1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
|
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2011-2013 Sylvie Boldo
#<br />#
Copyright (C) 2011-2013 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
Require Import ZArith.
Require Import ZOdiv.
Section Zmissing.
(** About Z *)
Theorem Zopp_le_cancel :
forall x y : Z,
(-y <= -x)%Z -> Zle x y.
Proof.
intros x y Hxy.
apply Zplus_le_reg_r with (-x - y)%Z.
now ring_simplify.
Qed.
Theorem Zgt_not_eq :
forall x y : Z,
(y < x)%Z -> (x <> y)%Z.
Proof.
intros x y H Hn.
apply Zlt_irrefl with x.
now rewrite Hn at 1.
Qed.
End Zmissing.
Section Proof_Irrelevance.
Scheme eq_dep_elim := Induction for eq Sort Type.
Definition eqbool_dep P (h1 : P true) b :=
match b return P b -> Prop with
| true => fun (h2 : P true) => h1 = h2
| false => fun (h2 : P false) => False
end.
Lemma eqbool_irrelevance : forall (b : bool) (h1 h2 : b = true), h1 = h2.
Proof.
assert (forall (h : true = true), refl_equal true = h).
apply (eq_dep_elim bool true (eqbool_dep _ _) (refl_equal _)).
intros b.
case b.
intros h1 h2.
now rewrite <- (H h1).
intros h.
discriminate h.
Qed.
End Proof_Irrelevance.
Section Even_Odd.
(** Zeven, used for rounding to nearest, ties to even *)
Definition Zeven (n : Z) :=
match n with
| Zpos (xO _) => true
| Zneg (xO _) => true
| Z0 => true
| _ => false
end.
Theorem Zeven_mult :
forall x y, Zeven (x * y) = orb (Zeven x) (Zeven y).
Proof.
now intros [|[xp|xp|]|[xp|xp|]] [|[yp|yp|]|[yp|yp|]].
Qed.
Theorem Zeven_opp :
forall x, Zeven (- x) = Zeven x.
Proof.
now intros [|[n|n|]|[n|n|]].
Qed.
Theorem Zeven_ex :
forall x, exists p, x = (2 * p + if Zeven x then 0 else 1)%Z.
Proof.
intros [|[n|n|]|[n|n|]].
now exists Z0.
now exists (Zpos n).
now exists (Zpos n).
now exists Z0.
exists (Zneg n - 1)%Z.
change (2 * Zneg n - 1 = 2 * (Zneg n - 1) + 1)%Z.
ring.
now exists (Zneg n).
now exists (-1)%Z.
Qed.
Theorem Zeven_2xp1 :
forall n, Zeven (2 * n + 1) = false.
Proof.
intros n.
destruct (Zeven_ex (2 * n + 1)) as (p, Hp).
revert Hp.
case (Zeven (2 * n + 1)) ; try easy.
intros H.
apply False_ind.
omega.
Qed.
Theorem Zeven_plus :
forall x y, Zeven (x + y) = Bool.eqb (Zeven x) (Zeven y).
Proof.
intros x y.
destruct (Zeven_ex x) as (px, Hx).
rewrite Hx at 1.
destruct (Zeven_ex y) as (py, Hy).
rewrite Hy at 1.
replace (2 * px + (if Zeven x then 0 else 1) + (2 * py + (if Zeven y then 0 else 1)))%Z
with (2 * (px + py) + ((if Zeven x then 0 else 1) + (if Zeven y then 0 else 1)))%Z by ring.
case (Zeven x) ; case (Zeven y).
rewrite Zplus_0_r.
now rewrite Zeven_mult.
apply Zeven_2xp1.
apply Zeven_2xp1.
replace (2 * (px + py) + (1 + 1))%Z with (2 * (px + py + 1))%Z by ring.
now rewrite Zeven_mult.
Qed.
End Even_Odd.
Section Zpower.
Theorem Zpower_plus :
forall n k1 k2, (0 <= k1)%Z -> (0 <= k2)%Z ->
Zpower n (k1 + k2) = (Zpower n k1 * Zpower n k2)%Z.
