1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
|
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2010-2013 Sylvie Boldo
#<br />#
Copyright (C) 2010-2013 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
(** * Unit in the Last Place: our definition using fexp and its properties, successor and predecessor *)
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_generic_fmt.
Require Import Fcore_float_prop.
Section Fcore_ulp.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.
Definition ulp x := bpow (canonic_exp beta fexp x).
Notation F := (generic_format beta fexp).
Theorem ulp_opp :
forall x, ulp (- x) = ulp x.
Proof.
intros x.
unfold ulp.
now rewrite canonic_exp_opp.
Qed.
Theorem ulp_abs :
forall x, ulp (Rabs x) = ulp x.
Proof.
intros x.
unfold ulp.
now rewrite canonic_exp_abs.
Qed.
Theorem ulp_le_id:
forall x,
(0 < x)%R ->
F x ->
(ulp x <= x)%R.
Proof.
intros x Zx Fx.
rewrite <- (Rmult_1_l (ulp x)).
pattern x at 2; rewrite Fx.
unfold F2R, ulp; simpl.
apply Rmult_le_compat_r.
apply bpow_ge_0.
replace 1%R with (Z2R (Zsucc 0)) by reflexivity.
apply Z2R_le.
apply Zlt_le_succ.
apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
now rewrite <- Fx.
Qed.
Theorem ulp_le_abs:
forall x,
(x <> 0)%R ->
F x ->
(ulp x <= Rabs x)%R.
Proof.
intros x Zx Fx.
rewrite <- ulp_abs.
apply ulp_le_id.
now apply Rabs_pos_lt.
now apply generic_format_abs.
Qed.
Theorem ulp_DN_UP :
forall x, ~ F x ->
round beta fexp Zceil x = (round beta fexp Zfloor x + ulp x)%R.
Proof.
intros x Fx.
unfold round, ulp. simpl.
unfold F2R. simpl.
rewrite Zceil_floor_neq.
rewrite Z2R_plus. simpl.
ring.
intros H.
apply Fx.
unfold generic_format, F2R. simpl.
rewrite <- H.
rewrite Ztrunc_Z2R.
rewrite H.
now rewrite scaled_mantissa_mult_bpow.
Qed.
(** The successor of x is x + ulp x *)
Theorem succ_le_bpow :
forall x e, (0 < x)%R -> F x ->
(x < bpow e)%R ->
(x + ulp x <= bpow e)%R.
Proof.
intros x e Zx Fx Hx.
pattern x at 1 ; rewrite Fx.
unfold ulp, F2R. simpl.
pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
rewrite <- Rmult_plus_distr_r.
change 1%R with (Z2R 1).
rewrite <- Z2R_plus.
change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow e)%R.
apply F2R_p1_le_bpow.
apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
now rewrite <- Fx.
now rewrite <- Fx.
Qed.
Theorem ln_beta_succ :
forall x, (0 < x)%R -> F x ->
forall eps, (0 <= eps < ulp x)%R ->
ln_beta beta (x + eps) = ln_beta beta x :> Z.
Proof.
intros x Zx Fx eps Heps.
destruct (ln_beta beta x) as (ex, He).
simpl.
specialize (He (Rgt_not_eq _ _ Zx)).
apply ln_beta_unique.
rewrite Rabs_pos_eq.
rewrite Rabs_pos_eq in He.
split.
apply Rle_trans with (1 := proj1 He).
pattern x at 1 ; rewrite <- Rplus_0_r.
now apply Rplus_le_compat_l.
apply Rlt_le_trans with (x + ulp x)%R.
now apply Rplus_lt_compat_l.
pattern x at 1 ; rewrite Fx.
unfold ulp, F2R. simpl.
pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
rewrite <- Rmult_plus_distr_r.
change 1%R with (Z2R 1).
rewrite <- Z2R_plus.
change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow ex)%R.
apply F2R_p1_le_bpow.
apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
now rewrite <- Fx.
now rewrite <- Fx.
now apply Rlt_le.
apply Rplus_le_le_0_compat.
now apply Rlt_le.
apply Heps.
Qed.
Theorem round_DN_succ :
forall x, (0 < x)%R -> F x ->
forall eps, (0 <= eps < ulp x)%R ->
round beta fexp Zfloor (x + eps) = x.
Proof.
intros x Zx Fx eps Heps.
pattern x at 2 ; rewrite Fx.
unfold round.
unfold scaled_mantissa. simpl.
unfold canonic_exp at 1 2.
rewrite ln_beta_succ ; trivial.
apply (f_equal (fun m => F2R (Float beta m _))).
rewrite Ztrunc_floor.
apply Zfloor_imp.
split.
apply (Rle_trans _ _ _ (Zfloor_lb _)).
apply Rmult_le_compat_r.
apply bpow_ge_0.
pattern x at 1 ; rewrite <- Rplus_0_r.
now apply Rplus_le_compat_l.
apply Rlt_le_trans with ((x + ulp x) * bpow (- canonic_exp beta fexp x))%R.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
now apply Rplus_lt_compat_l.
rewrite Rmult_plus_distr_r.
rewrite Z2R_plus.
apply Rplus_le_compat.
pattern x at 1 3 ; rewrite Fx.
unfold F2R. simpl.
rewrite Rmult_assoc.
rewrite <- bpow_plus.
rewrite Zplus_opp_r.
rewrite Rmult_1_r.
rewrite Zfloor_Z2R.
apply Rle_refl.
unfold ulp.
rewrite <- bpow_plus.
rewrite Zplus_opp_r.
apply Rle_refl.
apply Rmult_le_pos.
now apply Rlt_le.
apply bpow_ge_0.
Qed.
Theorem generic_format_succ :
forall x, (0 < x)%R -> F x ->
F (x + ulp x).
