1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2010-2013 Sylvie Boldo
#<br />#
Copyright (C) 2010-2013 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
(** * Remainder of the division and square root are in the FLX format *)
Require Import Fcore.
Require Import Fcalc_ops.
Require Import Fprop_relative.
Section Fprop_divsqrt_error.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable prec : Z.
Theorem generic_format_plus_prec:
forall fexp, (forall e, (fexp e <= e - prec)%Z) ->
forall x y (fx fy: float beta),
(x = F2R fx)%R -> (y = F2R fy)%R -> (Rabs (x+y) < bpow (prec+Fexp fx))%R -> (Rabs (x+y) < bpow (prec+Fexp fy))%R
-> generic_format beta fexp (x+y)%R.
intros fexp Hfexp x y fx fy Hx Hy H1 H2.
case (Req_dec (x+y) 0); intros H.
rewrite H; apply generic_format_0.
rewrite Hx, Hy, <- F2R_plus.
apply generic_format_F2R.
intros _.
case_eq (Fplus beta fx fy).
intros mz ez Hz.
rewrite <- Hz.
apply Zle_trans with (Zmin (Fexp fx) (Fexp fy)).
rewrite F2R_plus, <- Hx, <- Hy.
unfold canonic_exp.
apply Zle_trans with (1:=Hfexp _).
apply Zplus_le_reg_l with prec; ring_simplify.
apply ln_beta_le_bpow with (1 := H).
now apply Zmin_case.
rewrite <- Fexp_Fplus, Hz.
apply Zle_refl.
Qed.
Theorem ex_Fexp_canonic: forall fexp, forall x, generic_format beta fexp x
-> exists fx:float beta, (x=F2R fx)%R /\ Fexp fx = canonic_exp beta fexp x.
intros fexp x; unfold generic_format.
exists (Float beta (Ztrunc (scaled_mantissa beta fexp x)) (canonic_exp beta fexp x)).
split; auto.
Qed.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format beta (FLX_exp prec)).
Notation cexp := (canonic_exp beta (FLX_exp prec)).
Variable choice : Z -> bool.
(** Remainder of the division in FLX *)
Theorem div_error_FLX :
forall rnd { Zrnd : Valid_rnd rnd } x y,
format x -> format y ->
format (x - round beta (FLX_exp prec) rnd (x/y) * y)%R.
Proof with auto with typeclass_instances.
intros rnd Zrnd x y Hx Hy.
destruct (Req_dec y 0) as [Zy|Zy].
now rewrite Zy, Rmult_0_r, Rminus_0_r.
destruct (Req_dec (round beta (FLX_exp prec) rnd (x/y)) 0) as [Hr|Hr].
rewrite Hr; ring_simplify (x-0*y)%R; assumption.
assert (Zx: x <> R0).
contradict Hr.
rewrite Hr.
unfold Rdiv.
now rewrite Rmult_0_l, round_0.
destruct (ex_Fexp_canonic _ x Hx) as (fx,(Hx1,Hx2)).
destruct (ex_Fexp_canonic _ y Hy) as (fy,(Hy1,Hy2)).
destruct (ex_Fexp_canonic (FLX_exp prec) (round beta (FLX_exp prec) rnd (x / y))) as (fr,(Hr1,Hr2)).
apply generic_format_round...
unfold Rminus; apply generic_format_plus_prec with fx (Fopp beta (Fmult beta fr fy)); trivial.
intros e; apply Zle_refl.
now rewrite F2R_opp, F2R_mult, <- Hr1, <- Hy1.
(* *)
destruct (relative_error_FLX_ex beta prec (prec_gt_0 prec) rnd (x / y)%R) as (eps,(Heps1,Heps2)).
apply Rmult_integral_contrapositive_currified.
exact Zx.
now apply Rinv_neq_0_compat.
rewrite Heps2.
rewrite <- Rabs_Ropp.
replace (-(x + - (x / y * (1 + eps) * y)))%R with (x * eps)%R by now field.
rewrite Rabs_mult.
apply Rlt_le_trans with (Rabs x * 1)%R.
apply Rmult_lt_compat_l.
now apply Rabs_pos_lt.
apply Rlt_le_trans with (1 := Heps1).
change R1 with (bpow 0).
apply bpow_le.
generalize (prec_gt_0 prec).
clear ; omega.
rewrite Rmult_1_r.
rewrite Hx2.
unfold canonic_exp.
destruct (ln_beta beta x) as (ex, Hex).
simpl.
specialize (Hex Zx).
apply Rlt_le.
apply Rlt_le_trans with (1 := proj2 Hex).
apply bpow_le.
unfold FLX_exp.
ring_simplify.
apply Zle_refl.
