (ex - 1 + 1)%Z.
generalize (Hmin ex).
omega.
Qed.

Theorem relative_error_round_F2R_emin :
  (0 < p)%Z ->
  forall m, let x := F2R (Float beta m emin) in
  (x <> 0)%R ->
  (Rabs (round beta fexp rnd x - x) < bpow (-p + 1) * Rabs (round beta fexp rnd x))%R.
Proof.
intros Hp m x Hx.
apply relative_error_round.
exact Hp.
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
apply F2R_lt_reg with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.

Variable choice : Z -> bool.

Theorem relative_error_N :
  forall x,
  (bpow emin <= Rabs x)%R ->
  (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * bpow (-p + 1) * Rabs x)%R.
Proof.
intros x Hx.
apply Rle_trans with (/2 * ulp beta fexp x)%R.
now apply ulp_half_error.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
assert (Hx': (x <> 0)%R).
intros H.
apply Rlt_not_le with (2 := Hx).
rewrite H, Rabs_R0.
apply bpow_gt_0.
unfold ulp, canonic_exp.
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He Hx').
apply Rle_trans with (bpow (-p + 1) * bpow (ex - 1))%R.
rewrite <- bpow_plus.
apply bpow_le.
assert (emin < ex)%Z.
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := proj2 He).
exact Hx.
generalize (Hmin ex).
omega.
apply Rmult_le_compat_l.
apply bpow_ge_0.
apply He.
Qed.

(** 1+#&epsilon;# property in rounding to nearest *)
Theorem relative_error_N_ex :
  forall x,
  (bpow emin <= Rabs x)%R ->
  exists eps,
  (Rabs eps <= /2 * bpow (-p + 1))%R /\ round beta fexp (Znearest choice) x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
apply bpow_gt_0.
now apply relative_error_N.
Qed.

Theorem relative_error_N_F2R_emin :
  forall m, let x := F2R (Float beta m emin) in
  (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * bpow (-p + 1) * Rabs x)%R.
Proof with auto with typeclass_instances.
intros m x.
destruct (Req_dec x 0) as [Hx|Hx].
(* . *)
rewrite Hx, round_0...
unfold Rminus.
rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0.
rewrite Rmult_0_r.
apply Rle_refl.
(* . *)
apply relative_error_N.
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
apply F2R_lt_reg with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.

Theorem relative_error_N_F2R_emin_ex :
  forall m, let x := F2R (Float beta m emin) in
  exists eps,
  (Rabs eps <= /2 * bpow (-p + 1))%R /\ round beta fexp (Znearest choice) x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros m x.
apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
apply bpow_gt_0.
now apply relative_error_N_F2R_emin.
Qed.

Theorem relative_error_N_round :
  (0 < p)%Z ->
  forall x,
  (bpow emin <= Rabs x)%R ->
  (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * bpow (-p + 1) * Rabs (round beta fexp (Znearest choice) x))%R.
Proof with auto with typeclass_instances.
intros Hp x Hx.
apply Rle_trans with (/2 * ulp beta fexp x)%R.
now apply ulp_half_error.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
assert (Hx': (x <> 0)%R).
intros H.
apply Rlt_not_le with (2 := Hx).
rewrite H, Rabs_R0.
apply bpow_gt_0.
unfold ulp, canonic_exp.
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He Hx').
assert (He': (emin < ex)%Z).
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := proj2 He).
exact Hx.
apply Rle_trans with (bpow (-p + 1) * bpow (ex - 1))%R.
rewrite <- bpow_plus.
apply bpow_le.
generalize (Hmin ex).
omega.
apply Rmult_le_compat_l.
apply bpow_ge_0.
generalize He.
apply round_abs_abs...
clear rnd valid_rnd x Hx Hx' He.
intros rnd valid_rnd x Hx.
rewrite <- (round_generic beta fexp rnd (bpow (ex - 1))).
now apply round_le.
apply generic_format_bpow.
ring_simplify (ex - 1 + 1)%Z.
generalize (Hmin ex).
omega.
Qed.

Theorem relative_error_N_round_F2R_emin :
  (0 < p)%Z ->
  forall m, let x := F2R (Float beta m emin) in
  (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * bpow (-p + 1) * Rabs (round beta fexp (Znearest choice) x))%R.
Proof with auto with typeclass_instances.
intros Hp m x.
destruct (Req_dec x 0) as [Hx|Hx].
(* . *)
rewrite Hx, round_0...
unfold Rminus.
rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0.
rewrite Rmult_0_r.
apply Rle_refl.
(* . *)
apply relative_error_N_round with (1 := Hp).
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
apply F2R_lt_reg with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.