Proof.
intros x Zx Fx.
destruct (ln_beta beta x) as (ex, Ex).
specialize (Ex (Rgt_not_eq _ _ Zx)).
assert (Ex' := Ex).
rewrite Rabs_pos_eq in Ex'.
destruct (succ_le_bpow x ex) ; try easy.
unfold generic_format, scaled_mantissa, canonic_exp.
rewrite ln_beta_unique with beta (x + ulp x)%R ex.
pattern x at 1 3 ; rewrite Fx.
unfold ulp, scaled_mantissa.
rewrite canonic_exp_fexp with (1 := Ex).
unfold F2R. simpl.
rewrite Rmult_plus_distr_r.
rewrite Rmult_assoc.
rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r.
change (bpow 0) with (Z2R 1).
rewrite <- Z2R_plus.
rewrite Ztrunc_Z2R.
rewrite Z2R_plus.
rewrite Rmult_plus_distr_r.
now rewrite Rmult_1_l.
rewrite Rabs_pos_eq.
split.
apply Rle_trans with (1 := proj1 Ex').
pattern x at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
apply bpow_ge_0.
exact H.
apply Rplus_le_le_0_compat.
now apply Rlt_le.
apply bpow_ge_0.
rewrite H.
apply generic_format_bpow.
apply valid_exp.
destruct (Zle_or_lt ex (fexp ex)) ; trivial.
elim Rlt_not_le with (1 := Zx).
rewrite Fx.
replace (Ztrunc (scaled_mantissa beta fexp x)) with Z0.
rewrite F2R_0.
apply Rle_refl.
unfold scaled_mantissa.
rewrite canonic_exp_fexp with (1 := Ex).
destruct (mantissa_small_pos beta fexp x ex) ; trivial.
rewrite Ztrunc_floor.
apply sym_eq.
apply Zfloor_imp.
split.
now apply Rlt_le.
exact H2.
now apply Rlt_le.
now apply Rlt_le.
Qed.
Theorem round_UP_succ :
forall x, (0 < x)%R -> F x ->
forall eps, (0 < eps <= ulp x)%R ->
round beta fexp Zceil (x + eps) = (x + ulp x)%R.
Proof with auto with typeclass_instances.
intros x Zx Fx eps (Heps1,[Heps2|Heps2]).
assert (Heps: (0 <= eps < ulp x)%R).
split.
now apply Rlt_le.
exact Heps2.
assert (Hd := round_DN_succ x Zx Fx eps Heps).
rewrite ulp_DN_UP.
rewrite Hd.
unfold ulp, canonic_exp.
now rewrite ln_beta_succ.
intros Fs.
rewrite round_generic in Hd...
apply Rgt_not_eq with (2 := Hd).
pattern x at 2 ; rewrite <- Rplus_0_r.
now apply Rplus_lt_compat_l.
rewrite Heps2.
apply round_generic...
now apply generic_format_succ.
Qed.
Theorem succ_le_lt:
forall x y,
F x -> F y ->
(0 < x < y)%R ->
(x + ulp x <= y)%R.
Proof with auto with typeclass_instances.
intros x y Hx Hy H.
case (Rle_or_lt (ulp x) (y-x)); intros H1.
apply Rplus_le_reg_r with (-x)%R.
now ring_simplify (x+ulp x + -x)%R.
replace y with (x+(y-x))%R by ring.
absurd (x < y)%R.
2: apply H.
apply Rle_not_lt; apply Req_le.
rewrite <- round_DN_succ with (eps:=(y-x)%R); try easy.
ring_simplify (x+(y-x))%R.
apply sym_eq.
apply round_generic...
split; trivial.
apply Rlt_le; now apply Rlt_Rminus.
Qed.
(** Error of a rounding, expressed in number of ulps *)
Theorem ulp_error :
forall rnd { Zrnd : Valid_rnd rnd } x,
(Rabs (round beta fexp rnd x - x) < ulp x)%R.
Proof with auto with typeclass_instances.
intros rnd Zrnd x.
destruct (generic_format_EM beta fexp x) as [Hx|Hx].
(* x = rnd x *)
rewrite round_generic...
unfold Rminus.
rewrite Rplus_opp_r, Rabs_R0.
apply bpow_gt_0.
(* x <> rnd x *)
destruct (round_DN_or_UP beta fexp rnd x) as [H|H] ; rewrite H ; clear H.
(* . *)
rewrite Rabs_left1.
rewrite Ropp_minus_distr.
apply Rplus_lt_reg_r with (round beta fexp Zfloor x).
rewrite <- ulp_DN_UP with (1 := Hx).
ring_simplify.
assert (Hu: (x <= round beta fexp Zceil x)%R).
apply round_UP_pt...
destruct Hu as [Hu|Hu].
exact Hu.
elim Hx.
rewrite Hu.
apply generic_format_round...
apply Rle_minus.
apply round_DN_pt...
(* . *)
rewrite Rabs_pos_eq.
rewrite ulp_DN_UP with (1 := Hx).
apply Rplus_lt_reg_r with (x - ulp x)%R.
ring_simplify.
assert (Hd: (round beta fexp Zfloor x <= x)%R).
apply round_DN_pt...
destruct Hd as [Hd|Hd].
exact Hd.
elim Hx.
rewrite <- Hd.
apply generic_format_round...
apply Rle_0_minus.
apply round_UP_pt...
Qed.
Theorem ulp_half_error :
forall choice x,
(Rabs (round beta fexp (Znearest choice) x - x) <= /2 * ulp x)%R.
Proof with auto with typeclass_instances.
intros choice x.
destruct (generic_format_EM beta fexp x) as [Hx|Hx].
(* x = rnd x *)
rewrite round_generic...
unfold Rminus.
rewrite Rplus_opp_r, Rabs_R0.
apply Rmult_le_pos.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply (Z2R_lt 0 2).
apply bpow_ge_0.
(* x <> rnd x *)
set (d := round beta fexp Zfloor x).
destruct (round_N_pt beta fexp choice x) as (Hr1, Hr2).
destruct (Rle_or_lt (x - d) (d + ulp x - x)) as [H|H].
(* . rnd(x) = rndd(x) *)
apply Rle_trans with (Rabs (d - x)).
apply Hr2.
apply (round_DN_pt beta fexp x).
rewrite Rabs_left1.
rewrite Ropp_minus_distr.
apply Rmult_le_reg_r with 2%R.
now apply (Z2R_lt 0 2).
apply Rplus_le_reg_r with (d - x)%R.
ring_simplify.
apply Rle_trans with (1 := H).
right. field.
apply Rle_minus.
apply (round_DN_pt beta fexp x).