(* *)
replace (Fexp (Fopp beta (Fmult beta fr fy))) with (Fexp fr + Fexp fy)%Z.
2: unfold Fopp, Fmult; destruct fr; destruct fy; now simpl.
replace (x + - (round beta (FLX_exp prec) rnd (x / y) * y))%R with
(y * (-(round beta (FLX_exp prec) rnd (x / y) - x/y)))%R.
2: field; assumption.
rewrite Rabs_mult.
apply Rlt_le_trans with (Rabs y * bpow (Fexp fr))%R.
apply Rmult_lt_compat_l.
now apply Rabs_pos_lt.
rewrite Rabs_Ropp.
replace (bpow (Fexp fr)) with (ulp beta (FLX_exp prec) (F2R fr)).
rewrite <- Hr1.
apply ulp_error_f...
unfold ulp; apply f_equal.
now rewrite Hr2, <- Hr1.
replace (prec+(Fexp fr+Fexp fy))%Z with ((prec+Fexp fy)+Fexp fr)%Z by ring.
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
rewrite Hy2; unfold canonic_exp, FLX_exp.
ring_simplify (prec + (ln_beta beta y - prec))%Z.
destruct (ln_beta beta y); simpl.
left; now apply a.
Qed.
(** Remainder of the square in FLX (with p>1) and rounding to nearest *)
Variable Hp1 : Zlt 1 prec.
Theorem sqrt_error_FLX_N :
forall x, format x ->
format (x - Rsqr (round beta (FLX_exp prec) (Znearest choice) (sqrt x)))%R.
Proof with auto with typeclass_instances.
intros x Hx.
destruct (total_order_T x 0) as [[Hxz|Hxz]|Hxz].
unfold sqrt.
destruct (Rcase_abs x).
rewrite round_0...
unfold Rsqr.
now rewrite Rmult_0_l, Rminus_0_r.
elim (Rlt_irrefl 0).
now apply Rgt_ge_trans with x.
rewrite Hxz, sqrt_0, round_0...
unfold Rsqr.
rewrite Rmult_0_l, Rminus_0_r.
apply generic_format_0.
case (Req_dec (round beta (FLX_exp prec) (Znearest choice) (sqrt x)) 0); intros Hr.
rewrite Hr; unfold Rsqr; ring_simplify (x-0*0)%R; assumption.
destruct (ex_Fexp_canonic _ x Hx) as (fx,(Hx1,Hx2)).
destruct (ex_Fexp_canonic (FLX_exp prec) (round beta (FLX_exp prec) (Znearest choice) (sqrt x))) as (fr,(Hr1,Hr2)).
apply generic_format_round...
unfold Rminus; apply generic_format_plus_prec with fx (Fopp beta (Fmult beta fr fr)); trivial.
intros e; apply Zle_refl.
unfold Rsqr; now rewrite F2R_opp,F2R_mult, <- Hr1.
(* *)
apply Rle_lt_trans with x.
apply Rabs_minus_le.
apply Rle_0_sqr.
destruct (relative_error_N_FLX_ex beta prec (prec_gt_0 prec) choice (sqrt x)) as (eps,(Heps1,Heps2)).
rewrite Heps2.
rewrite Rsqr_mult, Rsqr_sqrt, Rmult_comm. 2: now apply Rlt_le.
apply Rmult_le_compat_r.
now apply Rlt_le.
apply Rle_trans with (5²/4²)%R.
rewrite <- Rsqr_div.
apply Rsqr_le_abs_1.
apply Rle_trans with (1 := Rabs_triang _ _).
rewrite Rabs_R1.
apply Rplus_le_reg_l with (-1)%R.
rewrite <- Rplus_assoc, Rplus_opp_l, Rplus_0_l.
apply Rle_trans with (1 := Heps1).
rewrite Rabs_pos_eq.
apply Rmult_le_reg_l with 2%R.
now apply (Z2R_lt 0 2).
rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
apply Rle_trans with (bpow (-1)).
apply bpow_le.
omega.
replace (2 * (-1 + 5 / 4))%R with (/2)%R by field.
apply Rinv_le.
now apply (Z2R_lt 0 2).
apply (Z2R_le 2).
unfold Zpower_pos. simpl.
rewrite Zmult_1_r.
apply Zle_bool_imp_le.
apply beta.
apply Rgt_not_eq.
now apply (Z2R_lt 0 2).
unfold Rdiv.
apply Rmult_le_pos.
now apply (Z2R_le 0 5).