End Fprop_relative_generic.

Section Fprop_relative_FLT.

Variable emin prec : Z.
Variable Hp : Zlt 0 prec.

Lemma relative_error_FLT_aux :
  forall k, (emin + prec - 1 < k)%Z -> (prec <= k - FLT_exp emin prec k)%Z.
Proof.
intros k Hk.
unfold FLT_exp.
generalize (Zmax_spec (k - prec) emin).
omega.
Qed.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Theorem relative_error_FLT_F2R_emin :
  forall m, let x := F2R (Float beta m (emin + prec - 1)) in
  (x <> 0)%R ->
  (Rabs (round beta (FLT_exp emin prec) rnd x - x) < bpow (-prec + 1) * Rabs x)%R.
Proof with auto with typeclass_instances.
intros m x Hx.
apply relative_error_F2R_emin...
apply relative_error_FLT_aux.
Qed.

Theorem relative_error_FLT :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  (Rabs (round beta (FLT_exp emin prec) rnd x - x) < bpow (-prec + 1) * Rabs x)%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error with (emin + prec - 1)%Z...
apply relative_error_FLT_aux.
Qed.

Theorem relative_error_FLT_F2R_emin_ex :
  forall m, let x := F2R (Float beta m (emin + prec - 1)) in
  (x <> 0)%R ->
  exists eps,
  (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLT_exp emin prec) rnd x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros m x Hx.
apply relative_error_lt_conversion...
apply bpow_gt_0.
now apply relative_error_FLT_F2R_emin.
Qed.

(** 1+#&epsilon;# property in any rounding in FLT *)
Theorem relative_error_FLT_ex :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  exists eps,
  (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLT_exp emin prec) rnd x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error_lt_conversion...
apply bpow_gt_0.
now apply relative_error_FLT.
Qed.

Variable choice : Z -> bool.

Theorem relative_error_N_FLT :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs x)%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error_N with (emin + prec - 1)%Z...
apply relative_error_FLT_aux.
Qed.

(** 1+#&epsilon;# property in rounding to nearest in FLT *)
Theorem relative_error_N_FLT_ex :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  exists eps,
  (Rabs eps <= /2 * bpow (-prec + 1))%R /\ round beta (FLT_exp emin prec) (Znearest choice) x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
apply bpow_gt_0.
now apply relative_error_N_FLT.
Qed.

Theorem relative_error_N_FLT_round :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs (round beta (FLT_exp emin prec) (Znearest choice) x))%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error_N_round with (emin + prec - 1)%Z...
apply relative_error_FLT_aux.
Qed.

Theorem relative_error_N_FLT_F2R_emin :
  forall m, let x := F2R (Float beta m (emin + prec - 1)) in
  (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs x)%R.
Proof with auto with typeclass_instances.
intros m x.
apply relative_error_N_F2R_emin...
apply relative_error_FLT_aux.
Qed.

Theorem relative_error_N_FLT_F2R_emin_ex :
  forall m, let x := F2R (Float beta m (emin + prec - 1)) in
  exists eps,
  (Rabs eps <= /2 * bpow (-prec + 1))%R /\ round beta (FLT_exp emin prec) (Znearest choice) x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros m x.
apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
apply bpow_gt_0.
now apply relative_error_N_FLT_F2R_emin.
Qed.

Theorem relative_error_N_FLT_round_F2R_emin :
  forall m, let x := F2R (Float beta m (emin + prec - 1)) in
  (Rabs (round beta (FLT_exp emin prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs (round beta (FLT_exp emin prec) (Znearest choice) x))%R.
Proof with auto with typeclass_instances.
intros m x.
apply relative_error_N_round_F2R_emin...
apply relative_error_FLT_aux.
Qed.