(* . rnd(x) = rndu(x) *)
assert (Hu: (d + ulp x)%R = round beta fexp Zceil x).
unfold d.
now rewrite <- ulp_DN_UP.
apply Rle_trans with (Rabs (d + ulp x - x)).
apply Hr2.
rewrite Hu.
apply (round_UP_pt beta fexp x).
rewrite Rabs_pos_eq.
apply Rmult_le_reg_r with 2%R.
now apply (Z2R_lt 0 2).
apply Rplus_le_reg_r with (- (d + ulp x - x))%R.
ring_simplify.
apply Rlt_le.
apply Rlt_le_trans with (1 := H).
right. field.
apply Rle_0_minus.
rewrite Hu.
apply (round_UP_pt beta fexp x).
Qed.
Theorem ulp_le :
forall { Hm : Monotone_exp fexp },
forall x y: R,
(0 < x)%R -> (x <= y)%R ->
(ulp x <= ulp y)%R.
Proof.
intros Hm x y Hx Hxy.
apply bpow_le.
apply Hm.
now apply ln_beta_le.
Qed.
Theorem ulp_bpow :
forall e, ulp (bpow e) = bpow (fexp (e + 1)).
intros e.
unfold ulp.
apply f_equal.
apply canonic_exp_fexp.
rewrite Rabs_pos_eq.
split.
ring_simplify (e + 1 - 1)%Z.
apply Rle_refl.
apply bpow_lt.
apply Zlt_succ.
apply bpow_ge_0.
Qed.
Theorem ulp_DN :
forall x,
(0 < round beta fexp Zfloor x)%R ->
ulp (round beta fexp Zfloor x) = ulp x.
Proof.
intros x Hd.
unfold ulp.
now rewrite canonic_exp_DN with (2 := Hd).
Qed.
Theorem ulp_error_f :
forall { Hm : Monotone_exp fexp } rnd { Zrnd : Valid_rnd rnd } x,
(round beta fexp rnd x <> 0)%R ->
(Rabs (round beta fexp rnd x - x) < ulp (round beta fexp rnd x))%R.
Proof with auto with typeclass_instances.
intros Hm rnd Zrnd x Hfx.
case (round_DN_or_UP beta fexp rnd x); intros Hx.
(* *)
case (Rle_or_lt 0 (round beta fexp Zfloor x)).
intros H; destruct H.
rewrite Hx at 2.
rewrite ulp_DN; trivial.
apply ulp_error...
rewrite Hx in Hfx; contradict Hfx; auto with real.
intros H.
apply Rlt_le_trans with (1:=ulp_error _ _).
rewrite <- (ulp_opp x), <- (ulp_opp (round beta fexp rnd x)).
apply ulp_le; trivial.
apply Ropp_0_gt_lt_contravar; apply Rlt_gt.
case (Rle_or_lt 0 x); trivial.
intros H1; contradict H.
apply Rle_not_lt.
apply round_ge_generic...
apply generic_format_0.
apply Ropp_le_contravar; rewrite Hx.
apply (round_DN_pt beta fexp x).
(* *)
rewrite Hx; case (Rle_or_lt 0 (round beta fexp Zceil x)).
intros H; destruct H.
apply Rlt_le_trans with (1:=ulp_error _ _).
apply ulp_le; trivial.
case (Rle_or_lt x 0); trivial.
intros H1; contradict H.
apply Rle_not_lt.
apply round_le_generic...
apply generic_format_0.
apply round_UP_pt...
rewrite Hx in Hfx; contradict Hfx; auto with real.
intros H.
rewrite <- (ulp_opp (round beta fexp Zceil x)).
rewrite <- round_DN_opp.
rewrite ulp_DN; trivial.
replace (round beta fexp Zceil x - x)%R with (-((round beta fexp Zfloor (-x) - (-x))))%R.
rewrite Rabs_Ropp.
apply ulp_error...
rewrite round_DN_opp; ring.
rewrite round_DN_opp; apply Ropp_0_gt_lt_contravar; apply Rlt_gt; assumption.
Qed.
Theorem ulp_half_error_f :
forall { Hm : Monotone_exp fexp },
forall choice x,
(round beta fexp (Znearest choice) x <> 0)%R ->
(Rabs (round beta fexp (Znearest choice) x - x) <= /2 * ulp (round beta fexp (Znearest choice) x))%R.
Proof with auto with typeclass_instances.
intros Hm choice x Hfx.
case (round_DN_or_UP beta fexp (Znearest choice) x); intros Hx.
(* *)
case (Rle_or_lt 0 (round beta fexp Zfloor x)).
intros H; destruct H.
rewrite Hx at 2.
rewrite ulp_DN; trivial.
apply ulp_half_error.
rewrite Hx in Hfx; contradict Hfx; auto with real.
intros H.
apply Rle_trans with (1:=ulp_half_error _ _).
apply Rmult_le_compat_l.
auto with real.
rewrite <- (ulp_opp x), <- (ulp_opp (round beta fexp (Znearest choice) x)).
apply ulp_le; trivial.
apply Ropp_0_gt_lt_contravar; apply Rlt_gt.
case (Rle_or_lt 0 x); trivial.
intros H1; contradict H.
apply Rle_not_lt.
apply round_ge_generic...
apply generic_format_0.
apply Ropp_le_contravar; rewrite Hx.
apply (round_DN_pt beta fexp x).
(* *)
case (Rle_or_lt 0 (round beta fexp Zceil x)).
intros H; destruct H.
apply Rle_trans with (1:=ulp_half_error _ _).
apply Rmult_le_compat_l.
auto with real.
apply ulp_le; trivial.
case (Rle_or_lt x 0); trivial.
intros H1; contradict H.
apply Rle_not_lt.
apply round_le_generic...
apply generic_format_0.
rewrite Hx; apply (round_UP_pt beta fexp x).
rewrite Hx in Hfx; contradict Hfx; auto with real.
intros H.
rewrite Hx at 2; rewrite <- (ulp_opp (round beta fexp Zceil x)).
rewrite <- round_DN_opp.
rewrite ulp_DN; trivial.
pattern x at 1 2; rewrite <- Ropp_involutive.
rewrite round_N_opp.
unfold Rminus.
rewrite <- Ropp_plus_distr, Rabs_Ropp.
apply ulp_half_error.
rewrite round_DN_opp; apply Ropp_0_gt_lt_contravar; apply Rlt_gt; assumption.
Qed.
(** Predecessor *)
Definition pred x :=
if Req_bool x (bpow (ln_beta beta x - 1)) then
(x - bpow (fexp (ln_beta beta x - 1)))%R
else
(x - ulp x)%R.