Proof.
intros n k1 k2 H1 H2.
now apply Zpower_exp ; apply Zle_ge.
Qed.
Theorem Zpower_Zpower_nat :
forall b e, (0 <= e)%Z ->
Zpower b e = Zpower_nat b (Zabs_nat e).
Proof.
intros b [|e|e] He.
apply refl_equal.
apply Zpower_pos_nat.
elim He.
apply refl_equal.
Qed.
Theorem Zpower_nat_S :
forall b e,
Zpower_nat b (S e) = (b * Zpower_nat b e)%Z.
Proof.
intros b e.
rewrite (Zpower_nat_is_exp 1 e).
apply (f_equal (fun x => x * _)%Z).
apply Zmult_1_r.
Qed.
Theorem Zpower_pos_gt_0 :
forall b p, (0 < b)%Z ->
(0 < Zpower_pos b p)%Z.
Proof.
intros b p Hb.
rewrite Zpower_pos_nat.
induction (nat_of_P p).
easy.
rewrite Zpower_nat_S.
now apply Zmult_lt_0_compat.
Qed.
Theorem Zeven_Zpower :
forall b e, (0 < e)%Z ->
Zeven (Zpower b e) = Zeven b.
Proof.
intros b e He.
case_eq (Zeven b) ; intros Hb.
(* b even *)
replace e with (e - 1 + 1)%Z by ring.
rewrite Zpower_exp.
rewrite Zeven_mult.
replace (Zeven (b ^ 1)) with true.
apply Bool.orb_true_r.
unfold Zpower, Zpower_pos. simpl.
now rewrite Zmult_1_r.
omega.
discriminate.
(* b odd *)
rewrite Zpower_Zpower_nat.
induction (Zabs_nat e).
easy.
unfold Zpower_nat. simpl.
rewrite Zeven_mult.
now rewrite Hb.
now apply Zlt_le_weak.
Qed.
Theorem Zeven_Zpower_odd :
forall b e, (0 <= e)%Z -> Zeven b = false ->
Zeven (Zpower b e) = false.
Proof.
intros b e He Hb.
destruct (Z_le_lt_eq_dec _ _ He) as [He'|He'].
rewrite <- Hb.
now apply Zeven_Zpower.
now rewrite <- He'.
Qed.
(** The radix must be greater than 1 *)
Record radix := { radix_val :> Z ; radix_prop : Zle_bool 2 radix_val = true }.
Theorem radix_val_inj :
forall r1 r2, radix_val r1 = radix_val r2 -> r1 = r2.
Proof.
intros (r1, H1) (r2, H2) H.
simpl in H.
revert H1.
rewrite H.
intros H1.
apply f_equal.
apply eqbool_irrelevance.
Qed.
Variable r : radix.
Theorem radix_gt_0 : (0 < r)%Z.
Proof.
apply Zlt_le_trans with 2%Z.
easy.
apply Zle_bool_imp_le.
apply r.
Qed.
Theorem radix_gt_1 : (1 < r)%Z.
Proof.
destruct r as (v, Hr). simpl.
apply Zlt_le_trans with 2%Z.
easy.
now apply Zle_bool_imp_le.
Qed.
Theorem Zpower_gt_1 :
forall p,
(0 < p)%Z ->
(1 < Zpower r p)%Z.
Proof.
intros [|p|p] Hp ; try easy.
simpl.
rewrite Zpower_pos_nat.
generalize (lt_O_nat_of_P p).
induction (nat_of_P p).
easy.
intros _.
rewrite Zpower_nat_S.
assert (0 < Zpower_nat r n)%Z.
clear.
induction n.
easy.
rewrite Zpower_nat_S.
apply Zmult_lt_0_compat with (2 := IHn).
apply radix_gt_0.
apply Zle_lt_trans with (1 * Zpower_nat r n)%Z.
rewrite Zmult_1_l.
now apply (Zlt_le_succ 0).
apply Zmult_lt_compat_r with (1 := H).
apply radix_gt_1.