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 4).
apply Rgt_not_eq.
now apply (Z2R_lt 0 4).
unfold Rsqr.
replace (5 * 5 / (4 * 4))%R with (25 * /16)%R by field.
apply Rmult_le_reg_r with 16%R.
now apply (Z2R_lt 0 16).
rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
now apply (Z2R_le 25 32).
apply Rgt_not_eq.
now apply (Z2R_lt 0 16).
rewrite Hx2; unfold canonic_exp, FLX_exp.
ring_simplify (prec + (ln_beta beta x - prec))%Z.
destruct (ln_beta beta x); simpl.
rewrite <- (Rabs_right x).
apply a.
now apply Rgt_not_eq.
now apply Rgt_ge.
(* *)
replace (Fexp (Fopp beta (Fmult beta fr fr))) with (Fexp fr + Fexp fr)%Z.
2: unfold Fopp, Fmult; destruct fr; now simpl.
rewrite Hr1.
replace (x + - Rsqr (F2R fr))%R with (-((F2R fr - sqrt x)*(F2R fr + sqrt x)))%R.
2: rewrite <- (sqrt_sqrt x) at 3; auto.
2: unfold Rsqr; ring.
rewrite Rabs_Ropp, Rabs_mult.
apply Rle_lt_trans with ((/2*bpow (Fexp fr))* Rabs (F2R fr + sqrt x))%R.
apply Rmult_le_compat_r.
apply Rabs_pos.
apply Rle_trans with (/2*ulp beta (FLX_exp prec) (F2R fr))%R.
rewrite <- Hr1.
apply ulp_half_error_f...
right; unfold ulp; apply f_equal.
rewrite Hr2, <- Hr1; trivial.
rewrite Rmult_assoc, Rmult_comm.
replace (prec+(Fexp fr+Fexp fr))%Z with (Fexp fr + (prec+Fexp fr))%Z by ring.
rewrite bpow_plus, Rmult_assoc.
apply Rmult_lt_compat_l.
apply bpow_gt_0.
apply Rmult_lt_reg_l with 2%R.
auto with real.
apply Rle_lt_trans with (Rabs (F2R fr + sqrt x)).
right; field.
apply Rle_lt_trans with (1:=Rabs_triang _ _).
(* . *)
assert (Rabs (F2R fr) < bpow (prec + Fexp fr))%R.
rewrite Hr2; unfold canonic_exp; rewrite Hr1.
unfold FLX_exp.
ring_simplify (prec + (ln_beta beta (F2R fr) - prec))%Z.
destruct (ln_beta beta (F2R fr)); simpl.
apply a.
rewrite <- Hr1; auto.
(* . *)
apply Rlt_le_trans with (bpow (prec + Fexp fr)+ Rabs (sqrt x))%R.
now apply Rplus_lt_compat_r.
(* . *)
rewrite Rmult_plus_distr_r, Rmult_1_l.
apply Rplus_le_compat_l.
assert (sqrt x <> 0)%R.
apply Rgt_not_eq.
now apply sqrt_lt_R0.
destruct (ln_beta beta (sqrt x)) as (es,Es).
specialize (Es H0).
apply Rle_trans with (bpow es).
now apply Rlt_le.
apply bpow_le.
case (Zle_or_lt es (prec + Fexp fr)) ; trivial.
intros H1.
absurd (Rabs (F2R fr) < bpow (es - 1))%R.
apply Rle_not_lt.
rewrite <- Hr1.
apply abs_round_ge_generic...
apply generic_format_bpow.
unfold FLX_exp; omega.
apply Es.
apply Rlt_le_trans with (1:=H).
apply bpow_le.
omega.
now apply Rlt_le.
Qed.
End Fprop_divsqrt_error.
|