Theorem pred_ge_bpow :
forall x e, F x ->
x <> ulp x ->
(bpow e < x)%R ->
(bpow e <= x - ulp x)%R.
Proof.
intros x e Fx Hx' Hx.
(* *)
assert (1 <= Ztrunc (scaled_mantissa beta fexp x))%Z.
assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z.
apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
rewrite <- Fx.
apply Rle_lt_trans with (2:=Hx).
apply bpow_ge_0.
omega.
case (Zle_lt_or_eq _ _ H); intros Hm.
(* *)
pattern x at 1 ; rewrite Fx.
unfold ulp, F2R. simpl.
pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
rewrite <- Rmult_minus_distr_r.
change 1%R with (Z2R 1).
rewrite <- Z2R_minus.
change (bpow e <= F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) - 1) (canonic_exp beta fexp x)))%R.
apply bpow_le_F2R_m1; trivial.
now rewrite <- Fx.
(* *)
contradict Hx'.
pattern x at 1; rewrite Fx.
rewrite <- Hm.
unfold ulp, F2R; simpl.
now rewrite Rmult_1_l.
Qed.
Lemma generic_format_pred_1:
forall x, (0 < x)%R -> F x ->
x <> bpow (ln_beta beta x - 1) ->
F (x - ulp x).
Proof.
intros x Zx Fx Hx.
destruct (ln_beta beta x) as (ex, Ex).
simpl in Hx.
specialize (Ex (Rgt_not_eq _ _ Zx)).
assert (Ex' : (bpow (ex - 1) < x < bpow ex)%R).
rewrite Rabs_pos_eq in Ex.
destruct Ex as (H,H'); destruct H; split; trivial.
contradict Hx; easy.
now apply Rlt_le.
unfold generic_format, scaled_mantissa, canonic_exp.
rewrite ln_beta_unique with beta (x - ulp x)%R ex.
pattern x at 1 3 ; rewrite Fx.
unfold ulp, scaled_mantissa.
rewrite canonic_exp_fexp with (1 := Ex).
unfold F2R. simpl.
rewrite Rmult_minus_distr_r.
rewrite Rmult_assoc.
rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r.
change (bpow 0) with (Z2R 1).
rewrite <- Z2R_minus.
rewrite Ztrunc_Z2R.
rewrite Z2R_minus.
rewrite Rmult_minus_distr_r.
now rewrite Rmult_1_l.
rewrite Rabs_pos_eq.
split.
apply pred_ge_bpow; trivial.
unfold ulp; intro H.
assert (ex-1 < canonic_exp beta fexp x < ex)%Z.
split ; apply (lt_bpow beta) ; rewrite <- H ; easy.
clear -H0. omega.
apply Ex'.
apply Rle_lt_trans with (2 := proj2 Ex').
pattern x at 3 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
rewrite <-Ropp_0.
apply Ropp_le_contravar.
apply bpow_ge_0.
apply Rle_0_minus.
pattern x at 2; rewrite Fx.
unfold ulp, F2R; simpl.
pattern (bpow (canonic_exp beta fexp x)) at 1; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply bpow_ge_0.
replace 1%R with (Z2R 1) by reflexivity.
apply Z2R_le.
assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z.
apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
rewrite <- Fx.
apply Rle_lt_trans with (2:=proj1 Ex').
apply bpow_ge_0.
omega.
Qed.
Lemma generic_format_pred_2 :
forall x, (0 < x)%R -> F x ->
let e := ln_beta_val beta x (ln_beta beta x) in
x = bpow (e - 1) ->
F (x - bpow (fexp (e - 1))).
Proof.
intros x Zx Fx e Hx.
pose (f:=(x - bpow (fexp (e - 1)))%R).
fold f.
assert (He:(fexp (e-1) <= e-1)%Z).
apply generic_format_bpow_inv with beta; trivial.
rewrite <- Hx; assumption.
case (Zle_lt_or_eq _ _ He); clear He; intros He.
assert (f = F2R (Float beta (Zpower beta (e-1-(fexp (e-1))) -1) (fexp (e-1))))%R.
unfold f; rewrite Hx.
unfold F2R; simpl.
rewrite Z2R_minus, Z2R_Zpower.
rewrite Rmult_minus_distr_r, Rmult_1_l.
rewrite <- bpow_plus.
now replace (e - 1 - fexp (e - 1) + fexp (e - 1))%Z with (e-1)%Z by ring.
omega.
rewrite H.
apply generic_format_F2R.
intros _.
apply Zeq_le.
apply canonic_exp_fexp.
rewrite <- H.
unfold f; rewrite Hx.
rewrite Rabs_right.
split.
apply Rplus_le_reg_l with (bpow (fexp (e-1))).
ring_simplify.
apply Rle_trans with (bpow (e - 2) + bpow (e - 2))%R.
apply Rplus_le_compat ; apply bpow_le ; omega.
apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac].
apply Rle_trans with (bpow 1*bpow (e - 2))%R.
apply Rmult_le_compat_r.
apply bpow_ge_0.
replace 2%R with (Z2R 2) by reflexivity.
replace (bpow 1) with (Z2R beta).
apply Z2R_le.
apply <- Zle_is_le_bool.
now destruct beta.
simpl.
unfold Zpower_pos; simpl.
now rewrite Zmult_1_r.
rewrite <- bpow_plus.
replace (1+(e-2))%Z with (e-1)%Z by ring.
now right.
rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply bpow_gt_0.
apply Rle_ge; apply Rle_0_minus.
apply bpow_le.
omega.
replace f with 0%R.
apply generic_format_0.
unfold f.
rewrite Hx, He.
ring.
Qed.
Theorem generic_format_pred :
forall x, (0 < x)%R -> F x ->
F (pred x).
Proof.
intros x Zx Fx.
unfold pred.
case Req_bool_spec; intros H.
now apply generic_format_pred_2.
now apply generic_format_pred_1.
Qed.
Theorem generic_format_plus_ulp :
forall { monotone_exp : Monotone_exp fexp },
forall x, (x <> 0)%R ->
F x -> F (x + ulp x).