Qed.
Theorem Zpower_gt_0 :
forall p,
(0 <= p)%Z ->
(0 < Zpower r p)%Z.
Proof.
intros p Hp.
rewrite Zpower_Zpower_nat with (1 := Hp).
induction (Zabs_nat p).
easy.
rewrite Zpower_nat_S.
apply Zmult_lt_0_compat with (2 := IHn).
apply radix_gt_0.
Qed.
Theorem Zpower_ge_0 :
forall e,
(0 <= Zpower r e)%Z.
Proof.
intros [|e|e] ; try easy.
apply Zlt_le_weak.
now apply Zpower_gt_0.
Qed.
Theorem Zpower_le :
forall e1 e2, (e1 <= e2)%Z ->
(Zpower r e1 <= Zpower r e2)%Z.
Proof.
intros e1 e2 He.
destruct (Zle_or_lt 0 e1)%Z as [H1|H1].
replace e2 with (e2 - e1 + e1)%Z by ring.
rewrite Zpower_plus with (2 := H1).
rewrite <- (Zmult_1_l (r ^ e1)) at 1.
apply Zmult_le_compat_r.
apply (Zlt_le_succ 0).
apply Zpower_gt_0.
now apply Zle_minus_le_0.
apply Zpower_ge_0.
now apply Zle_minus_le_0.
clear He.
destruct e1 as [|e1|e1] ; try easy.
apply Zpower_ge_0.
Qed.
Theorem Zpower_lt :
forall e1 e2, (0 <= e2)%Z -> (e1 < e2)%Z ->
(Zpower r e1 < Zpower r e2)%Z.
Proof.
intros e1 e2 He2 He.
destruct (Zle_or_lt 0 e1)%Z as [H1|H1].
replace e2 with (e2 - e1 + e1)%Z by ring.
rewrite Zpower_plus with (2 := H1).
rewrite Zmult_comm.
rewrite <- (Zmult_1_r (r ^ e1)) at 1.
apply Zmult_lt_compat2.
split.
now apply Zpower_gt_0.
apply Zle_refl.
split.
easy.
apply Zpower_gt_1.
clear -He ; omega.
apply Zle_minus_le_0.
now apply Zlt_le_weak.
revert H1.
clear -He2.
destruct e1 ; try easy.
intros _.
now apply Zpower_gt_0.
Qed.
Theorem Zpower_lt_Zpower :
forall e1 e2,
(Zpower r (e1 - 1) < Zpower r e2)%Z ->
(e1 <= e2)%Z.
Proof.
intros e1 e2 He.
apply Znot_gt_le.
intros H.
apply Zlt_not_le with (1 := He).
apply Zpower_le.
clear -H ; omega.
Qed.
End Zpower.
Section Div_Mod.
Theorem Zmod_mod_mult :
forall n a b, (0 < a)%Z -> (0 <= b)%Z ->
Zmod (Zmod n (a * b)) b = Zmod n b.
Proof.
intros n a [|b|b] Ha Hb.
now rewrite 2!Zmod_0_r.
rewrite (Zmod_eq n (a * Zpos b)).
rewrite Zmult_assoc.
unfold Zminus.
rewrite Zopp_mult_distr_l.
apply Z_mod_plus.
easy.
apply Zmult_gt_0_compat.
now apply Zlt_gt.
easy.
now elim Hb.
Qed.
Theorem ZOmod_eq :
forall a b,
ZOmod a b = (a - ZOdiv a b * b)%Z.
Proof.
intros a b.
rewrite (ZO_div_mod_eq a b) at 2.
ring.
Qed.
Theorem ZOmod_mod_mult :
forall n a b,
ZOmod (ZOmod n (a * b)) b = ZOmod n b.
Proof.
intros n a b.
assert (ZOmod n (a * b) = n + - (ZOdiv n (a * b) * a) * b)%Z.
rewrite <- Zopp_mult_distr_l.
rewrite <- Zmult_assoc.
apply ZOmod_eq.
rewrite H.
apply ZO_mod_plus.
rewrite <- H.
apply ZOmod_sgn2.