Lemma error_N_FLT_aux :
  forall x,
  (0 < x)%R ->
  exists eps, exists  eta,
  (Rabs eps <= /2 * bpow (-prec + 1))%R /\
  (Rabs eta <= /2 * bpow (emin))%R      /\
  (eps*eta=0)%R /\
  round beta (FLT_exp emin prec) (Znearest choice) x = (x * (1 + eps) + eta)%R.
Proof.
intros x Hx2.
case (Rle_or_lt (bpow (emin+prec)) x); intros Hx.
(* *)
destruct relative_error_N_ex with (FLT_exp emin prec) (emin+prec)%Z prec choice x
  as (eps,(Heps1,Heps2)).
now apply FLT_exp_valid.
intros; unfold FLT_exp.
rewrite Zmax_left; omega.
rewrite Rabs_right;[assumption|apply Rle_ge; now left].
exists eps; exists 0%R.
split;[assumption|split].
rewrite Rabs_R0; apply Rmult_le_pos.
auto with real.
apply bpow_ge_0.
split;[apply Rmult_0_r|idtac].
now rewrite Rplus_0_r.
(* *)
exists 0%R; exists (round beta (FLT_exp emin prec) (Znearest choice) x - x)%R.
split.
rewrite Rabs_R0; apply Rmult_le_pos.
auto with real.
apply bpow_ge_0.
split.
apply Rle_trans with (/2*ulp beta (FLT_exp emin prec) x)%R.
apply ulp_half_error.
now apply FLT_exp_valid.
apply Rmult_le_compat_l; auto with real.
unfold ulp.
apply bpow_le.
unfold FLT_exp, canonic_exp.
rewrite Zmax_right.
omega.
destruct (ln_beta beta x) as (e,He); simpl.
assert (e-1 < emin+prec)%Z.
apply (lt_bpow beta).
apply Rle_lt_trans with (2:=Hx).
rewrite <- (Rabs_right x).
apply He; auto with real.
apply Rle_ge; now left.
omega.
split;ring.
Qed.

End Fprop_relative_FLT.

Section Fprop_relative_FLX.

Variable prec : Z.
Variable Hp : Zlt 0 prec.

Lemma relative_error_FLX_aux :
  forall k, (prec <= k - FLX_exp prec k)%Z.
Proof.
intros k.
unfold FLX_exp.
omega.
Qed.

Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Theorem relative_error_FLX :
  forall x,
  (x <> 0)%R ->
  (Rabs (round beta (FLX_exp prec) rnd x - x) < bpow (-prec + 1) * Rabs x)%R.
Proof with auto with typeclass_instances.
intros x Hx.
destruct (ln_beta beta x) as (ex, He).
specialize (He Hx).
apply relative_error with (ex - 1)%Z...
intros k _.
apply relative_error_FLX_aux.
apply He.
Qed.

(** 1+#&epsilon;# property in any rounding in FLX *)
Theorem relative_error_FLX_ex :
  forall x,
  (x <> 0)%R ->
  exists eps,
  (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLX_exp prec) rnd x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x Hx.
apply relative_error_lt_conversion...
apply bpow_gt_0.
now apply relative_error_FLX.
Qed.

Theorem relative_error_FLX_round :
  forall x,
  (x <> 0)%R ->
  (Rabs (round beta (FLX_exp prec) rnd x - x) < bpow (-prec + 1) * Rabs (round beta (FLX_exp prec) rnd x))%R.
Proof with auto with typeclass_instances.
intros x Hx.
destruct (ln_beta beta x) as (ex, He).
specialize (He Hx).
apply relative_error_round with (ex - 1)%Z...
intros k _.
apply relative_error_FLX_aux.
apply He.
Qed.

Variable choice : Z -> bool.

Theorem relative_error_N_FLX :
  forall x,
  (Rabs (round beta (FLX_exp prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs x)%R.
Proof with auto with typeclass_instances.
intros x.
destruct (Req_dec x 0) as [Hx|Hx].
(* . *)
rewrite Hx, round_0...
unfold Rminus.
rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0.
rewrite Rmult_0_r.
apply Rle_refl.
(* . *)
destruct (ln_beta beta x) as (ex, He).
specialize (He Hx).
apply relative_error_N with (ex - 1)%Z...
intros k _.
apply relative_error_FLX_aux.
apply He.
Qed.

(** 1+#&epsilon;# property in rounding to nearest in FLX *)
Theorem relative_error_N_FLX_ex :
  forall x,
  exists eps,
  (Rabs eps <= /2 * bpow (-prec + 1))%R /\ round beta (FLX_exp prec) (Znearest choice) x = (x * (1 + eps))%R.
Proof with auto with typeclass_instances.
intros x.
apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
apply bpow_gt_0.
now apply relative_error_N_FLX.
Qed.

Theorem relative_error_N_FLX_round :
  forall x,
  (Rabs (round beta (FLX_exp prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs (round beta (FLX_exp prec) (Znearest choice) x))%R.
Proof with auto with typeclass_instances.
intros x.
destruct (Req_dec x 0) as [Hx|Hx].
(* . *)
rewrite Hx, round_0...
unfold Rminus.
rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0.
rewrite Rmult_0_r.
apply Rle_refl.
(* . *)
destruct (ln_beta beta x) as (ex, He).
specialize (He Hx).
apply relative_error_N_round with (ex - 1)%Z.
now apply FLX_exp_valid.
intros k _.
apply relative_error_FLX_aux.
exact Hp.
apply He.
Qed.

End Fprop_relative_FLX.

End Fprop_relative.