Proof with auto with typeclass_instances.
intros monotone_exp x Zx Fx.
destruct (Rtotal_order x 0) as [Hx|[Hx|Hx]].
rewrite <- Ropp_involutive.
apply generic_format_opp.
rewrite Ropp_plus_distr, <- ulp_opp.
apply generic_format_opp in Fx.
destruct (Req_dec (-x) (bpow (ln_beta beta (-x) - 1))) as [Hx'|Hx'].
rewrite Hx' in Fx |- *.
apply generic_format_bpow_inv' in Fx...
unfold ulp, canonic_exp.
rewrite ln_beta_bpow.
revert Fx.
generalize (ln_beta_val _ _ (ln_beta beta (-x)) - 1)%Z.
clear -monotone_exp valid_exp.
intros e He.
destruct (Zle_lt_or_eq _ _ He) as [He1|He1].
assert (He2 : e = (e - fexp (e + 1) + fexp (e + 1))%Z) by ring.
rewrite He2 at 1.
rewrite bpow_plus.
assert (Hb := Z2R_Zpower beta _ (Zle_minus_le_0 _ _ He)).
match goal with |- F (?a * ?b + - ?b) =>
replace (a * b + -b)%R with ((a - 1) * b)%R by ring end.
rewrite <- Hb.
rewrite <- (Z2R_minus _ 1).
change (F (F2R (Float beta (Zpower beta (e - fexp (e + 1)) - 1) (fexp (e + 1))))).
apply generic_format_F2R.
intros Zb.
unfold canonic_exp.
rewrite ln_beta_F2R with (1 := Zb).
rewrite (ln_beta_unique beta _ (e - fexp (e + 1))).
apply monotone_exp.
rewrite <- He2.
apply Zle_succ.
rewrite Rabs_pos_eq.
rewrite Z2R_minus, Hb.
split.
apply Rplus_le_reg_r with (- bpow (e - fexp (e + 1) - 1) + Z2R 1)%R.
apply Rmult_le_reg_r with (bpow (-(e - fexp (e+1) - 1))).
apply bpow_gt_0.
ring_simplify.
apply Rle_trans with R1.
rewrite Rmult_1_l.
apply (bpow_le _ _ 0).
clear -He1 ; omega.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- 2!bpow_plus.
ring_simplify (e - fexp (e + 1) - 1 + - (e - fexp (e + 1) - 1))%Z.
ring_simplify (- (e - fexp (e + 1) - 1) + (e - fexp (e + 1)))%Z.
rewrite bpow_1.
rewrite <- (Z2R_plus (-1) _).
apply (Z2R_le 1).
generalize (Zle_bool_imp_le _ _ (radix_prop beta)).
clear ; omega.
rewrite <- (Rplus_0_r (bpow (e - fexp (e + 1)))) at 2.
apply Rplus_lt_compat_l.
now apply (Z2R_lt (-1) 0).
rewrite Z2R_minus.
apply Rle_0_minus.
rewrite Hb.
apply (bpow_le _ 0).
now apply Zle_minus_le_0.
rewrite He1, Rplus_opp_r.
apply generic_format_0.
apply generic_format_pred_1 ; try easy.
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
now elim Zx.
now apply generic_format_succ.
Qed.
Theorem generic_format_minus_ulp :
forall { monotone_exp : Monotone_exp fexp },
forall x, (x <> 0)%R ->
F x -> F (x - ulp x).
Proof.
intros monotone_exp x Zx Fx.
replace (x - ulp x)%R with (-(-x + ulp x))%R by ring.
apply generic_format_opp.
rewrite <- ulp_opp.
apply generic_format_plus_ulp.
contradict Zx.
rewrite <- (Ropp_involutive x), Zx.
apply Ropp_0.
now apply generic_format_opp.
Qed.
Lemma pred_plus_ulp_1 :
forall x, (0 < x)%R -> F x ->
x <> bpow (ln_beta beta x - 1) ->
((x - ulp x) + ulp (x-ulp x) = x)%R.
Proof.
intros x Zx Fx Hx.
replace (ulp (x - ulp x)) with (ulp x).
ring.
unfold ulp at 1 2; apply f_equal.
unfold canonic_exp; apply f_equal.
destruct (ln_beta beta x) as (ex, Hex).
simpl in *.
assert (x <> 0)%R by auto with real.
specialize (Hex H).
apply sym_eq.
apply ln_beta_unique.
rewrite Rabs_right.
rewrite Rabs_right in Hex.
2: apply Rle_ge; apply Rlt_le; easy.
split.
destruct Hex as ([H1|H1],H2).
apply pred_ge_bpow; trivial.
unfold ulp; intros H3.
assert (ex-1 < canonic_exp beta fexp x < ex)%Z.
split ; apply (lt_bpow beta) ; rewrite <- H3 ; easy.
omega.
contradict Hx; auto with real.
apply Rle_lt_trans with (2:=proj2 Hex).
rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
rewrite <- Ropp_0.
apply Ropp_le_contravar.
apply bpow_ge_0.
apply Rle_ge.
apply Rle_0_minus.
pattern x at 2; rewrite Fx.
unfold ulp, F2R; simpl.
pattern (bpow (canonic_exp beta fexp x)) at 1; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply bpow_ge_0.
replace 1%R with (Z2R (Zsucc 0)) by reflexivity.
apply Z2R_le.
apply Zlt_le_succ.
apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
now rewrite <- Fx.
Qed.
Lemma pred_plus_ulp_2 :
forall x, (0 < x)%R -> F x ->
let e := ln_beta_val beta x (ln_beta beta x) in
x = bpow (e - 1) ->
(x - bpow (fexp (e-1)) <> 0)%R ->
((x - bpow (fexp (e-1))) + ulp (x - bpow (fexp (e-1))) = x)%R.
Proof.
intros x Zx Fx e Hxe Zp.
replace (ulp (x - bpow (fexp (e - 1)))) with (bpow (fexp (e - 1))).
ring.
assert (He:(fexp (e-1) <= e-1)%Z).
apply generic_format_bpow_inv with beta; trivial.
rewrite <- Hxe; assumption.
case (Zle_lt_or_eq _ _ He); clear He; intros He.