Qed.
Theorem Zdiv_mod_mult :
forall n a b, (0 <= a)%Z -> (0 <= b)%Z ->
(Zdiv (Zmod n (a * b)) a) = Zmod (Zdiv n a) b.
Proof.
intros n a b Ha Hb.
destruct (Zle_lt_or_eq _ _ Ha) as [Ha'|Ha'].
destruct (Zle_lt_or_eq _ _ Hb) as [Hb'|Hb'].
rewrite (Zmod_eq n (a * b)).
rewrite (Zmult_comm a b) at 2.
rewrite Zmult_assoc.
unfold Zminus.
rewrite Zopp_mult_distr_l.
rewrite Z_div_plus by now apply Zlt_gt.
rewrite <- Zdiv_Zdiv by easy.
apply sym_eq.
apply Zmod_eq.
now apply Zlt_gt.
now apply Zmult_gt_0_compat ; apply Zlt_gt.
rewrite <- Hb'.
rewrite Zmult_0_r, 2!Zmod_0_r.
apply Zdiv_0_l.
rewrite <- Ha'.
now rewrite 2!Zdiv_0_r, Zmod_0_l.
Qed.
Theorem ZOdiv_mod_mult :
forall n a b,
(ZOdiv (ZOmod n (a * b)) a) = ZOmod (ZOdiv n a) b.
Proof.
intros n a b.
destruct (Z_eq_dec a 0) as [Za|Za].
rewrite Za.
now rewrite 2!ZOdiv_0_r, ZOmod_0_l.
assert (ZOmod n (a * b) = n + - (ZOdiv (ZOdiv n a) b * b) * a)%Z.
rewrite (ZOmod_eq n (a * b)) at 1.
rewrite ZOdiv_ZOdiv.
ring.
rewrite H.
rewrite ZO_div_plus with (2 := Za).
apply sym_eq.
apply ZOmod_eq.
rewrite <- H.
apply ZOmod_sgn2.
Qed.
Theorem ZOdiv_small_abs :
forall a b,
(Zabs a < b)%Z -> ZOdiv a b = Z0.
Proof.
intros a b Ha.
destruct (Zle_or_lt 0 a) as [H|H].
apply ZOdiv_small.
split.
exact H.
now rewrite Zabs_eq in Ha.
apply Zopp_inj.
rewrite <- ZOdiv_opp_l, Zopp_0.
apply ZOdiv_small.
generalize (Zabs_non_eq a).
omega.
Qed.
Theorem ZOmod_small_abs :
forall a b,
(Zabs a < b)%Z -> ZOmod a b = a.
Proof.
intros a b Ha.
destruct (Zle_or_lt 0 a) as [H|H].
apply ZOmod_small.
split.
exact H.
now rewrite Zabs_eq in Ha.
apply Zopp_inj.
rewrite <- ZOmod_opp_l.
apply ZOmod_small.
generalize (Zabs_non_eq a).
omega.
Qed.
Theorem ZOdiv_plus :
forall a b c, (0 <= a * b)%Z ->
(ZOdiv (a + b) c = ZOdiv a c + ZOdiv b c + ZOdiv (ZOmod a c + ZOmod b c) c)%Z.
Proof.
intros a b c Hab.
destruct (Z_eq_dec c 0) as [Zc|Zc].
now rewrite Zc, 4!ZOdiv_0_r.
apply Zmult_reg_r with (1 := Zc).
rewrite 2!Zmult_plus_distr_l.
assert (forall d, ZOdiv d c * c = d - ZOmod d c)%Z.
intros d.
rewrite ZOmod_eq.
ring.
rewrite 4!H.
rewrite <- ZOplus_mod with (1 := Hab).
ring.
Qed.
End Div_Mod.
Section Same_sign.
Theorem Zsame_sign_trans :
forall v u w, v <> Z0 ->
(0 <= u * v)%Z -> (0 <= v * w)%Z -> (0 <= u * w)%Z.