(* *)
unfold ulp; apply f_equal.
unfold canonic_exp; apply f_equal.
apply sym_eq.
apply ln_beta_unique.
rewrite Rabs_right.
split.
apply Rplus_le_reg_l with (bpow (fexp (e-1))).
ring_simplify.
apply Rle_trans with (bpow (e - 2) + bpow (e - 2))%R.
apply Rplus_le_compat; apply bpow_le; omega.
apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac].
apply Rle_trans with (bpow 1*bpow (e - 2))%R.
apply Rmult_le_compat_r.
apply bpow_ge_0.
replace 2%R with (Z2R 2) by reflexivity.
replace (bpow 1) with (Z2R beta).
apply Z2R_le.
apply <- Zle_is_le_bool.
now destruct beta.
simpl.
unfold Zpower_pos; simpl.
now rewrite Zmult_1_r.
rewrite <- bpow_plus.
replace (1+(e-2))%Z with (e-1)%Z by ring.
now right.
rewrite <- Rplus_0_r, Hxe.
apply Rplus_lt_compat_l.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply bpow_gt_0.
apply Rle_ge; apply Rle_0_minus.
rewrite Hxe.
apply bpow_le.
omega.
(* *)
contradict Zp.
rewrite Hxe, He; ring.
Qed.
Theorem pred_plus_ulp :
forall x, (0 < x)%R -> F x ->
(pred x <> 0)%R ->
(pred x + ulp (pred x) = x)%R.
Proof.
intros x Zx Fx.
unfold pred.
case Req_bool_spec; intros H Zp.
now apply pred_plus_ulp_2.
now apply pred_plus_ulp_1.
Qed.
Theorem pred_lt_id :
forall x,
(pred x < x)%R.
Proof.
intros.
unfold pred.
case Req_bool_spec; intros H.
(* *)
rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply bpow_gt_0.
(* *)
rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply bpow_gt_0.
Qed.
Theorem pred_ge_0 :
forall x,
(0 < x)%R -> F x -> (0 <= pred x)%R.
intros x Zx Fx.
unfold pred.
case Req_bool_spec; intros H.
(* *)
apply Rle_0_minus.
rewrite H.
apply bpow_le.
destruct (ln_beta beta x) as (ex,Ex) ; simpl.
rewrite ln_beta_bpow.
ring_simplify (ex - 1 + 1 - 1)%Z.
apply generic_format_bpow_inv with beta; trivial.
simpl in H.
rewrite <- H; assumption.
apply Rle_0_minus.
now apply ulp_le_id.
Qed.
Theorem round_UP_pred :
forall x, (0 < pred x)%R -> F x ->
forall eps, (0 < eps <= ulp (pred x) )%R ->
round beta fexp Zceil (pred x + eps) = x.
Proof.
intros x Hx Fx eps Heps.
rewrite round_UP_succ; trivial.
apply pred_plus_ulp; trivial.
apply Rlt_trans with (1:=Hx).
apply pred_lt_id.
now apply Rgt_not_eq.
apply generic_format_pred; trivial.
apply Rlt_trans with (1:=Hx).
apply pred_lt_id.
Qed.
Theorem round_DN_pred :
forall x, (0 < pred x)%R -> F x ->
forall eps, (0 < eps <= ulp (pred x))%R ->
round beta fexp Zfloor (x - eps) = pred x.
Proof.
intros x Hpx Fx eps Heps.
assert (Hx:(0 < x)%R).
apply Rlt_trans with (1:=Hpx).
apply pred_lt_id.
replace (x-eps)%R with (pred x + (ulp (pred x)-eps))%R.
2: pattern x at 3; rewrite <- (pred_plus_ulp x); trivial.
2: ring.
2: now apply Rgt_not_eq.
rewrite round_DN_succ; trivial.
now apply generic_format_pred.
split.
apply Rle_0_minus.
now apply Heps.
rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
now apply Heps.
Qed.
Lemma le_pred_lt_aux :
forall x y,
F x -> F y ->
(0 < x < y)%R ->
(x <= pred y)%R.
Proof with auto with typeclass_instances.
intros x y Hx Hy H.
assert (Zy:(0 < y)%R).
apply Rlt_trans with (1:=proj1 H).
apply H.
(* *)
assert (Zp: (0 < pred y)%R).
assert (Zp:(0 <= pred y)%R).
apply pred_ge_0 ; trivial.
destruct Zp; trivial.
generalize H0.
unfold pred.
destruct (ln_beta beta y) as (ey,Hey); simpl.
case Req_bool_spec; intros Hy2.
(* . *)
intros Hy3.
assert (ey-1 = fexp (ey -1))%Z.
apply bpow_inj with beta.
rewrite <- Hy2, <- Rplus_0_l, Hy3.
ring.
assert (Zx: (x <> 0)%R).
now apply Rgt_not_eq.
destruct (ln_beta beta x) as (ex,Hex).
specialize (Hex Zx).
assert (ex <= ey)%Z.
apply bpow_lt_bpow with beta.
apply Rle_lt_trans with (1:=proj1 Hex).
apply Rlt_trans with (Rabs y).
rewrite 2!Rabs_right.
apply H.
now apply Rgt_ge.
now apply Rgt_ge.
apply Hey.
now apply Rgt_not_eq.
case (Zle_lt_or_eq _ _ H2); intros Hexy.
assert (fexp ex = fexp (ey-1))%Z.
apply valid_exp.
omega.
rewrite <- H1.
omega.
absurd (0 < Ztrunc (scaled_mantissa beta fexp x) < 1)%Z.
omega.
split.
apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
now rewrite <- Hx.
apply lt_Z2R.
apply Rmult_lt_reg_r with (bpow (canonic_exp beta fexp x)).
apply bpow_gt_0.
replace (Z2R (Ztrunc (scaled_mantissa beta fexp x)) *
bpow (canonic_exp beta fexp x))%R with x.
rewrite Rmult_1_l.
unfold canonic_exp.
rewrite ln_beta_unique with beta x ex.
rewrite H3,<-H1, <- Hy2.
apply H.
exact Hex.
absurd (y <= x)%R.
now apply Rlt_not_le.
rewrite Rabs_right in Hex.
apply Rle_trans with (2:=proj1 Hex).
rewrite Hexy, Hy2.
now apply Rle_refl.
now apply Rgt_ge.
(* . *)
intros Hy3.
assert (y = bpow (fexp ey))%R.
apply Rminus_diag_uniq.
rewrite Hy3.
unfold ulp, canonic_exp.
rewrite (ln_beta_unique beta y ey); trivial.
apply Hey.
now apply Rgt_not_eq.
contradict Hy2.
rewrite H1.
apply f_equal.
apply Zplus_reg_l with 1%Z.
ring_simplify.
apply trans_eq with (ln_beta beta y).
apply sym_eq; apply ln_beta_unique.
rewrite H1, Rabs_right.
split.
apply bpow_le.
omega.
apply bpow_lt.
omega.
apply Rle_ge; apply bpow_ge_0.
apply ln_beta_unique.
apply Hey.
now apply Rgt_not_eq.
(* *)
case (Rle_or_lt (ulp (pred y)) (y-x)); intros H1.
(* . *)
apply Rplus_le_reg_r with (-x + ulp (pred y))%R.
ring_simplify (x+(-x+ulp (pred y)))%R.
apply Rle_trans with (1:=H1).
rewrite <- (pred_plus_ulp y) at 1; trivial.
apply Req_le; ring.
now apply Rgt_not_eq.
(* . *)
replace x with (y-(y-x))%R by ring.
rewrite <- round_DN_pred with (eps:=(y-x)%R); try easy.
ring_simplify (y-(y-x))%R.
apply Req_le.
apply sym_eq.
apply round_generic...
split; trivial.
now apply Rlt_Rminus.
now apply Rlt_le.
Qed.
Theorem le_pred_lt :
forall x y,
F x -> F y ->
(0 < y)%R ->
(x < y)%R ->
(x <= pred y)%R.
Proof.
intros x y Fx Fy Hy Hxy.
destruct (Rle_or_lt x 0) as [Hx|Hx].
apply Rle_trans with (1 := Hx).
now apply pred_ge_0.
apply le_pred_lt_aux ; try easy.
now split.
Qed.
Theorem pred_succ : forall { monotone_exp : Monotone_exp fexp },
forall x, F x -> (0 < x)%R -> pred (x + ulp x)=x.
Proof.
intros L x Fx Hx.
assert (x <= pred (x + ulp x))%R.
apply le_pred_lt.
assumption.
now apply generic_format_succ.
replace 0%R with (0+0)%R by ring; apply Rplus_lt_compat; try apply Hx.
apply bpow_gt_0.
apply Rplus_lt_reg_r with (-x)%R; ring_simplify.
apply bpow_gt_0.
apply Rle_antisym; trivial.
apply Rplus_le_reg_r with (ulp (pred (x + ulp x))).
rewrite pred_plus_ulp.
apply Rplus_le_compat_l.
now apply ulp_le.
replace 0%R with (0+0)%R by ring; apply Rplus_lt_compat; try apply Hx.
apply bpow_gt_0.
now apply generic_format_succ.
apply Rgt_not_eq.
now apply Rlt_le_trans with x.
Qed.
Theorem lt_UP_le_DN :
forall x y, F y ->
(y < round beta fexp Zceil x -> y <= round beta fexp Zfloor x)%R.
Proof with auto with typeclass_instances.
intros x y Fy Hlt.
apply round_DN_pt...
apply Rnot_lt_le.
contradict Hlt.
apply RIneq.Rle_not_lt.
apply round_UP_pt...
now apply Rlt_le.
Qed.
Theorem pred_UP_le_DN :
forall x, (0 < round beta fexp Zceil x)%R ->
(pred (round beta fexp Zceil x) <= round beta fexp Zfloor x)%R.
Proof with auto with typeclass_instances.
intros x Pxu.
destruct (generic_format_EM beta fexp x) as [Fx|Fx].
rewrite !round_generic...
now apply Rlt_le; apply pred_lt_id.
assert (let u := round beta fexp Zceil x in pred u < u)%R as Hup.
now apply pred_lt_id.
apply lt_UP_le_DN...
apply generic_format_pred...
now apply round_UP_pt.
Qed.
Theorem pred_UP_eq_DN :
forall x, (0 < round beta fexp Zceil x)%R -> ~ F x ->
(pred (round beta fexp Zceil x) = round beta fexp Zfloor x)%R.
Proof with auto with typeclass_instances.
intros x Px Fx.
apply Rle_antisym.
now apply pred_UP_le_DN.
apply le_pred_lt; try apply generic_format_round...
pose proof round_DN_UP_lt _ _ _ Fx as HE.
now apply Rlt_trans with (1 := proj1 HE) (2 := proj2 HE).
Qed.
(** Properties of rounding to nearest and ulp *)
Theorem rnd_N_le_half_an_ulp: forall choice u v,
F u -> (0 < u)%R -> (v < u + (ulp u)/2)%R
-> (round beta fexp (Znearest choice) v <= u)%R.
Proof with auto with typeclass_instances.
intros choice u v Fu Hu H.
(* . *)
assert (0 < ulp u / 2)%R.
unfold Rdiv; apply Rmult_lt_0_compat.
unfold ulp; apply bpow_gt_0.
auto with real.
(* . *)
assert (ulp u / 2 < ulp u)%R.
apply Rlt_le_trans with (ulp u *1)%R;[idtac|right; ring].
unfold Rdiv; apply Rmult_lt_compat_l.
apply bpow_gt_0.
apply Rmult_lt_reg_l with 2%R.
auto with real.
apply Rle_lt_trans with 1%R.
right; field.
rewrite Rmult_1_r; auto with real.
(* *)
apply Rnd_N_pt_monotone with F v (u + ulp u / 2)%R...
apply round_N_pt...
apply Rnd_DN_pt_N with (u+ulp u)%R.
pattern u at 3; replace u with (round beta fexp Zfloor (u + ulp u / 2)).
apply round_DN_pt...
apply round_DN_succ; try assumption.
split; try left; assumption.
replace (u+ulp u)%R with (round beta fexp Zceil (u + ulp u / 2)).
apply round_UP_pt...
apply round_UP_succ; try assumption...
split; try left; assumption.
right; field.
Qed.
Theorem rnd_N_ge_half_an_ulp_pred: forall choice u v,
F u -> (0 < pred u)%R -> (u - (ulp (pred u))/2 < v)%R
-> (u <= round beta fexp (Znearest choice) v)%R.
Proof with auto with typeclass_instances.
intros choice u v Fu Hu H.