Proof.
intros [|v|v] [|u|u] [|w|w] Zv Huv Hvw ; try easy ; now elim Zv.
Qed.
Theorem Zsame_sign_trans_weak :
forall v u w, (v = Z0 -> w = Z0) ->
(0 <= u * v)%Z -> (0 <= v * w)%Z -> (0 <= u * w)%Z.
Proof.
intros [|v|v] [|u|u] [|w|w] Zv Huv Hvw ; try easy ; now discriminate Zv.
Qed.
Theorem Zsame_sign_imp :
forall u v,
(0 < u -> 0 <= v)%Z ->
(0 < -u -> 0 <= -v)%Z ->
(0 <= u * v)%Z.
Proof.
intros [|u|u] v Hp Hn.
easy.
apply Zmult_le_0_compat.
easy.
now apply Hp.
replace (Zneg u * v)%Z with (Zpos u * (-v))%Z.
apply Zmult_le_0_compat.
easy.
now apply Hn.
rewrite <- Zopp_mult_distr_r.
apply Zopp_mult_distr_l.
Qed.
Theorem Zsame_sign_odiv :
forall u v, (0 <= v)%Z ->
(0 <= u * ZOdiv u v)%Z.
Proof.
intros u v Hv.
apply Zsame_sign_imp ; intros Hu.
apply ZO_div_pos with (2 := Hv).
now apply Zlt_le_weak.
rewrite <- ZOdiv_opp_l.
apply ZO_div_pos with (2 := Hv).
now apply Zlt_le_weak.
Qed.
End Same_sign.
(** Boolean comparisons *)
Section Zeq_bool.
Inductive Zeq_bool_prop (x y : Z) : bool -> Prop :=
| Zeq_bool_true_ : x = y -> Zeq_bool_prop x y true
| Zeq_bool_false_ : x <> y -> Zeq_bool_prop x y false.
Theorem Zeq_bool_spec :
forall x y, Zeq_bool_prop x y (Zeq_bool x y).
Proof.
intros x y.
generalize (Zeq_is_eq_bool x y).
case (Zeq_bool x y) ; intros (H1, H2) ; constructor.
now apply H2.
intros H.
specialize (H1 H).
discriminate H1.
Qed.
Theorem Zeq_bool_true :
forall x y, x = y -> Zeq_bool x y = true.
Proof.
intros x y.
apply -> Zeq_is_eq_bool.
Qed.
Theorem Zeq_bool_false :
forall x y, x <> y -> Zeq_bool x y = false.
Proof.
intros x y.
generalize (proj2 (Zeq_is_eq_bool x y)).
case Zeq_bool.
intros He Hn.
elim Hn.
now apply He.
now intros _ _.
Qed.
End Zeq_bool.
Section Zle_bool.
Inductive Zle_bool_prop (x y : Z) : bool -> Prop :=
| Zle_bool_true_ : (x <= y)%Z -> Zle_bool_prop x y true
| Zle_bool_false_ : (y < x)%Z -> Zle_bool_prop x y false.
Theorem Zle_bool_spec :
forall x y, Zle_bool_prop x y (Zle_bool x y).
Proof.
intros x y.
generalize (Zle_is_le_bool x y).
case Zle_bool ; intros (H1, H2) ; constructor.
now apply H2.
destruct (Zle_or_lt x y) as [H|H].
now specialize (H1 H).
exact H.
Qed.
Theorem Zle_bool_true :
forall x y : Z,
(x <= y)%Z -> Zle_bool x y = true.
Proof.
intros x y.
apply (proj1 (Zle_is_le_bool x y)).
Qed.
Theorem Zle_bool_false :
forall x y : Z,
(y < x)%Z -> Zle_bool x y = false.
Proof.
intros x y Hxy.
generalize (Zle_cases x y).
case Zle_bool ; intros H.
elim (Zlt_irrefl x).
now apply Zle_lt_trans with y.
apply refl_equal.
Qed.
End Zle_bool.
Section Zlt_bool.