(* . *)
assert (0 < u)%R.
apply Rlt_trans with (1:= Hu).
apply pred_lt_id.
assert (0 < ulp (pred u) / 2)%R.
unfold Rdiv; apply Rmult_lt_0_compat.
unfold ulp; apply bpow_gt_0.
auto with real.
assert (ulp (pred u) / 2 < ulp (pred u))%R.
apply Rlt_le_trans with (ulp (pred u) *1)%R;[idtac|right; ring].
unfold Rdiv; apply Rmult_lt_compat_l.
apply bpow_gt_0.
apply Rmult_lt_reg_l with 2%R.
auto with real.
apply Rle_lt_trans with 1%R.
right; field.
rewrite Rmult_1_r; auto with real.
(* *)
apply Rnd_N_pt_monotone with F (u - ulp (pred u) / 2)%R v...
2: apply round_N_pt...
apply Rnd_UP_pt_N with (pred u).
pattern (pred u) at 2; replace (pred u) with (round beta fexp Zfloor (u - ulp (pred u) / 2)).
apply round_DN_pt...
replace (u - ulp (pred u) / 2)%R with (pred u + ulp (pred u) / 2)%R.
apply round_DN_succ; try assumption.
apply generic_format_pred; assumption.
split; [left|idtac]; assumption.
pattern u at 3; rewrite <- (pred_plus_ulp u); try assumption.
field.
now apply Rgt_not_eq.
pattern u at 3; replace u with (round beta fexp Zceil (u - ulp (pred u) / 2)).
apply round_UP_pt...
replace (u - ulp (pred u) / 2)%R with (pred u + ulp (pred u) / 2)%R.
apply trans_eq with (pred u +ulp(pred u))%R.
apply round_UP_succ; try assumption...
apply generic_format_pred; assumption.
split; [idtac|left]; assumption.
apply pred_plus_ulp; try assumption.
now apply Rgt_not_eq.
pattern u at 3; rewrite <- (pred_plus_ulp u); try assumption.
field.
now apply Rgt_not_eq.
pattern u at 4; rewrite <- (pred_plus_ulp u); try assumption.
right; field.
now apply Rgt_not_eq.
Qed.
Theorem rnd_N_ge_half_an_ulp: forall choice u v,
F u -> (0 < u)%R -> (u <> bpow (ln_beta beta u - 1))%R
-> (u - (ulp u)/2 < v)%R
-> (u <= round beta fexp (Znearest choice) v)%R.
Proof with auto with typeclass_instances.
intros choice u v Fu Hupos Hu H.
(* *)
assert (bpow (ln_beta beta u-1) <= pred u)%R.
apply le_pred_lt; try assumption.
apply generic_format_bpow.
assert (canonic_exp beta fexp u < ln_beta beta u)%Z.
apply ln_beta_generic_gt; try assumption.
now apply Rgt_not_eq.
unfold canonic_exp in H0.
ring_simplify (ln_beta beta u - 1 + 1)%Z.
omega.
destruct ln_beta as (e,He); simpl in *.
assert (bpow (e - 1) <= Rabs u)%R.
apply He.
now apply Rgt_not_eq.
rewrite Rabs_right in H0.
case H0; auto.
intros T; contradict T.
now apply sym_not_eq.
apply Rle_ge; now left.
assert (Hu2:(ulp (pred u) = ulp u)).
unfold ulp, canonic_exp.
apply f_equal; apply f_equal.
apply ln_beta_unique.
rewrite Rabs_right.
split.
assumption.
apply Rlt_trans with (1:=pred_lt_id _).
destruct ln_beta as (e,He); simpl in *.
rewrite Rabs_right in He.
apply He.
now apply Rgt_not_eq.
apply Rle_ge; now left.
apply Rle_ge, pred_ge_0; assumption.
apply rnd_N_ge_half_an_ulp_pred; try assumption.
apply Rlt_le_trans with (2:=H0).
apply bpow_gt_0.
rewrite Hu2; assumption.
Qed.
Lemma round_N_DN_betw: forall choice x d u,
Rnd_DN_pt (generic_format beta fexp) x d ->
Rnd_UP_pt (generic_format beta fexp) x u ->
(d<=x<(d+u)/2)%R ->
round beta fexp (Znearest choice) x = d.
Proof with auto with typeclass_instances.
intros choice x d u Hd Hu H.
apply Rnd_N_pt_unicity with (generic_format beta fexp) x d u; try assumption.
intros Y.
absurd (x < (d+u)/2)%R; try apply H.
apply Rle_not_lt; right.
apply Rplus_eq_reg_r with (-x)%R.
apply trans_eq with (- (x-d)/2 + (u-x)/2)%R.
field.
rewrite Y; field.
apply round_N_pt...
apply Rnd_DN_UP_pt_N with d u...
apply Hd.
right; apply trans_eq with (-(d-x))%R;[idtac|ring].
apply Rabs_left1.
apply Rplus_le_reg_l with x; ring_simplify.
apply H.
rewrite Rabs_left1.
apply Rplus_le_reg_l with (d+x)%R.
apply Rmult_le_reg_l with (/2)%R.
auto with real.
apply Rle_trans with x.
right; field.
apply Rle_trans with ((d+u)/2)%R.
now left.
right; field.
apply Rplus_le_reg_l with x; ring_simplify.
apply H.
Qed.
Lemma round_N_UP_betw: forall choice x d u,
Rnd_DN_pt (generic_format beta fexp) x d ->
Rnd_UP_pt (generic_format beta fexp) x u ->
((d+u)/2 < x <= u)%R ->
round beta fexp (Znearest choice) x = u.
Proof with auto with typeclass_instances.
intros choice x d u Hd Hu H.
rewrite <- (Ropp_involutive (round beta fexp (Znearest choice) x )),
<- (Ropp_involutive u) .
apply f_equal.
rewrite <- (Ropp_involutive x) .
rewrite round_N_opp, Ropp_involutive.
apply round_N_DN_betw with (-d)%R.
replace u with (round beta fexp Zceil x).
rewrite <- round_DN_opp.
apply round_DN_pt...
apply Rnd_UP_pt_unicity with (generic_format beta fexp) x...
apply round_UP_pt...
replace d with (round beta fexp Zfloor x).
rewrite <- round_UP_opp.
apply round_UP_pt...
apply Rnd_DN_pt_unicity with (generic_format beta fexp) x...
apply round_DN_pt...
split.
apply Ropp_le_contravar, H.
apply Rlt_le_trans with (-((d + u) / 2))%R.
apply Ropp_lt_contravar, H.
unfold Rdiv; right; ring.
Qed.
End Fcore_ulp.
|