Inductive Zlt_bool_prop (x y : Z) : bool -> Prop :=
| Zlt_bool_true_ : (x < y)%Z -> Zlt_bool_prop x y true
| Zlt_bool_false_ : (y <= x)%Z -> Zlt_bool_prop x y false.
Theorem Zlt_bool_spec :
forall x y, Zlt_bool_prop x y (Zlt_bool x y).
Proof.
intros x y.
generalize (Zlt_is_lt_bool x y).
case Zlt_bool ; intros (H1, H2) ; constructor.
now apply H2.
destruct (Zle_or_lt y x) as [H|H].
exact H.
now specialize (H1 H).
Qed.
Theorem Zlt_bool_true :
forall x y : Z,
(x < y)%Z -> Zlt_bool x y = true.
Proof.
intros x y.
apply (proj1 (Zlt_is_lt_bool x y)).
Qed.
Theorem Zlt_bool_false :
forall x y : Z,
(y <= x)%Z -> Zlt_bool x y = false.
Proof.
intros x y Hxy.
generalize (Zlt_cases x y).
case Zlt_bool ; intros H.
elim (Zlt_irrefl x).
now apply Zlt_le_trans with y.
apply refl_equal.
Qed.
Theorem negb_Zle_bool :
forall x y : Z,
negb (Zle_bool x y) = Zlt_bool y x.
Proof.
intros x y.
case Zle_bool_spec ; intros H.
now rewrite Zlt_bool_false.
now rewrite Zlt_bool_true.
Qed.
Theorem negb_Zlt_bool :
forall x y : Z,
negb (Zlt_bool x y) = Zle_bool y x.
Proof.
intros x y.
case Zlt_bool_spec ; intros H.
now rewrite Zle_bool_false.
now rewrite Zle_bool_true.
Qed.
End Zlt_bool.
Section Zcompare.
Inductive Zcompare_prop (x y : Z) : comparison -> Prop :=
| Zcompare_Lt_ : (x < y)%Z -> Zcompare_prop x y Lt
| Zcompare_Eq_ : x = y -> Zcompare_prop x y Eq
| Zcompare_Gt_ : (y < x)%Z -> Zcompare_prop x y Gt.
Theorem Zcompare_spec :
forall x y, Zcompare_prop x y (Zcompare x y).
Proof.
intros x y.
destruct (Z_dec x y) as [[H|H]|H].
generalize (Zlt_compare _ _ H).
case (Zcompare x y) ; try easy.
now constructor.
generalize (Zgt_compare _ _ H).
case (Zcompare x y) ; try easy.
constructor.
now apply Zgt_lt.
generalize (proj2 (Zcompare_Eq_iff_eq _ _) H).
case (Zcompare x y) ; try easy.
now constructor.
Qed.
Theorem Zcompare_Lt :
forall x y,
(x < y)%Z -> Zcompare x y = Lt.
Proof.
easy.
Qed.
Theorem Zcompare_Eq :
forall x y,
(x = y)%Z -> Zcompare x y = Eq.
Proof.
intros x y.
apply <- Zcompare_Eq_iff_eq.
Qed.
Theorem Zcompare_Gt :
forall x y,
(y < x)%Z -> Zcompare x y = Gt.
Proof.
intros x y.
apply Zlt_gt.
Qed.
End Zcompare.
Section cond_Zopp.
Definition cond_Zopp (b : bool) m := if b then Zopp m else m.
Theorem abs_cond_Zopp :
forall b m,
Zabs (cond_Zopp b m) = Zabs m.
Proof.
intros [|] m.
apply Zabs_Zopp.
apply refl_equal.
Qed.
Theorem cond_Zopp_Zlt_bool :
forall m,
cond_Zopp (Zlt_bool m 0) m = Zabs m.
Proof.
intros m.
apply sym_eq.
case Zlt_bool_spec ; intros Hm.
apply Zabs_non_eq.
now apply Zlt_le_weak.
now apply Zabs_eq.
Qed.
End cond_Zopp.
|